首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution version of Flexible Global Ocean-Atmosphere-Land-Sea-ice (FGOALS-gl) model.The model was driven by both natural and anthropogenic forcing agents.Major features of the simulated past millennial Northern Hemisphere (NH) mean SAT variations,including the Medieval Climate Anomaly (MCA),the Little Ice Age (LIA) and the 20th Century Warming (20CW),were generally consistent with the reconstructions.The simulated MCA showed a global cooling pattern with reference to the 1961-90 mean conditions,indicating the 20CW to be unprecedented over the last millennium in the simulation.The LIA was characterized by pronounced coldness over the continental extratropical NH in both the reconstruction and the simulation.The simulated global mean SAT difference between the MCA and LIA was 0.14°C,with enhanced warming over high-latitude NH continental regions.Consistencies between the simulation and the reconstruction on regional scales were lower than those on hemispheric scales.The major features agreed well between the simulated and reconstructed SAT variations over the Chinese domain,despite some inconsistency in details among different reconstructions.The EASM circulation during the MCA was stronger than that during the LIA The corresponding rainfall anomalies exhibited excessive rainfall in the north but deficient rainfall in the south.Both the zonal and meridional thermal contrast were enhanced during the MCA.This temperature anomaly pattern favored a stronger monsoon circulation.  相似文献   

2.
The centennial?Cmillennial variation of the East Asian summer monsoon (EASM) precipitation over the past 1000?years was investigated through the analysis of a millennium simulation of the coupled ECHO-G model. The model results indicate that the centennial?Cmillennial variation of the EASM is essentially a forced response to the external radiative forcing (insolation, volcanic aerosol, and green house gases). The strength of the response depends on latitude; and the spatial structure of the centennial?Cmillennial variation differs from the interannual variability that arises primarily from the internal feedback processes within the climate system. On millennial time scale, the extratropical and subtropical precipitation was generally strong during Medieval Warm Period (MWP) and weak during Little Ice Age (LIA). The tropical rainfall is insensitive to the effective solar radiation forcing (insolation plus radiative effect of volcanic aerosols) but significantly responds to the modern anthropogenic radiative forcing. On centennial time scale, the variation of the extratropical and subtropical rainfall also tends to follow the effective solar radiation forcing closely. The forced response features in-phase rainfall variability between the extratropics and subtropics, which is in contrast to the anti-correlation on the interannual time scale. Further, the behavior of the interannual?Cdecadal variation in the extratropics is effectively modulated by change of the mean states on the millennial time scale, suggesting that the structure of the internal mode may vary with significant changes in the external forcing. These findings imply that on the millennial time scale, (a) the proxy data in the extratropical EA may more sensitively reflect the EASM rainfall variations, and (b) the Meiyu and the northern China rainfall provide a consistent measure for the EASM strength.  相似文献   

3.
Impacts of Coastal SST Variability on the East Asian Summer Monsoon   总被引:4,自引:0,他引:4  
The impacts of the seasonal and interannual SST variability in the East Asia coastal regions (EACRSST) on the East Asian summer monsoon (EASM) have been examined using a regional climate model (PδRCM9) in this paper. The simulation results show that the correlation between the EACRSST and the EASM is strengthened after the mid-1970s and also the variability of the EACRSST forcing becomes much more important to the EASM interannual variability after the mid-1970s. The impacts of the EACRSST on the summer precipitation over each sub-region in the EASM region become weak gradually from south to north, and the temporal evolution features of the summer precipitation differences over North and Northeast China agree well with those of the index of EASM (IEASM) differences.
The mechanism analyses show that different EACRSST forcings result in the differences of sensible and latent heat flux exchanges at the air-sea interface, which alter the heating rate of the atmosphere. The heating rate differences induce low level air temperature differences over East Asia, resulting in the differences of the land-sea thermal contrast (LSTC) which lead to 850 hPa geopotential height changes. When the 850 hPa geopotential height increases over the East Asian continent and decreases over the coast of East China and the adjacent oceans during the weakening period of weakens consequently. On the contrary, the EASM enhances during the strengthening period of the LSTC.  相似文献   

