首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
青藏高原和四川盆地夏季对流性降水特征的对比分析   总被引:3,自引:1,他引:2  
李典  白爱娟  薛羽君  王鹏 《气象》2014,40(3):280-289
本文利用TRMM(Tropical Rainfall Measure Mission)多种探测结果,针对青藏高原和四川盆地各两次对流性降水天气进行了对比分析,结果表明:(1)高原降水系统以对流云降水为主,弱降水样本数量高,由孤立零散的块状降水云团组成,对流中心离散,降水范围小,雨区极不均匀,垂直发展厚度浅薄,降水粒子数量少,雨滴小,潜热释放以地面以上2~5 km高度层为主,夏季近地面层冰晶粒子含量高,降水过程中云顶亮温与地表雨强之间的相关性差,云顶亮温越高的对流云团其闪电频数越高。(2)盆地降水系统强降水样本数量高,由一个主降水系统和周边零散的降水云团组成,降水范围大,对流中心相对集中,雨区较均匀,垂直发展厚度高,对流系统深厚,雨滴大并集中,潜热释放呈一致的双峰型结构,峰值分别出现在7和16km高度上,冰雹粒子在对流层较高层含量高,云顶亮温与地表雨强之间呈显著的负相关,盆地的闪电频数显著高于高原地区,且闪电活动主要集中在亮温偏低的降水云体中。  相似文献   

2.
利用2019-2020年风云四号气象卫星A星(FY-4A)多通道扫描成像辐射计(AGRI)提供的云顶数据和地基全球闪电定位网(WWLLN)提供的闪电数据,结合MICAPS气象观测站和海洋浮标记录的极大风数据,研究南海区域(5°~30°N,105°~125°E)71次雷暴大风过程的时空分布及其闪电和对流活动特征。结果表明:观测站记录的雷暴大风主要分布在南海北部;雷暴大风主要发生在5-9月,峰值出现在8月,3月发生次数最少;雷暴大风主要发生在07:00-12:00(北京时,下同),10:00频次最高,午后频次减少。雷暴大风闪电密度的极大值分布在广东南部近海区域,且闪电集中发生在距离观测站40~80 km半径范围内;孤立雷暴大风过程首次闪电跃变的发生时刻相对大风峰值时刻超前30 min至2 min。在对流特征方面,在雷暴大风风速峰值时刻,观测站处的云顶亮温为200~220 K,云顶高度为12.5~15 km。孤立雷暴大风云团云顶亮温最低值(即最强对流发生位置)与大风观测站点的距离平均为77.2 km,云顶亮温平均相差2.6 K。  相似文献   

3.
2002-07-04子长特大暴雨中尺度分析   总被引:1,自引:1,他引:1       下载免费PDF全文
对陕北子长一次特大暴雨的中-β尺度对流云团分析得出:云顶亮温较一般暴雨云团偏低,有2个单体在对流尺度内相互作用,一侧单体增伏变化为暴雨云团形成提供了有利抬升机制、水汽资源和能量,为强对流单体形成暴雨云团提供了发展条件。另外,大尺度环流长波槽后部弱上升气流是暴雨发生的大尺度背景场。对流中低层干空气的侵入是特大暴雨形成的重要特征之一。  相似文献   

4.
胡波  杜惠良  滕卫平  石蓉蓉 《气象》2009,35(9):104-111
通过分析2005-2008年影响浙江的梅汛期强降水云团特征,将云团分为偏北型、居中型和偏南型,研究这三种类型云团云顶亮温与地面1小时强降水极值和10mm/h以上降水覆盖面积关系,结果表明偏南型和偏北型云团有较多相似特征,而居中型云团较其他两种云团则有较多相反特征.通过分析1小时强降水相对于云团中心移动路径的落区,指出梅汛期云顶1小时变温和亮温梯度与地面1小时强降水落区无明显配对模型.随后利用天气形势场资料,分析强降水云团与环境要素场的关系,指出云顶亮温的宏观特征与中高层的垂直速度、水汽通量密切相关,最后尝试建立三种类型强降水云团成熟阶段云顶亮温和地面降水人工神经网络预报方程,给预报员提供参考.  相似文献   

