首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
SCMOC温度精细化指导预报在陕西区域的质量检验   总被引:1,自引:0,他引:1  
王丹  高红燕  马磊  王建鹏  杨新 《气象科技》2014,42(5):839-846
利用2012年陕西区域99站共366天北京时间08:00和20:00起报的SCMOC温度精细化指导预报与实况资料的比较,检验分析了定时温度、日最高气温和日最低气温的预报质量。结果表明:陕西区域SCMOC温度精细化指导预报08:00起报的准确率高于20:00起报的,且预报准确率有明显的季节变化,夏、秋季节较高,冬、春季节较低,日最高(低)气温的预报准确率与预报时效成反比。地形高度影响温度预报准确率,二者之间的相关系数通过了显著性检验。08:00起报的48h内逐3h气温多出现负误差,20:00起报的多出现正误差。08:00起报的日最高气温和20:00起报的日最高(低)气温多出现负误差,08:00起报的日最低气温多出现正误差。从对典型天气过程的温度预报质量检验来看,强冷空气影响下的降温天气过程的温度预报难度较大,预报准确率较其他天气类型偏低一些。  相似文献   

2.
利用2014~2015年阿坝州13站共730天08:00和20:00起报的SCMOC温度精细化指导预报资料,对比实况日最高(低)气温,进行预报质量检验。结果表明:日最高(低)气温预报准确率与预报时效成反比,两个时次预报的最低气温准确率高于最高气温,且最低气温预报准确率有明显的季节变化。08:00起报的日最低气温多出现负误差,其余预报最高(低)气温多出现正误差。日最低气温预报绝对误差与海拔高度有关。24h最高(低)气温预报绝对误差>4℃样本分析表明,温度平流、大气稳定度与非绝热过程对温度的影响明显,造成气温偏差的主要原因是降水及冷空气影响范围和强度,冷、暖平流影响偏差,高空槽强度和移动偏差等几方面。  相似文献   

3.
为评价用于公众气象服务的精细化多模式客观集成预报服务产品(refined multi-model objective consensus forecasting service products,以下简称OCF)多模式集成气温预报效果,分析其误差成因,以中国区域OCF日最高气温和日最低气温预报检验为切入点,对服务影响较大的大误差日及其典型特例——降温日开展检验分析,并与参与OCF集成的ECMWF和NCEP气温预报进行对比。结果表明:OCF日最高气温和日最低气温总体上预报性能优于参与集成的模式预报,准确率夏季高冬季低,拉开了气温变化范围,也有效减小了误差。OCF的大误差日较少,但2~3 d时效及冬半年的大误差日较ECMWF多,与集成的模式预报性能、降温天气相关。针对降温日的检验分析发现:OCF、ECMWF和NCEP在降温日的预报性能有所下降,OCF日最高气温预报误差增长尤其快;OCF对降温日的日最低气温、非降温区域的日最高气温进行了有效订正,但在降温日的降温区域里,其日最高气温预报有明显的正误差特征。基于以上分析,提出了OCF气温集成订正技术改进方向,说明针对性的检验更利于发现客观模式预报及集成订正的问题。  相似文献   

4.
1961-2009年三江源地区气候变化特征分析   总被引:2,自引:0,他引:2  
利用三江源地区18个气象台站1961—2009年气温、年最高气温、年最低气温、降水量、降水日数等资料,分析了该地区年最高气温、年最低气温、降水量、降水日数等气候要素的变化趋势。研究表明:近49年来三江源年平均气温、年平均最高气温、年平均最低气温均在升高,升高速率平均最低气温明显大于平均气温和平均最高气温,年平均气温的升高主要是由最低平均气温升高引起的;三江源年和四季降水量均呈增多趋势,冬、春季降水量增幅最明显,年降水量变化的空间分布北部增多而东南部减少,年降水量除20世纪70年代—21世纪初均呈增加趋势;年和冬、春季≥0.1mm降水日数增加,而夏秋季降水日数减少;年和冬、夏、秋季潜在蒸散量呈显著性增加趋势,春季变化则不明显;年和四季平均风速均呈显著下降趋势;年和四季日照时数变化不显著。  相似文献   

5.
利用欧洲中心数值预报产品,采用完全预报方法(PP法)分季节建立广东省分县第4、5天最高、最低气温预报方程,并进行误差检验和分析.结果表明:误差大小有明显的季节差异,并具有一定的地域分布特点;最低气温的预报效果明显好于最高气温,夏秋季最低气温、夏季最高气温的平均绝对误差均小于2℃,具有较高的参考价值.逐日误差与天气密切相...  相似文献   