4.
The East Asian summer monsoon (EASM) circulation and summer rainfall over East China have experienced large decadal changes during the latter half of the 20th century. To investigate the potential causes behind these changes, a series of simulations using the national center for atmospheric research (NCAR) community atmospheric model version 3 (CAM3) and the geophysical fluid dynamics laboratory (GFDL) atmospheric model version 2.1 (AM2.1) are analyzed. These simulations are forced separately with different historical forcing, namely tropical sea surface temperature (SSTs), global SSTs, greenhouse gases plus aerosols, and a combination of global SSTs and greenhouse gases plus aerosols. This study focuses on the relative roles of these individual forcings in causing the observed monsoon and rainfall changes over East Asia during 1950–2000. The simulations from both models show that the SST forcing, primarily from the Tropics, is able to induce most of the observed weakening of the EASM circulation, while the greenhouse gas plus (direct) aerosol forcing increases the land-sea thermal contrast and thus enhances the EASM circulation. The results suggest that the recent warming in the Tropics, especially the warming associated with the tropical interdecadal variability centered over the central and eastern Pacific, is a primary cause for the weakening of the EASM since the late 1970s. However, a realistic simulation of the relatively small-scale rainfall change pattern over East China remains a challenge for the global models.  相似文献   

5.
The East Asian summer monsoon (EASM) features strong humid low-level southerly flows and abundant rainfall over the subtropical East Asia. This study identified how condensational heating generated by the EASM rainfall can affect the EASM circulation by contrasting two 10-member ensembles of atmospheric General Circulation Model experiments with Community Climate Model version 3/National Center for Atmospheric Research respectively with and without feedback of condensational heating over the East Asian domain. Major results inferred from the experiments are as follows. Condensational heating is found to absolutely dominate diabatic heating over East Asia. Exclusion of the feedback of condensational heating leads to a significant weakening of summertime tropospheric warming over land and thus a large reduction of the land-sea thermal contrast between entire Asian continent and surrounding oceans. Associated with this, the lower-level EASM flows are weakened, South Asian High at 200 hPa migrates southward with reduced intensity and breaks over East Asia with southerly flows prevailing in the upper troposphere, in contrast to northerly flows in reality. Consequently, local EASM meridional cell disappears and the baroclinic structure featured by the EASM circulation that is dynamically determined by convective condensational heating over East Asia is altered to a barotropic structure. Therefore, it is concluded that the feedback of condensational heating acts to largely enhance lower-level flows of the EASM and essentially determine its baroclinic structure and meridional cell, once the solar radiation and inhomogeneity of the Earth’s surface form low-level monsoon flows in East Asia by enhancing land-sea thermal contrast.  相似文献   

6.
强弱南海夏季风年水汽输送路径特征分析   总被引:4,自引:1,他引:3  
采用印度洋偶极子指数(dipole mode index,简称DMI)、Nino3指数和国内学者定义的5种东亚夏季风指数来比较分析印度洋偶极子(Indian Ocean dipole,简称IOD)、ENSO与东亚夏季风年际变化联系的年代际改变,讨论了这种改变的可能成因。结果表明,东亚夏季风指数分别与DMI、Ni-no3指数的年际变化的联系都呈明显的年代际改变。东亚夏季风指数除了在20世纪80年代及90年代初期与DMI联系较弱之外,其余时段均与DMI具有很好的正相关关系。当季风指数与DMI为正相关时,其与Nino3指数则呈负相关,IOD和ENSO对夏季风具有相反的影响。当季风指数与DMI呈较强的正相关时,其与ENSO的相关较弱;而在70年代末至80年代初季风指数与ENSO呈较强的相关时,其与DMI的关系亦较弱。东亚夏季风与IOD、ENSO年际变化之间的联系呈现此强彼弱的特点。1972—1982年和1983—1993年这两个阶段海温分布的显著不同,可能导致了海气相互作用过程中环流变化的周期及分布的改变,使得东亚夏季风与IOD和ENSO的关系发生年代际改变。  相似文献   

