首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
陈龙  陈静静  胡媚  陈鹤 《气象》2024,50(4):434-448
利用T-mode斜交旋转主成分分析法,对湖南2021年汛期(4—9月)逐小时850 hPa风场进行环流分型,在此基础上开展同期华南快速循环同化模式(CMA-GD-R3)小时降水预报性能检验。结果表明:影响湖南2021年汛期的主要环流型为西南涡切变型、切变型、副热带高压边缘南风型和台风外围东风型4类;模式小时降水预报的晴雨准确率和分级降水TS评分日变化特征明显,晴雨准确率夜间高于白天,分级降水TS评分峰值出现在早晨,各环流型的临近时效降水预报效果较好,短时强降水发生频次最高的西南涡切变型晴雨准确率较低,副热带高压边缘南风型在较大量级降水表现相对较差;SAL(structure amplitude and location)检验显示,西南涡切变型、切变型过程模式位置预报较接近实况,强度预报表现为前弱后强,副热带高压边缘南风型过程预报落区分散,位置预报不稳定,整体强度较实况明显偏弱,台风外围东风型过程在短时预报时效落区接近实况,强度预报显著偏弱,该方法能较客观地反映模式降水预报空间偏差。  相似文献   

2.
选取2021年嫩江流域9个暴雨日,利用降水融合产品,采用CRA空间检验,对区域台风数值预报系统(CMATYM)和国家级智能网格指导预报(SCMOC)20:00起报的24 h降水预报产品进行检验。结果表明:CMA-TYM和SCMOC预报的最大降水量位置均偏西、偏北,CMA-TYM和SCMOC预报的降水落区均偏西,但前者偏北,后者略偏南,SCMOC预报优于CMA-TYM。误差分析表明:CMA-TYM和SCMOC预报的暴雨落区最大降水量和平均降水量比实况偏小,格点数、面积较实况偏大,但整体上,CMA-TYM预报更接近实况。CRA空间检验显示,CMA-TYM预报的降水强度和落区形态、SCMOC预报的降水落区位置和形态较接近实况,具有一定指示意义。  相似文献   

3.
选取2010—2016年夏季华北70个典型强降水个例,根据环流形势场,将其分为低涡型、西来槽型和切变线型。然后,利用降水空间检验法(MODE方法),通过对比质心距离、轴角以及纵横比等要素,讨论了几种常规业务模式对华北地区夏季强降水的中期预报能力。结果表明:ECMWF模式和T639模式对低涡型强降水预报能力较差;当实况强降水落区范围较大时,ECMWF模式和T639模式中期预报的雨带为狭长型并呈东北—西南向,预报与实况较为一致,但两种模式预报的降水落区均较实况偏西、偏南;这两种模式对较小面积降水,其预报的降水范围较实况偏大,而对较大面积降水,预报较实况明显偏小。  相似文献   

4.
一种定量降水预报误差检验技术及其应用   总被引:5,自引:3,他引:2  
符娇兰  宗志平  代刊  张芳华  高栋斌 《气象》2014,40(7):796-805
面向对象检验技术是定量降水预报误差分析方法之一,通过对某一降水过程进行分离,实现对其落区、量级等预报误差的定量化分析。基于面向对象的检验方法和天气系统识别技术,本文利用实况观测资料、ECMWF全球数值模式产品,以2012年汛期西南地区5个典型强降水天气过程作为检验对象,对其降水及天气尺度影响系统1~10 d模式预报误差进行了定量化分析。分析表明:在中短期时效内,模式均对西南地区雨带位置预报偏北、偏西,中期时效内偏差更显著,雨带主轴上70%以上的点预报较实况偏北在2°以内,偏西约3°以内;预报的大雨及以上量级降水量较实况偏弱;模式1~2 d预报的极值分布与实况较为接近,随着预报时效延长,预报的极值较实况明显偏小;模式预报的小雨及以下量级的降水范围较实况偏大,对大雨以上量级的降水范围较实况明显偏小。对于四川盆地而言,预报的切变线较零场偏西0.5°~3°。低空急流预报偏西0.5°~1.5°;低空急流强度预报偏差具有季节差异。  相似文献   