6.
基于数值模式误差分析的气温预报方法   总被引:1,自引:0,他引:1       下载免费PDF全文
采用欧洲中期天气预报中心(ECMWF)全球确定性预报模式地面气温和国家地面站点观测资料,对模式初值场误差、历史误差以及卡尔曼滤波预测误差与实况误差之间的相关性进行分析,设计了4种回归方案订正日最高、最低气温预报偏差,并与ECMWF、中央气象台和全国城镇的预报产品进行了检验对比。结果表明:采用了模式近1~3 d最高(最低)气温和模式最高(最低)气温历史平均误差、初值场误差以及卡尔曼滤波反演误差作为预报因子的改进方案效果最优,经对其2017年日最高和最低气温的预报检验,预报准确率较ECMWF原始模式预报有较明显提高,也明显优于中央气象台指导预报。在空间分布方面,其对地形较为复杂地区的改进效果更好。同时,与当前业务中质量最好的全国城镇预报相比,最高气温预报平均绝对偏差(Mean Absolute Error,MAE)较全国城镇预报低8.24%~13.97%,预报准确率提高1.24%~3.57%,日最低气温平均绝对偏差较城镇预报低9.43%~17.69%,预报准确率提高1.77%~2.72%。在3 d的预报中,对24 h时效内预报相对于48 h和72 h的改进幅度更大,订正效果更加明显。  相似文献   

7.
沈阳地区日光温室内最低气温变化特征及其预报模型研究   总被引:1,自引:0,他引:1  
利用2013—2014年沈阳地区日光温室内和温室外的气象观测资料,采用相关分析和逐步回归分析方法对日光温室内最低气温的变化特征及其预报模型进行了研究。结果表明:2013—2014年沈阳地区日光温室内最低气温与温室外的前一日最高气温、前一日最低气温、当日最低气温及温室内前一日最高气温、前一日最低气温相关显著。沈阳地区四季不同天气条件日光温室内最低气温的预报模型存在一定的差异,冬季日光温室内最低气温模型的预报准确率较高,春季次之,秋季再次之,夏季日光温室内最低气温模型的预报效果较差,冬季、春季、秋季、夏季日光温室内日最低气温≤3.0℃的预报准确率分别为91%、85%、81%和79%;雨雪天日光温室内最低气温的预报准确率较高,阴天次之,晴天再次之,多云天日光温室内最低气温的预报准确率较低,雨雪天、阴天、晴天、多云天日光温室内日最低气温≤3.0℃的预报准确率分别为90%、87%、83%和77%。可见,本文建立的沈阳地区日光温室内最低气温模型的预报效果较好,可为沈阳地区中高档钢架砖混结构日光温室内最低气温的预报提供参考,具有较强的实用性。  相似文献   

8.
基于GFS产品和卡尔曼滤波的嘉兴市温度客观预报   总被引:3,自引:2,他引:1  
利用NCEP提供的高时空分辨率的GFS(Global Forecast System)数值预报产品和当地地面观测气温资料,经SPSS(Statistical Product and Service Solution)逐步回归分析,建立了嘉兴市24h和48h日平均气温、最高气温、最低气温初始预报方程,采用卡尔曼滤波方法进行以上6项目的逐日滚动预报。对最近2年来的预报结果检验表明:平均气温的预报效果最佳,最低气温次之,最高气温的准确率相对最低;随着时效增长,误差增大;不同季节,参考价值高的项目各不相同,秋季的最高温度误差较小,而冬季则最低气温准确率最高。分析结果可以作为日常预报中一种有效的参考。  相似文献   

9.
基于1990~2019年四川地区156个气象观测站2 m最高、最低气温逐日数据,分析了最高、最低气温的日变化特征。结果表明:(1)2 m最高气温逐日变化幅度大于最低气温逐日变化幅度,最高气温逐日变温的极大值区位于凉山州东北部,最低气温逐日变温的极大值区位于甘孜、阿坝两州北部;(2)春季最高气温逐日变温幅度明显大于夏、秋、冬季,冬、春季最低气温逐日变温幅度大于夏、秋季;(3)最高气温和最低气温的逐日变温频次分布均呈现单峰型特征,前者峰值位于0~2℃,后者峰值位于?2~2℃。(4)最高气温逐日变化超过6℃的年均频次明显高于最低气温,两者高频区的空间分布与变温幅度大值区较为一致。   相似文献   

10.
为了解ECMWF高分辨率数值预报模式(以下简称“EC”)对广安地区气温的预报性能,提高预报质量。利用EC气温预报产品,对2015~2017年广安地区最低(高)气温进行预报性能检验。结果表明:EC模式预报最低气温,正确率较高;预报最高气温,正确率波动大,随月份呈明显的“V”型变化,盛夏7、8月最低。预报误差随时效延长,略有增大;最低气温误差小于最高气温误差;最低气温误差各月无明显差异,最高气温误差在盛夏7、8月最大。最低气温预报效果区域差异不明显;最高气温预报效果受地形影响较大。根据订正指标,进行气温订正预报,可有效提升预报正确率。EC模式预报高温时的最高气温偏小,经过订正后,各站各时效正确率均明显提高,正确率提升20.6~91.3%,具有较高的参考价值。   相似文献   