7.
冬季黑潮延伸体异常增暖对东亚夏季风影响的数值试验   总被引:3,自引:1,他引:3  
利用NCAR CAM3全球大气环流模式数值试验,研究了冬季黑潮延伸体的海温异常增暖对东亚夏季风的影响。结果表明,冬季黑潮延伸体海温异常增暖将导致东亚夏季风增强北推。表征夏季风强度的EASMI(the East Asian Summer Monsoon Index)和LSTDI(the Land-Sea Thernal Difference Index)在夏季风爆发后都呈现了明显的增强趋势,且LSTDI对海温异常增暖的响应更为敏感。华北、南海和菲律宾以东的低空西南季风显著增强,副热带西风急流轴以北(南)西风加强(减弱)。日本群岛及周边海域和中国东部长江以南至秦岭一线的降水明显减少;华北、南海、东海、黄海和菲律宾以东的西太平洋上的降水增多。华北是东亚夏季风对黑潮延伸体的海温异常响应最敏感的区域。东亚地区近地面温度表现为一致的增温特征,而30~50 °N之间对流层的整体升温导致了海陆热力差异的加大,这是促使东亚夏季风增强的重要原因。中国及周边地区环流和降水异常分布和西北太平洋副热带高压增强北抬有关。  相似文献   

8.
利用季节循环的全球观测海表温度及海冰驱动NCARCam3全球大气环流模式的100a模拟结果,通过定义东亚夏季风指数,分析了模拟的大气内部变化中东亚夏季风的变化特征。结果表明:模拟的东亚夏季风自然变率主要表现为3—7a较显著的年际周期,并具有较明显的年代际变化特征。在弱夏季风年代,亚洲大陆海平面气压增强,日本附近及东亚沿海地区海平面气压降低;500hPa位势高度上,欧洲地区为负高度距平,里海附近地区为正高度距平,日本及其以东太平洋为负高度距平,易形成类似欧亚(EU)型的遥相关波列。在强夏季风年代,其环流异常分布基本与弱夏季风年代相反。模拟的东亚夏季风变化与夏季大气内部500hPa高度场上EU型遥相关波列的关系密切。  相似文献   

9.
东亚夏季风和中国东部夏季降水年代际变化的模拟   总被引:4,自引:2,他引:4  
陈红  薛峰 《大气科学》2013,37(5):1143-1153
利用中国科学院大气物理研究所发展的第四代大气环流模式模拟了1970年代末东亚夏季风和相关的中国东部夏季降水年代际变化。结果表明,在给定的观测海温强迫下,模式能模拟出东亚夏季风的年代际减弱及 相关的环流场变化,包括东亚沿海的偏北风异常以及西太平洋副高的形态变化,模式还较好再现了中国东部夏季降水的雨型变化,即长江流域降水偏多,而华北和华南偏少,但位置略偏南。基于奇异值分解(SVD)的分析表明,热带海洋变暖是这次东亚夏季风的年代际减弱的主要因素,这与太平洋年代际振荡(PDO)在1970年代末期的位相转变有关。此外,模式还较好模拟了长江流域的变冷趋势,进而减弱了海陆温差,使东亚夏季风减弱。  相似文献   

10.
A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impact of strong tropical volcanic eruptions on the East Asian summer monsoon (EASM) and EASM rainfall.Both the simulation and NCEP/NCAR reanalysis data show a weakening of the EASM in strong eruption years.The model simulation suggests that North and South China experience droughts and the Yangtze-Huaihe River Valley experiences floods during eruption years.In response to strong tropical volcanic eruptions,the meridional air temperature gradient in the upper troposphere is enhanced,which leads to a southward shift and an increase of the East Asian subtropical westerly jet stream (EASWJ).At the same time,the land-sea thermal contrast between the Asian land mass and Northwest Pacific Ocean is weakened.The southward shift and increase of the EASWJ and reduction of the land-sea thermal contrast all contribute to a weakening of the EASM and EASM rainfall anomaly.  相似文献   