5.
利用CRA空间检验技术对ECMWF模式36 h时效预报的2016—2018年华南前汛期(4—6月)69个降水目标进行了检验及误差统计分析,并将预报落区偏差相似个例的环流形势及天气尺度影响系统进行了分析。(1) 87% 的强降水目标存在明显落区预报偏差,最大偏差为2.75 °。偏差以经向偏差为主,其中偏北的目标多于偏南的目标,平均偏北0.6 °;无系统性纬向偏差。(2) 模式预报的降水面积较实况偏大的个例多。(3) 不同降水落区预报偏差类型月份分布、对应的环流特征与天气尺度影响系统具有一定的差异性。4月各偏差类型出现的频次相当,5月以西北型个例为主,6月东北型个例最多。西北型个例天气尺度影响系统以长波槽或东北冷涡、冷式切变线为主,西南型、东北型个例主要受南支波动与中纬度短波槽影响,低层低涡、冷、暖式切变线等出现的频次差不多。通过降水预报落区偏差较大和较小的个例对比分析,表明模式强降水落区预报偏差可能与对流组织化发展程度以及暖区是否存在有利于对流发展条件等有关。   相似文献   

6.
通过T639模式预报产品在内蒙古地区降水量、2 m温度、相对湿度和10 m风向、风速及降水过程预报效果的适用性研究,得出以下结论,温度和相对湿度预报的准确率较风向、风速明显偏高,温度和相对湿度预报的误差系统偏小,风速预报误差偏大的概率较大;降水量的预报准确率随降水等级增加而递减,对小雨而言,模式漏报率小于空报率,多报降水的偏差和少报降水的偏差相近。在预报要素空间分布上,风向预报的偏差顺时针偏转,其夹角小于45°,温度预报偏差总体偏小,相对湿度预报偏差由西向东表现为“+、-、+、-”的分布特征;小雨和中雨落区预报偏大,暴雨落区预报偏小;贝加尔湖冷涡强度的预报偏强,西太平洋副热带高压的强度预报偏弱,影响范围偏西偏北。  相似文献   

7.
利用成都区域气象中心η坐标模式,对2002年汛期主要降水过程进行了η坐标模式降水预报检验,并分析了模式预报对不同影响系统的反应,进行了个例分析.检验分析结果表明:η模式对区域性中雨以上降水过程有较强预报能力,在夏季500hPa高原或西北地区有低值系统、700hPa有西南涡或兰州涡、850hPa盆地有涡情况下,则模式降水预报强度偏小;反之,在能量过高、500hPa高原至川西北有高值系统、700hPa有兰州低涡、850hPa盆地弱南风情况下,模式预报降水易漏报或强度偏弱.就平均情况而言,模式对有无降水预报有较好的指导意义,对降水强度的预报通常偏弱,对落区的预报位置易偏西、偏北.随着降水量级的增大,降水预报能力减弱,空报率和漏报率增大,模式易漏报不易空报;当模式预报有较大量级的降水时,实况出现的概率很大,但要注意落区的位置.  相似文献   

8.
谢漪云  王建捷 《气象学报》2021,79(5):732-749
利用2019年夏季(6—8月)西南复杂地形区地面观测站逐时和逐日降水量观测数据,从降水量和降水频率入手,对同期GRAPES-Meso 3 km业务模式短期(36 h以内)降水预报性能,特别是在不同典型地貌区—四川盆地子区、云贵高原北部子区和南部子区、青藏高原东缘山地子区的预报偏差进行细致评估与分析。结果表明:(1)GRAPES-Meso 3 km模式能合理地刻画出西南复杂地形区夏季日降水和日内尺度降水的主要特征,以及小时降水频次-强度的基本关系。(2)在各子区,模式日降水量(频率)预报表现为清晰的正偏差,正偏差在盆地子区最显著,为观测值的1.1倍(0.3倍);日降水量正偏差主要由强降水日降水量预报偏大引起,但频率正偏差在云贵高原南、北子区与其他两个子区不同,主要是中小雨日数预报偏多的贡献;强降水(中小雨)落区预报存在明显(轻微)偏大倾向,强降水预报落区偏大频率在青藏高原东缘山地子区最高,达82.8%,在云贵高原南部子区最低,为53.6%。(3)日循环上,各时次小时降水量(频率)预报整体偏大,且主要正偏差出现在观测的夜雨峰值时段,其中海拔1200 m以下区域的降水频率正偏差从夜间峰值区延续到中午,模式偏强的日降水量预报往往表现为日内偏长的降水时长或小时降水空报。(4)诊断分析显示,模式在四川盆地区突出的夏季日降水预报正偏差是模式对流层低层在云贵高原南-东南侧偏强的西南风预报与西南地区特殊地形结合的产物。   相似文献   