5.
基于FY-2C静止卫星红外和水汽通道资料,简单分析了发生在四川盆地的西南低涡暴雨云团生消过程,给出了一些有意义的云团生命特征。同时,结合相应的地面自动站降水资料,详细分析了卫星红外和水汽通道云顶亮温与对流云团降水之间的关系特征,结果表明:对于一完整对流降水过程,1小时内最低水汽亮温和水汽亮温增量能很好地描述地面1小时累计降水特征。然而,用静止卫星红外或水汽通道亮温来表征的云团降水特征是非常复杂的。尽管具有相同的最低云顶红外或水汽亮温,但对不同的对流过程其总体降水量级趋势不一样。而且,对于同一对流过程的不同发展阶段,即使出现云顶红外或水汽亮温一样,但其地面降水特征也是不一致的。甚至是对于同一时刻具有相同最低红外或最低水汽亮温特征的云,其降水落区与量级都不尽相同。正是这些复杂的降水特征,使得西南低涡对流云团的降水估算具有很大的难度。   相似文献   

6.
云南两次中尺度对流雷暴系统演变和地闪特征   总被引:3,自引:2,他引:1       下载免费PDF全文
在利用NCEP/NCAR再分析资料诊断分析2010年9月21—23日中尺度对流雷暴系统形成的环流背景基础上,通过云南省闪电定位系统地闪监测资料和FY-2E卫星云图资料的同步叠加, 分析两个中尺度雷暴系统的演变和地闪特征。结果表明:台风凡亚比 (1011) 西行减弱的热带低压为中尺度对流雷暴系统提供有利的暖湿和抬升动力环流背景,促使中尺度弧状对流云带、中尺度雷暴云团和中尺度对流复合体生成和发展。雷暴云团结构和地闪活动空间分布不均匀并随时间变化,且正、负地闪频数与云顶亮温 (TBB) 相关,当TBB降低和等值线密度变大,雷暴云团发展,低TBB中心偏于云团的前部云区,负地闪频数剧增;当TBB达最低值时,雷暴云团成熟,负地闪频数达峰值,正地闪出现;当TBB升高且等值线密度变小时,雷暴云团减弱,低TBB中心靠近云团中心,负地闪频数迅速减小,正地闪频数达到峰值;密集的负地闪出现在雷暴云团前部大的TBB梯度区和TBB不大于-56℃的低值中心附近,正地闪分散在TBB不大于-56℃的低值中心附近,偏于负地闪区域后部发生。  相似文献   

7.
“5·6”四川盆地对流云团特征及触发机制   总被引:2,自引:2,他引:0  
张琪  任景轩  肖递祥  康岚 《气象》2017,43(12):1487-1495
利用FY-2卫星资料、NCEP再分析资料和常规观测资料,分析研究了2016年5月6日四川盆地暴雨对流云团的特征及其形成机制。结果表明:四川盆地对流云团易发生在青藏高原东侧边坡陡峭地形带,初生对流云团的云顶亮温低于-45℃,边缘最大温度梯度为15~20℃,水汽-红外通道亮温差值介于-5~0℃,分裂窗-红外亮温差值介于0~2℃。强降水出现在红外和水汽亮温快速下降到最低值、水汽-红外通道差值达0℃附近、分裂窗-红外亮温差为正值和温度梯度达0℃后的几小时内,最大雨强出现在强对流云团成熟后开始迅速减弱的初始阶段(即云顶亮温开始回升的阶段)。较大范围的强降水由发展成熟的云顶最低亮温约为-70℃的对流云团产生,主要出现在红外亮温低于-50℃的区域,集中在红外亮温-65℃~-60℃、水汽亮温为-65℃~-60℃的云顶较为平滑的次低值中心区域内,并不与云顶最低亮温中心相吻合。机制分析表明,对流云团生成区域均受偏东风影响,且形成于高的对流不稳定能量条件下,发展于高湿区,近地层冷空气扩散南下与气旋式流场中的辐合共同触发对流在辐合线以北生成,而中层垂直风切变的加强、中低层暖平流和高层冷平流的发展促使对流云团发展旺盛。  相似文献   