11.
This paper examines the sensitivity of CAM3.1 simulations of East Asian summer monsoon (EASM) to the choice of dynamic cores using three long-term simulations, one with each of the following cores: the Eulerian spectral transform method (EUL), semi-Lagrangian scheme (SLD) and finite volume approach (FV). Our results indicate that the dynamic cores significantly influence the simulated fields not only through dynamics, such as wind, but also through physical processes, such as precipitation. Generally speaking, SLD is superior to EUL and FV in simulating the climatological features of EASM and its interannual variability. The SLD version of the CAM model partially reduces its known deficiency in simulating the climatological features of East Asian summer precipitation. The strength and position of simulated western Pacific subtropical high (WPSH) and its ridge line compare more favourably with observations in SLD and FV than in EUL. They contribute to the intensification of the south-easterly along the south of WPSH and the vertical motion through the troposphere around 30° N, where the subtropical rain belt exists. Additionally, SLD simulates the scope of the westerly jet core over East Asia more realistically than the other two dynamic cores do. Considerable systematic errors of the seasonal migration of monsoon rain belt and water vapour flux exist in all of the three versions of CAM3.1 model, although it captures the broad northward shift of convection, and the simulated results share similarities. The interannual variation of EASM is found to be more accurate in SLD simulation, which reasonably reproduces the leading combined patterns of precipitation and 850-hPa winds in East Asia, as well as the 2.5- and 10-year periods of Li?CZeng EASM index. These results emphasise the importance of dynamic cores for the EASM simulation as distinct from the simulation??s sensitivity to the physical parameterisations.  相似文献   

12.
东亚夏季环流变化对中国夏季降水的年际变化有重要影响,因此需要进一步理解季节预测模式对东亚夏季环流的预测能力。利用1991~2013年美国国家环境预测中心(NCEP)、中国气象局国家气候中心(NCC)和日本东京气候中心(TCC)的三个季节预测模式(CFS V2、BCC_CSM V2和MRI-CGCM)以及NCEP/NCAR再分析资料,定量评估了模式对东亚夏季风(EASM)和夏季西太平洋副热带高压(WPSH)强度的预测能力。在此基础上,分析了模式预测的EASM和WPSH对热带海温异常的响应能力,以及ENSO事件对EASM和WPSH预测的影响,阐述了预测误差产生的原因。结果表明:整体而言,三个模式对EASM和WPSH的预测技巧较高,但TCC模式对WPSH的预测技巧相对较低。三个模式预测的850 hPa风场在西北太平洋存在一个异常气旋,使得预测的EASM偏强和WPSH偏弱。同时,二者的年际变率整体比观测小。三个模式预测的EASM和WPSH对热带海洋海温异常的响应随季节演变特征与观测比较接近,但NCEP模式和TCC模式预测的EASM对前期热带太平洋和前期、同期热带印度洋的海温异常响应要强于观测,NCC模式预测的EASM对前期和同期的热带太平洋的海温异常响应明显比观测强。此外,三个模式预测的WPSH对前期和同期的热带太平洋、热带印度洋和热带大西洋的海温异常响应明显强于观测。三个模式预测的EASM和WPSH在ENSO年的平均绝对误差(MAE)整体而言要比正常年的小很多,NCEP模式和NCC模式预测的EASM和WPSH的MAE在La Ni?a年和El Ni?o年差别不大,而TCC模式预测的EASM和WPSH的MAE在El Ni?o年比在La Ni?a年大很多,表明ENSO事件是东亚夏季环流重要的可预报源。  相似文献   