9.
匡本贺  胡伯威 《气象》1986,12(1):16-18
我们对19次数值模拟和实际预报降水结果进行了分析。统计结果表明,所引进的大气所有限区细网格降水预报模式,对江淮暴雨主要雨带的预报与实况基本一致,暴雨中心预报值比实况平均偏小15—30%,距离相差约100km,雨区预报偏大。为改进降水落区及暴雨中心强度的预报,我们采用了一种订正降水预报结果的试验方案,对降水预报场进行了订正,提高了预报准确率。 一、降水预报场中格距波的处理 采用客观分析资料作初始输入,模式计算的强降水带外围雨区预报,存在着明显的二倍格距波,大于25mm和大于50mm的  相似文献   

10.
利用成都区域气象中心η坐标模式。对2002年汛期主要降水过程进行了η坐标模式降水预报检验。并分析了模式预报对不同影响系统的反应,进行了个例分析。检验分析结果表明:η模式对区域性中雨以上降水过程有较强预报能力。在夏季500hPa高原或西北地区有低值系统、700hPa有西南涡或兰州涡、850hPa盆地有涡情况下,则模式降水预报强度偏小;反之,在能量过高、500hPa高原至川西北有高值系统、700hPa有兰州低涡、850hPa盆地弱南风情况下。模式预报降水易漏报或强度偏弱。就平均情况而言。模式对有无降水预报有较好的指导意义,对降水强度的预报通常偏弱。对落区的预报位置易偏西、偏北。随着降水量级的增大。降水预报能力减弱,空报率和漏报率增大。模式易漏报不易空报;当模式预报有较大量级的降水时,实况出现的概率很大,但要注意落区的位置。  相似文献   

11.
区域数值模式对两次暴雨过程的降水模拟比较   总被引:1,自引:0,他引:1  
分析了应用于西南地区的MM5、GRAEPS、AREM和成都区域业务运行数值模式(η)4个区域模式对2004年6月29~30日成都邻近地区和9月2~6日四川盆地东北部的暴雨降水过程进行了模拟。模拟结果表明,4个区域模式对这两次强降水过程有不同程度的反映。MM5、GRAPES和AREM显示了较好的预报能力,特别是MM5和AREM模式的预报在落区、强度和降水演变上与实况较一致。AREM模式预报的雨区清晰,但降水强度偏弱;MM5模式在预报出强降水的同时,出现较多的虚假降水,对持续时间长的降水过程预报较好,GRAPES预报的雨区较不稳定,但对持续时间短的过程有较好的反映;η模式降水预报偏小太多,对6月30日的过程在盆地的预报无明显反映。因此,有必要加大区域模式本地化工作,发展适合西南地区的数值模式,开展数值集合预报技术研究,整体提高成都区域中心数值预报水平。  相似文献   

12.
多数值模式对台风暴雨过程预报的空间检验评估   总被引:1,自引:0,他引:1  
王新敏  栗晗 《气象》2020,46(6):753-764
采用FSS评分(fractional skill score)和CRA方法(contiguous rain area)结合国家气象信息中心地面、卫星、雷达三源降水融合产品(CMPA_Hourly V2.1),对SHANGHAI_HR(SH)、GRAPES_MESO(MESO)、ECMWF_HR(EC)、GRAPES_GFS(GFS)四个模式2018年8月三次登陆台风暴雨过程的的降水预报进行了检验评估,对比分析了各模式的预报性能,得到结论如下:FSS评分相较于传统TS评分能够更好地通过量化的方式反映出不同模式的预报能力差别,而CRA方法能更全面详细地评估模式的误差来源;区域模式对于局地性强降水或大尺度降水的强中心预报相对于全球模式有一定优势,但全球模式对于较小量级降水的范围预报可参考性更好;对于"摩羯"、"温比亚"台风影响的两次过程,EC模式的预报位移误差明显偏西,同样的特征也表现在MESO和GFS对于"温比亚"台风影响的降水的预报;GFS模式对于降水范围、降水强度预报偏小、偏弱,EC模式预报略好于GFS模式但对于降水极值估计仍存在不足。相对而言,区域模式对于极值估计优于全球模式,SH模式对于极值的估计要优于MESO模式,但其预报降水存在范围、强度偏大的特征;大部分模式预报降水个体的误差主要来源于位移误差,强度误差和形态误差大致相当。  相似文献   