8.
朱平  肖建设 《高原气象》2022,41(2):502-514
为获得青海高原(以下简称高原)对流云团的强降水监测预警特征和预警方法,使用葵花-8卫星数据跟踪识别高原典型强降水天气过程的对流云团,计算并分析具有提前预警意义的云团特征参数。结果表明:(1)本文提出的对流云团识别的改进多通道法,经与传统多通道法对比检验,证明所得云团更接近对流主体,该方法适用于高原对流云团识别。(2)对流形成到成熟阶段,特征参数起伏变化,但红外与水汽通道亮温差(DTB13)和云顶亮温(Tmin)整体下降,云顶亮温梯度(GTmax)整体上升;在对流发展阶段仅红外1和2通道亮温差(DTB12)平均可达预警极值,在成熟阶段则是Tmin、DTB13、GTmax、深对流指数(DCI)等平均可达预警极值。高原上强降水天气的对流云多发展成深对流,降水发生在云团特征参数极值附近,短时强降水发生在深对流云区内特定云顶(上冲云顶或近似上冲云顶)所在特征参数极值区内或边缘附近。(3)特征参数极值对一般降水和强降水的开始时间分别提前0~1 h和0.5~4.5 h出现,在西风型流场下对强降水开始的提前时间相对较长。降水开始前,副高型流场下对流云团向深对流发展变化最剧烈,表现为DCI和GTmax平...  相似文献   

9.
2016年夏末南疆地区短时强降水天气频发,中尺度对流系统活动频繁。利用强降水频发时段2016年8月8日至9月16日逐时FY-2G红外亮温(TBB)资料对南疆地区中尺度对流系统(MCS)进行分析,共获得92个生命史≥3小时的中-β尺度对流系统(MβCS),包括β中尺度对流复合体(MβCCS)和β中尺度持续拉长状对流系统(MβECS)。根据南疆地区的极端干旱气候背景,本文中-β尺度对流系统的尺度判定标准为云顶亮温(TBB)≤-32℃的连续冷云区直径≥20 km。对MCS的分布和活动特征进行了分析,结果表明:圆状MCS和带状MCS发生的频次相当。天山南坡和昆仑山北坡是MCS活跃区,MCS移动方向主要以偏东或东北方向为主,南疆地区活动最频繁的MCS生命史为3~4个小时。南疆地区MCS具有明显不同的日变化特征,午后和傍晚是MCS最活跃的时段。与MβCCS相比,MβECS具有更明显的夜发性特征。昆仑山北坡MCS的最活跃时段早于天山南坡MCS,而天山南坡MCS夜间和凌晨形成的特征更为显著。生命史为3~5小时的短生命史MCS主要在午后和傍晚形成发展,并在形成后2小时达到成熟,生命史超过6小时的长生命史MCS多发于午后和凌晨,并且其发展阶段更长。本文给出了1个引发短时强降水的MβCCS和1个MβECS的云团演变特征。  相似文献   

10.
提升灾害性对流天气的监测预警能力是短临天气预报的首要目标,但对流性降水在时间、空间上分布高度不均,观测难度大。卫星遥感监测降水的传统红外、水汽亮温判识方法,报警云团数量多,空报率高,指示意义不稳定,需要结合背景因素寻找方法提炼卫星辐射观测中更多的内在隐含信息,建立云顶亮温与此类灾害天气间的联系。此文尝试使用FY-2气象卫星红外云图数据和逐时加密地面降水观测资料,通过追踪云团移动进而分类、提取参数,然后用模糊支持向量机(FSVM)方法建立地面观测雨强与云团特征动态演变间的机器学习数学关系,标识出有监测预警意义的云团和强降水中心,对检验地域和时间的卫星强降水云团检测识别率达80%左右。  相似文献   

11.
利用2019年4-9月的闪电定位资料、珠澳双偏振雷达数据资料和TITAN的风暴追踪资料,分析了珠澳双偏振雷达150 km范围内初闪的闪电特征和初闪云团的风暴参数特征.结果表明:(1)初闪多为负闪,且负闪的闪电强度明显大于正闪;(2)海洋初闪多于陆地,其闪电强度、初闪云团的面积也均大于陆地初闪;(3)初闪云团的VIL值集...  相似文献   