11.
利用2020年6月1日—2022年5月31日CMA GD模式2 m气温预报产品(预报时效为13—36 h)和同期江西省智能网格预报区域内地面站气温观测资料,计算气温预报准确率、平均误差和均方根误差,并统计分析其时空分布特征。结果表明: 1)模式预报准确率在不同月份、起报时次存在差异,暖季总体较高,冷季总体较低;暖季08时起报产品的月准确率总体高于20时,冷季反之;秋、冬季旬准确率分布更离散。模式预报产品其准确率明显低于中央气象台和江西省气象台订正产品,需订正后使用。08时起报产品对寒潮的预报效果优于20时。2)气温预报年误差分布存在日变化,最大值出现在08时,最小值出现在15时;年均方根误差峰值出现在15时和06时,白天大于夜间。3)冬季平均误差多为正值,夏季为负值,春、秋季平均误差大小界于冬、夏季之间;白天时段夏季均方根误差最大,夜间时段冬季最大。4)气温预报年误差地理分布特征明显,平原地区预报值偏低,年均方根误差最小;丘陵和山区22 h时效预报值偏高,31 h时效偏低;高山站预报值偏高,年均方根误差最大。丘陵地区负误差最大,平原地区最小;山区正误差最大。  相似文献   

12.
利用1961—2018年辽宁省61个国家级气象站逐日平均、最高、最低气温观测资料以及NCEP/NCAR再分析资料,定量分析了城市化对辽宁省气温变化的影响。结果表明:辽宁省气温呈显著增加趋势,观测资料的增温趋势较再分析资料明显;逐日平均、最高、最低气温均表现出冬季增温速率最快,春季、秋季次之,夏季增温速率最慢;在城市化影响贡献率上,秋季最大,夏季和春季次之,冬季相对较小;空间分布上,辽宁省绝大部分地区城市化影响呈上升趋势,呈现出中部大于外围,东部大于西部,南部大于北部的分布形势,城镇化发展水平越高的地区,观测与再分析方法的差值增加趋势越明显;平均气温、最高、最低气温的城市化影响分别是0.13℃/10 a、0.045℃/10 a、0.216℃/10 a,城市化影响贡献率分别为38.5%、19.5%、43.4%,说明快速的城市化进程是导致辽宁省气温增暖的重要因素。  相似文献   

13.
根据中央气象台自2017年10月—2018年9月20:00起报未来72 h 0.05 °×0.05 °分辨率格点日最高、最低温度指导预报和国家气象信息中心格点温度实况,应用Matlab神经网络工具箱提供的newrbe函数,建立基于径向基函数(RBF)神经网络的温度预报模型,对2018年10月—2019年9月RBF预报产品进行格点检验评估,并与同期的EC模式预报产品做了对比。结果表明:(1)通过RBF模型订正后的24 h、48 h和72 h日最高和最低温度预报准确率较中央气象台指导预报(NMC)分别提高了7.21%、6.98%、5.48%和5.67%、4.46%、4.47%,均为正技巧,且春、夏、秋季预报订正效果要好于冬季;(2)分区域预报检验来看,除海源、同心、彭阳的最高温度预报和海源、惠农的最低温度预报误差偏较大外,其他区域的误差基本都小于2 ℃。特别是对强降温、霜冻天气的温度预报准确率高于NMC,对预报员有一定的参考价值。   相似文献   

14.
利用中国气象局国家气象信息中心提供的青藏高原60个测站1961~2007年逐日气温资料, 分析了青藏高原近47年来四季开始日期随海拔高度和纬度的变化趋势。结果表明, 春季和夏季开始日期是整体提前, 而秋季和冬季开始日期是整体延迟的, 春季和冬季开始日期的变化相对夏季和秋季更为明显;四季开始日期随海拔高度变化分布明显不同, 海拔越高, 春夏季开始日期来临越晚, 秋冬季开始日期来临越早, 海拔越低, 春夏季开始日期来临越早, 秋冬季开始日期来临越晚;海拔越高, 春夏开始日期提前的天数越多, 秋冬开始日期推迟天数越多, 反之低海拔地区相对更小, 由此得知高海拔地区的季节开始日期对当地气温的增温更为敏感;春季开始日期在36°N以南基本随纬度递增而开始日期推后, 36°N以北地区春季相对偏早, 夏季、秋季、冬季开始日期随纬度的变化和春季变化基本相似;四季开始日期来临的早晚受到多种因素包括气温、海拔和纬度共同影响, 季节延迟率也受到气温和海拔的影响, 但是纬度对季节延迟率影响不大;四季开始日期的提前和延迟变化和当地气温的变化几乎一致, 秋冬季节的开始日期对气温变化更为敏感, 高海拔地区的季节开始日期对气温变化更为敏感。   相似文献   