13.
由于模式对于强降水落区预报有一定的偏差,TS评分不能完美的刻画模式预报强降水的问题,制定了强降水落区偏离程度的检验方法,基于此种方法对多模式(EnWRF、WRF-RUC、T639和EC-thin)山东省2014、2015年5—9月16次强降水过程预报的降水落区形态进行检验。结果表明:除了副高摆动引起的局地强对流天气外,其他过程模式预报均有指示意义,其中预报效果最好的是EnWRF和EC-thin,降水落区的形态与实况的相似度极高,并且表现出一定的互补性。多数情况下,模式预报的强降水中心整体比实况偏小,EC-thin和EnWRF漏报次数最少、准确次数最多,T639次之,WRF-RUC漏报次数最多并且准确次数最少。对于预报有偏离的过程,各模式整体雨区的偏离方向大多偏西或偏北。  相似文献   

14.
针对四川盆地4次暴雨过程,利用MM5中尺度数值模式,进行了Grell和Kuo对流参数化方案及两重区域采用不同方案组合的数值试验,分析了不同试验对降水的模拟能力。结果表明,不同试验方案在降水落区、强度、演变及降水性质分配上存在一定程度的差异。细网格区域降水强度及落区主要由本区域所采用的积云参数化方案所决定。模式采用Kuo方案预报的雨区少动,主要降水落区偏西、偏南,降水强度偏弱,采用Grell方案与粗网格采用Kuo方案而细网格采用Grell方案预报结果接近,能够较好地预报雨区东移,降水强度预报更接近实况。Kuo方案以对流降水为主,Grell方案模拟的以非对流降水与对流降水两种性质降水各占一定比例,有小幅度变化,可能更能反映实际降水性质。过程分析结合统计检验表明,两重区域均采用Grell方案预报效果相对较好。同时也看到,没有哪种对流参数化方案是完备的。发展具有区域特色的对流参数方案有着重要和实际意义。   相似文献   

15.
为了对比T639和ECMWF模式预报产品性能的优劣,提高预报员使用其产品的能力,针对2012年5~8月四川盆地降水天气过程,根据不同的影响天气系统,分别对T639和ECMWF细网格模式96h降水预报进行检验对比。结果表明:(1) EC模式对不同系统降水的预报效果都优于T639,预报指示意义大,且两家模式对高原涡和西南涡降水预报效果均优于模式对其它系统降水预报。(2) T639模式对主雨带强度和降水中心强度预报易偏弱,主雨带范围预报易偏小,漏报可能性大;EC模式对主雨带强度、降水中心强度预报也易偏弱,但主雨带范围预报易偏大。(3) T639和EC模式在预报主雨带落区、降水中心位置和实况不一致时,预报易偏西、偏南,雨带的移速偏慢。   相似文献   

16.
采用CRA、邻域TS评分、FSS等多种空间检验方法,对多个不同尺度业务数值模式在“21·7”河南极端暴雨过程中的预报性能进行了综合检验评估,并从低空急流、水汽辐合和热力条件等方面对模式偏差原因进行诊断分析。结果表明:1)在24 h大暴雨降水位置预报偏差上,WARMS预报性能最优,GRAPES_3 km次优;大暴雨降水预报范围与实况相当时,RMAPS降水强度预报较实况明显偏强,且落区较实况出现持续偏西的特征;2) GRAPES_3 km和WARMS预报3 h累积降水的位置偏差更多表现在经向方向上,且离散度较大,但在更临近预报时效经向偏差明显减小,而纬向偏差则随预报时效变化较小;RMAPS的位置偏差主要表现在纬向方向上,19—21日分别有86.7%、91.3%、72.7%的降水个体预报偏西;3) WARMS对低空急流和水汽辐合预报偏弱导致其对19—20日降水强度估计不足,EC和RMAPS对19—20日低空急流预报明显偏西是导致降水落区位置存在偏差的主要原因;MESO对20日急流和水汽辐合发生时间及位置预报较好,但明显偏弱的热力条件导致其缺乏对极端强降水的预报能力;4)21日,MESO和RMAPS预报低空急流过多的偏东分量导致其在太行山陡峭地形处预报了偏强的地形增幅降水;EC和WARMS预报低空急流风向更接近实况,但对低层水汽辐合强度和时间的预报偏差导致预报降水个体出现了较明显的经向位置偏差。  相似文献   