12.
汪会  郭学良 《气象学报》2018,76(6):996-1013
为了加强对青藏高原深对流云垂直结构的深入认识,利用TRMM、CloudSat和Aqua多源卫星观测资料及地基垂直指向雷达(C波段调频连续波雷达和KA波段毫米波云雷达)资料,对第三次青藏高原大气科学试验期间2014年7月9日13-16时(北京时)发生在那曲气象站附近的深厚强对流云和那曲气象站以西100 km左右的深厚弱对流云的垂直结构特征进行了分析,得到的结果如下:(1)深厚强对流云和深厚弱对流云的水平尺度均较小(10-20 km),垂直发展高度较高(15-16 km,均指海拔高度);深厚强对流云在0℃层以下雷达反射率因子递增非常快,表明对流云内固态降水粒子下落至0℃层以下后融化过程有很重要的作用;在对流减弱阶段有明显的0℃层亮带出现,亮带位于5.5 km左右(距地1 km);(2)对比TRMM测雨雷达和C波段调频连续波雷达观测到的雷达反射率因子,发现TRMM测雨雷达在11 km以下存在高估;(3)深对流云主要为冰相云,云内10 km以上主要是丰富小冰粒子,而10 km以下是较少的大冰晶粒子;深厚强对流云和深厚弱对流云的微物理过程都主要包括混合相过程和冰化过程,混合相过程分为两种:一种是-25℃(深厚强对流云)或-29℃(深厚弱对流云)高度以下以凇附增长为主,另一种是该高度以上主要以冰晶聚合、凝华增长为主,该过程冰晶粒子有效半径增长较快。这些空基和地基的观测证据进一步揭示了青藏高原深对流云的垂直结构特征,为模式模拟青藏高原深对流云的检验提供了依据。   相似文献   

13.
台风麦莎与赤道穿透对流云团的初步比较分析   总被引:1,自引:0,他引:1  
陈丹  吕达仁 《气象学报》2010,68(6):885-895
利用TRMM卫星的测雨雷达、微波成像仪、可见光和红外扫描仪资料详细分析比较了麦莎台风和位于南海南部的赤道穿透对流云团(EPCC)的云高以及降水结构特征.首先,对热带地区对流层到平流层的过渡带(TTL)以及进入TTL的穿透对流云团进行了阐述和定义.然后,分析对比了赤道穿透对流云团和台风麦莎不同生命史阶段的云高、降水结构特征,分析对比结果表明:(1)在强降水区:麦莎台风和EPCC的云顶上部均出现了冰粒子散射现象,但EPCC的散射强度强,微波亮温值均低于180 K,并且其雷达云高和红外云顶亮温云高相差较大、云顶亮温曲线平缓.(2)EPCC的深对流数量四分比、穿透对流数量百分比、尤其是穿透对流数量占深对流数量比,都比麦莎台风各阶段的高;在麦莎台风和EPCC(10-20 km)云体中大部分云高集中在10-12 km,但EPCC(10-20 km)的云高谱相对具有连续性、相对较宽.(3)麦莎台风以层云降水为主,对总降水量的贡献中也是从云降水贡献大,但是EPCC中却是对流性降水的贡献大,且EPCC对流降水与层云降水的像素数量比值和降水量比值也比麦莎台风的3个时次都高.(4)EPCC的降水廓线深度无论是从云降水还是对流降水都比麦莎台风深,层云廓线深度达11 km,对流廓线深度达18 km.另外,从EPCC的穿透对流数量百分比比麦莎台风多,层云、对流降水廓线比麦莎台风深这几方面,一定程度上说明了EPCC的局部垂直对流强度比麦莎台风强.  相似文献   