13.
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area-weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon(EASM),and another one with low area-weighted connectivity receiving heavy precipitation during both the active and the retreating phase of the EASM. Besides, a new way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day(2≤n≤10) lead, respectively. Compared to the normal EASM year, the prediction accuracy is low in weak years and high in strong years, which is relevant to the differences of correlations and extreme precipitation rates in different EASM situations. Recognizing and indentifying these effects is good for understanding and predicting extreme precipitation in East Asia.  相似文献   

14.
We used an online aerosol–climate model to study the equilibrium climate response of the East Asian summer monsoon (EASM) to increases in anthropogenic emissions of sulfate, organic carbon, and black carbon aerosols from 1850 to 2000. Our results show that each of these aerosol species has a different effect on the EASM as a result of changes in the local sea–land thermal contrast and atmospheric circulation. The increased emission of sulfate aerosol leads to a decrease in the thermal contrast between the land and ocean, a southward shift of the East Asian subtropical jet, and significant northerly wind anomalies at 850 hPa over eastern China and the ambient oceans, markedly dampening the EASM. An increase in organic carbon aerosol results in pronounced surface cooling and the formation of an anomalous anticyclone over the oceans north of 30°N. These effects cause a slight increase in the sea–land thermal contrast and southerly flow anomalies to the west of the anticyclonic center, strengthening the northern EASM. An increase in organic carbon emission decreases the sea–land thermal contrast over southern China, which weakens the southern EASM. The response of the summer 850-hPa winds and rainfall over the East Asian monsoon region to an increase in black carbon emission is generally consistent with the response to an increase in organic carbon. The increase in black carbon emission leads to a strengthening of the northern EASM north of 35°N and a slight weakening of the southern EASM south of 35°N. The simulated response of the EASM to the increase in black carbon emission is unchanged when the emission of black carbon is scaled up by five times its year 2000 levels, although the intensities of the response is enhanced. The increase in sulfate emission primarily weakens the EASM, whereas the increases in black carbon and organic carbon emissions mitigate weakening of the northern EASM.  相似文献   

15.
简要回顾了东亚地区气候以及夏季风主要环流系统成员年代际变化的观测特征、数值模拟及其可能机理等方面的研究进展,并提出了东亚夏季风年代际变化数值模拟研究需进一步探讨的问题。  相似文献   

16.
In order to investigate changes in the East Asian summer monsoon (EASM) under the global warming, the MIROC3.2 (hires) coupled general circulation model (CGCM) developed by the Center for Climate System Research is utilized. The outputs of MIROC3.2 (hires) model have been analyzed using two scenarios; the 20th Century Climate in Coupled Models (20C3M) scenario and the Special Reports for Emissions Scenarios A1B (SRES A1B). Eight Intergovernmental Panel on Climate Change (IPCC) models are also analyzed to compare model performances. It is shown that the simulation skill of MIROC3.2 (hires) for the EASM is relatively superior to these IPCC CGCMs. It has been found that the intensified rain band and the extended duration of the EASM are anticipated with MIROC3.2 (hires) under the global warming in well accordance with previous studies. Especially, the precipitation due to the cumulus convection is predicted to increase more significantly than the precipitation by the large-scale condensation. Due to the increased land-sea thermal contrast in summer under the global warming, water vapor fluxes in the lower troposphere are enhanced. Consequently, the convective instability may be strengthened and thus it leads to the increase of precipitation by cumulus convection. Moreover, the upper tropospheric circulations associated with the EU pattern would lead to the larger interannual variability of precipitation over the EASM region in the future warm climate. In addition, it is found that the relationship between the sea surface temperature over the tropical Pacific Ocean in the wintertime and the summer rainfall over the East Asia may be weakened, suggesting that the predictability of the EASM might become more difficult under the global warming.  相似文献   