17.
基于暴雨数值预报模式AREM,以2008年5月21日—7月30日为例,开展了以LAPS系统和GRAPES-3DVAR系统两种不同初值方案同化相同资料源(NCEP预报场、地面、探空资料)的AREM-LAPS和AREM-3DVAR试验,以探讨两种初值分析方案对降水模拟的影响。结果表明:(1) AREM-LAPS试验与AREM-3DVAR试验相比,各区域、各量级、各时效的降水预报在绝大多数情况下TS评分有较明显提高,特别是大雨、暴雨、大暴雨等强降水等级。(2) AREM-3DVAR试验可以大致模拟出与实况比较相近的平均降水量分布,但预报雨区范围偏小,强度偏弱;AREM-LAPS试验对此有较明显改善。(3) AREM-LAPS较AREM-3DVAR试验更好地模拟出了降水雨带的南北摆动及降水强度的变化。(4) AREM-LAPS试验较好地再现了我国西南地区东部、华南沿海、长江中下游-淮河流域及胶东半岛主要雨带区平均降水率逐日降水增强与减弱的过程,其强度也与实况大体相当;而AREM-3DVAR试验模拟的强度则明显偏弱,特别是我国西南地区东部。(5) 对2008年夏季10余次典型降水过程的对比检验表明,AREM-LAPS对雨带范围、位置、强度的预报都好于AREM-3DVAR,特别是对于降水强度的改进尤为突出。   相似文献   

18.
该文利用预报员最常用的数值预报模式产品(ECMWF、SWC-WARM 、GRAPES-MESO、GRAPES-GFS)结合常规观测资料对比分析了2019年四川盆地6次区域性暴雨过程,同时引入SAL方法,通过主观、客观检验方法得出不同类型下各家模式对强降水的预报误差及订正方法。结果表明:ECMWF、SWC-WARM 较GRAPES-MESO、GRAPES-GFS有明显优势,同时:①西部Ⅰ型,ECMWF、SWC-WARM 两家模式预报偏差较小,SWC-WARM 在雨带范围和量级强度上优于ECMWF。②西部Ⅱ型,ECMWF、SWC-WARM两家模式都存在系统偏西导致降水落区偏西、量级偏弱的情况,ECMWF在雨带形态范围上略优于SWC-WARM ,但SWC-WARM能较好的预报出分散的强降水中心,具有一定的指示意义。③东部型,ECMWF、SWC-WARM两家模式预报偏差都较大,除了对系统东西向偏差外还受低涡移动影响存在南北向偏差,ECMWF在雨带形态范围上优于SWC-WARM。  相似文献   

19.
三个模式对2008年夏半年西南区降水预报效果的检验   总被引:2,自引:0,他引:2       下载免费PDF全文
公颖  王叶红  赖安伟 《高原气象》2010,29(6):1441-1451
利用AREM(-YWand SY)、T213L31、JAPAN三个模式对2008年夏半年(5~11月)西南地区(25°~34.5°N,97°~110.5°E)降水预报进行了统计检验,并对其中两次强降水过程的预报效果进行对比分析,以期了解各模式在西南地区的预报效果及特点,结果表明:(1)小雨-大雨量级JAPAN模式预报情况较好,暴雨量级T213L31、JAPAN、AREM均预报较好,大暴雨量级AREM-SY模式预报较好。(2)对西南地区的降水预报,T213L31预报偏强情况较多,AREM预报偏弱情况多,JAPAN预报相对适中。(3)在西南地区,当降水陡增(即实况降水量较前一天大一个量级以上,且雨量比前一天多5 mm以上)和其后强降水持续阶段,是各模式预报偏弱情况最可能发生的时期,同时也是各模式预报效果较差的时段。(4)三个模式在青藏高原东南缘地区均有降水空报现象,AREM模式的降水空报与其在此处存在低涡空报有关。(5)对于西南低涡这一尺度小、结构复杂的特殊天气系统,当前模式对其强度、位置和诱发的强降水预报效果仍有待提高。  相似文献   

20.
采用SAL定量降水预报检验方法,对2017年梅雨期一次区域性极端降水过程EC-THIN、RIOF、NCEP、CMA的高分辨率数值预报产品,从结构、强度和位置3个方面进行检验对比,同时对72 h内各模式降水预报稳定性开展检验分析。在此基础上,剖析了降水预报误差成因。分析发现:(1)在降水分布上,RIOF、EC-THIN和CMA预报的雨带走向与实况基本一致,NCEP预报主雨带范围偏大,暴雨区偏东;(2)雨区结构上RIOF和EC-THIN把握较好,NCEP和CMA在降水强度方面预报较好,位置预报上各家误差均较小,其中CMA误差最小;(3)EC-THIN和NCEP在结构、强度和位置预报上均有较好的稳定性。CMA在降水强度方面预报稳定较好,位置预报上调整较大。RIOF在降水结构预报上稳定性较好,落区预报上变化幅度较大;(4)降水预报误差根本原因是由系统预报误差而形成,系统强度、位置、移动直接影响着降水偏差。垂直物理量的预报偏差对降水时段、加强、强度也具有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号