14.
利用FY-4A静止气象卫星、FY-3D极轨气象卫星资料和ERA5再分析资料,深入分析“21·7”河南暴雨环境场及云宏微观特征,首次利用FY-4A观测研究此次事件对流云微物理特征。结果表明:“21·7”河南暴雨是一次极端强降水事件,河南省位于大陆高压和副热带高压之间的鞍型场内,有利于其上空低涡云系的发展和维持。2021年7月20日两股水汽输送交汇于河南中北部,为郑州极端降水提供了有利条件。20日14:00—16:00(北京时,下同)郑州长时间位于对流云团冷云区边界亮温梯度大值区,该时段对流发展旺盛;12:00—14:00云光学厚度跃增,且在15:00仍维持较大值,表明该时段云中液态粒子大量合并,液态水含量丰富,光学厚度峰值出现时间先于降水量峰值出现时间,FY-4A云光学厚度跃增且维持较大值对强降水出现时间及量级有重要的预警意义。对流云粒子有效半径(re)随温度(T)的增长曲线(T-re关系)表明:20日16:00河南上空的雨胚形成区最为深厚,云中不同高度的re整体维持在20~25 μm,表明云中上升气流较强,有利于地面强降水发生。  相似文献   

15.
对流尺度数值预报中的云物理初始化方法改进及个例试验   总被引:2,自引:0,他引:2  
李佳  陈葆德  黄伟  张旭 《气象学报》2017,75(5):771-783
通过在云初始化方案中增加由地表感热和潜热通量确定的对流尺度速度作为对流判据,同时增加层云云冰、云水计算方案,改进云分析方法,并基于第2代华东快速更新循环同化模式预报系统,针对2015年4月28日华东强对流个例,进行对比试验,分析了改进的云初始化方案对云分析结果和模式预报效果的影响。试验表明:在云分析中增加对流判据,使得平均40%左右的云分析格点判定为非对流格点,对流格点分布与正的感热通量分布相似,在陆地上有显著日变化。在对流和层云格点判定之后,增加层云云冰、云水计算方案分析层云格点,显著地减小了模式初始场的云冰、云水混合比,有效地减弱了模式积分初始阶段云冰、云水含量的剧烈调整,尤其是在陆地区域。采用改进的云初始化方案进行预报,可以减少模式前1 h和前6 h的降水强度;尤其在个例的循环试验中,强降水中心强度和面积的预报比原方案显著减弱。   相似文献   

16.
Development and structure of a maritime continent thunderstorm   总被引:4,自引:0,他引:4  
Summary The evaluation of a maritime continent thunderstorm complex (Hector) occurring over Bathurst and Melville Islands north of Darwin, Australia (12° S, 131° E) is investigated primarily using Doppler radar data. Thunderstorm formation follows the development of sea breeze circulations and a period of shallow non-precipitating convection. Evidence exists for initiation of long-lived and organised convection on the sea breeze fronts, although short-lived, scattered convection is apparent earlier in the day. Merging of the convective systems is observed in regions of enhanced low-level convergence related to sea breeze circulations. The merged convective complex is initially aligned in an almost east-west direction consistent with the low-level forcing. The merged complex results in rapid vertical development with updraughts reaching 40 m s and echo tops reaching 20 km height. Maximum precipitation production occurs during this merger phase. On the perimeter of the merged convective complex, evidence exists for front-to-rear updraughts sloped over lower-level downdraughts with rear-to-front relative flow and forward propagating cold pools. The mature phase is dominated by this convection and the complex re-orientates in the prevailing easterly vertical shear to an approximate north-south direction, then moves westward off the islands with the classic multicellular squall-like structure.The one-dimensional cloud model of Ferrier and Houze (1989) used with a four class ice formulation reproduced the cloud top height, updraught structure and echo profile very well. To test the importance of ice physics upon thunderstorm development, several sensitivity tests were made removing the effects of the ice phase. All of these model clouds reached nearly 20 km, although simulations without the effects of ice had updraughts reduced from about 40 m s–1 to 30 m s–1. The simulated convection was more sensitive to changes in environmental conditions and parameterised cloud dynamics. The strong intensity of the convection was largely accounted for by increasing equivalent potential temperatures due to diurnal heating of the surface layer. The vertical velocity and radar structure of the island thunderstorm has more similarity with continental rather than oceanic convection. Maximum vertical velocities, in particular are almost an order of magnitude greater than typical of oceanic convection. With the intense updraughts, even in the low shear environment, there is evidence for mesoscale circulations within the convection.With 17 Figures  相似文献   