15.
基于贵州省威宁县2012年12月-2018年8月国家基准气候站(以下简称“国家站”)和52个区域自动观测站(以下简称“区域站”)的逐日最高最低气温资料,采用统计学方法和加权最小二乘法,分析威宁县近几年来最高最低气温的变化特征及国家站和部分区域站最高最低气温的相关性。结果表明:四季中,最低气温存在稳定的低值中心和高值中心,而最高气温只存在稳定的高值中心。春、夏、秋季的最高最低气温和冬季的最低气温分布与地形基本一致,但冬季的最高气温分布受地形和滇黔静止锋共同影响却有所变化。根据拟合方程得出的各乡镇气温预报值比直接用EC模式的预报值准确率更高,其误差值≤|2|℃。随着方程相关系数的减小,预报准确率相应降低,误差范围对应增大,预报准确率的高低与相关系数的变化具有一致性。  相似文献   

16.
1980~2014年中国生态脆弱区气候变化特征分析   总被引:1,自引:0,他引:1  
为了全面把握20世纪80年代以来中国生态脆弱区气候变化的特征,利用基于全国2000多个站点的格点化逐月资料,对中国典型生态脆弱区1980~2014年的日平均气温、日最高和最低气温、降水、相对湿度、风速和蒸发皿蒸发量的变化特征进行了分析。结果表明:(1)中国生态脆弱区日平均气温、日最高和最低气温几乎都呈上升趋势;日平均气温增幅北方大于南方;北方生态脆弱区日平均气温、日最高和最低气温、南方生态脆弱区日最低气温的季节增幅多为春季最大,秋季或冬季最小。(2)全区平均降水变化趋势不明显;生态脆弱区降水距平百分率春季多为增长趋势,夏季多为减少趋势,秋、冬季和年北方多为增长趋势,南方多为减少趋势。(3)相对湿度以减少趋势为主,只有黄土高原南部脆弱区秋、冬季和干旱半干旱区脆弱区冬季相对湿度距平百分率的趋势为正,这几个正值区同时也是降水增长大值区。(4)风速基本为减少趋势,春季减少趋势最大。(5)全区平均蒸发皿蒸发量春、夏季和年为减少趋势,冬季为增长趋势;北方生态脆弱区蒸发皿蒸发量四季和年多呈减少趋势;南方生态脆弱区蒸发皿蒸发量春、夏季以减少趋势为主,秋、冬季和年呈增长趋势。  相似文献   

17.
利用客观统计方法,对2009—2012年新疆15个地州首府城市最高最低温度预报进行检验。结果表明:(1)15个站最高温度预报准确率高于最低温度,最高最低温度的预报准确率均呈逐年上升趋势。(2)最高最低温度预报准确率随预报时效的延长而降低,克拉玛依、吐鲁番、和田、阿图什、喀什和哈密6个站24、48、72 h预报准确率都高于平均值。(3)温度预报夏秋季好于冬春季,其中最高温度预报夏季最好,冬季最差;最低温度预报秋季最好,春季最差。(4)2012年冬季,15个站预报员主观预报与中央台指导预报的最高最低温度SST平均值基本相同,正负技巧的站点数持平,但站点差异比较大。克拉玛依、阿图什温度预报准确率高于中央台指导预报,且正技巧较高;阿勒泰、阿克苏预报准确率低于中央台指导预报,且负技巧较大。  相似文献   

18.
合肥市53年气温变化特征分析   总被引:5,自引:1,他引:4  
利用1953-2005年安徽省合肥市逐日平均气温、最高气温和最低气温资料,应用最小二乘法和Morlet小波分析法,对合肥市温度变化进行了分析。结果表明,合肥市53a来年平均气温、年平均最高气温和年平均最低气温变化,均具有明显冷期和暖期交替的阶段性特点,而且冷期持续时间比暖期持续时间长;春季、秋季和冬季年平均气温均呈上升趋势,但增幅不同,冬季最大,春季次之,秋季最小,而夏季气温呈微弱的下降趋势;年极端最高气温呈微弱的下降趋势,年极端最低气温则呈强烈的上升趋势;年热积温呈下降趋势,年冷积温则呈明显的上升趋势;年平均气温、年平均最高气温和年平均最低气温变化具有明显的周期性,均存在30a左右的大尺度周期振荡,而中小尺度周期振荡则不相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号