17.
全球气候模式(GCM)中云的参数化方案具有不确定性,了解云的时、空变化能为参数化方案提供有效参考。利用搭载在属于A-Train卫星序列的CloudSat和CALIPSO上的94 GHz云廓线雷达(CPR)以及正交极化云-气溶胶激光雷达(CALIOP)联合的2级云分类产品,分析了2007年3月-2010年2月8种云类及三相态的云量地理分布、纬向垂直分布的季节变化特征以及云层分布概率。结果发现,卷云的分布体系与深对流云相似,主要集中在西太平洋暖池、全球各季风区及赤道辐合带,分布格局与气压带、风带季节性移动一致。层云与层积云主要分布在中低纬度非季风区以及中高纬度的洋面上。高积云与高层云的分布形成明显的海陆差异,雨层云与积云的分布形成明显的纬度差异。冰云分布与卷云相似,云高随纬度递增而递减;水云分布与层积云相似,平均分布于2 km高度;混合云集中于高纬度地区及赤道辐合带,中纬度地区随纬度变化集中于海拔0-10 km的弧形带。层状云多以多层云形式出现,积状云多以单、双层云的形式出现,层状云的云重叠现象比积状云更显著。积状和层状云的分布特征与积云和层云降水的分布特征基本一致,验证了不同类型降水的卫星观测结果,同时为气候模式的云量诊断方案提供对比验证的数据。   相似文献   

18.
Observations of temperature, pressure and humidity have been made from an aircraft beneath cumulus clouds which formed over extensive flat country. In fair weather over land, cumulus cloud base is generally above the average top of the well-mixed convection layer so that penetrative convection is necessary to initiate cloud formation. The convective layer does not evolve and deepen uniformly over large areas (say greater than 100-km radius). Rather, it develops a patchy structure at 1–10 km scales. Such patches, close beneath cloud base, have thermodynamic properties very like those of the convection layer and in such regions that layer effectively extends right up to cloud base. Meso-scale effects (e.g., 50 km) seem to be important in determining where clear and cloudy areas occur, and although it appears reasonable to attribute this to local dynamic effects (e.g., subsidence), it is not possible to eliminate other possibilities on the basis of the present data.  相似文献   

19.
基于FY-2E气象卫星相当黑体亮度温度(TBB)和云分类数据(CLC)及全球闪电探测网(WWLLN)闪电数据,通过对TBB不超过-32℃的云区进行椭圆拟合,定义1 h内上述云区或椭圆区域有WWLLN闪电发生的个例为雷暴云,获得雷暴云时间、位置、形态、结构、闪电活动等特征参量,构建雷暴云特征数据集,并基于该数据集初步分析了我国陆地和毗邻海域的雷暴活动特征。研究表明:我国华南、西南、青藏高原东、中部和南海雷暴最为活跃,华北和东北地区是北方雷暴活动较强的区域。雷暴活动时间变化海陆差异明显,陆地雷暴活动峰值出现在6—8月,南海雷暴活动一个峰值出现在5月左右,另一峰值出现在8月后,且纬度越低出现越晚。陆地大部分地区雷暴活动在14:00—20:00(北京时)达到峰值,毗邻海域雷暴活动峰值主要出现在早上。雷暴云TBB不超过-32℃面积符合对数正态分布,峰值区间位于1×103~1×104 km2,平均值为3.0×104 km2。南海雷暴云面积最大,陆地上大于雷暴云面积平均值1.2×105 km2的区域主要分布于我国地形的第一阶梯和柴达木盆地。  相似文献   

20.
This paper discusses the vapor-driven convection over snow and its limitations. It is shown on the basis of the moist convective plume model that vapor flux from the evaporating snow surface can drive convection, and maintain a super-cooled water cloud layer, without the assistance of heat flux from the surface, or entrainment or radiative cooling, at cloud top.Since the saturation vapor pressure over water is higher than that over ice, the base of the super-cooled water cloud has a lower limiting height. When the cloud base is lowered to this height, the air at the bottom of the convective layer is just saturated with respect to ice and the evaporation of snow stops, as does the vapor-driven convection. This limiting cloud base height varies with snow-surface temperature. The lower the snow temperature, the higher the cloud base height limit for continued convective transfer from the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号