17.
The impact of anomalous sea surface temperature (SST) warming in the Kuroshio Extension in the previous winter on the East Asian summer monsoon (EASM) was investigated by performing simulation tests using NCAR CAM3.The results show that anomalous SST warming in the Kuroshio Extension in winter causes the enhancement and northward movement of the EASM.The monsoon indexes for East Asian summer monsoon and land-sea thermal difference,which characterize the intensity of the EASM,show an obvious increase during the onset period of the EASM.Moreover,the land-sea thermal difference is more sensitive to warmer SST.Low-level southwesterly monsoon is clearly strengthened meanwhile westerly flows north (south) of the subtropical westerly jet axis are strengthened (weakened) in northern China,South China Sea,and the Western Pacific Ocean to the east of the Philippines.While there is an obvious decrease in precipitation over the Japanese archipelago and adjacent oceans and over the area from the south of the Yangtze River in eastern China to the Qinling Mountains in southern China,precipitation increases notably in northern China,the South China Sea,the East China Sea,the Yellow Sea,and the Western Pacific to the east of the Philippines.North China is the key area where the response of the EASM to the SST anomalous warming in the Kuroshio Extension is prominent.The surface air temperature shows a warming trend.The warming in the entire troposphere between 30oN and 50oN increases the land-sea thermal contrast,which plays an important role in the enhancement of the EASM.Atmospheric circulation and precipitation anomalies in China and its adjacent regions have a close relationship with the enhancement of the Western Pacific subtropical high and its northward extension.  相似文献   

18.
Projected Changes in Asian Summer Monsoon in RCP Scenarios of CMIP5   总被引:2,自引:0,他引:2       下载免费PDF全文
Responses of the Asian Summer Monsoon(ASM) in future projections have been studied based on two core future projections of phase five of the Coupled Model Intercomparison Project(CMIP5) coordinated experiments with the IAP-coupled model FGOALS_s2(the Flexible Global Ocean-Atmosphere-Land System Model).The projected changes of the ASM in climatological mean and interannual variability were respectively reported.Both the South Asian Summer Monsoon(SASM) and the East Asian Summer Monsoon(EASM) were intensified in their climatology,featuring increased monsoon precipitation and an enhanced monsoon lower-level westerly jet flow.Accordingly,the amplitude of the annual cycle of rainfall over East Asia(EA) is enhanced,thereby indicating a more abrupt monsoon onset.After the EA monsoon onset,the EASM marched farther northward in the future scenarios than in the historical runs.In the interannual variability,the leading pattern of the EASM,defined by the first multi-variable EOF analysis over EA,explains more of the total variances in the warmest future scenario,specifically,Representative Concentration Pathway(RCP8.5).Also,the correlation coefficients analysis suggests that the relationship between the EASM interannual variations and ENSO was significantly strengthened in the future projections,which may indicate improved predictability of the EASM interannual variations.  相似文献   

19.
The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960's until it reached a lower stage after 1980's. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade--wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical Indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period.  相似文献   

20.
关于东亚副热带季风若干问题的讨论   总被引:25,自引:4,他引:21  
利用NCEP/NCAR再分析格点资料、TRMM卫星降水资料、中国东部站点降水资料和CMAP降水资料,重点讨论了东亚副热带季风雨季的起始时间、建立特征及其和南海夏季风的关系,同时也讨论了东亚副热带季风的可能机制.结果表明:(1)东亚副热带季风雨季于3月底-4月初(第16-18候)在江南南部和华南北部首先开始,伴随着降水的开始是偏南风的增强和对流性降水的显著增加,华南前汛期开始.(2)东亚副热带季风雨季的建立早于热带季风雨季,在热带季风建立后两者的雨带、强西南风带、强垂直运动带、强低空水汽辐合带均是分离的,南海热带季风在其建立后,与东亚副热带季风发生相互作用,促使副热带季风雨带季节性北进,两者共同影响中国的旱涝.(3)3月中下旬,东亚大陆(包括青藏高原)上空大气由冷源转为热源,东亚大陆与西太平洋之间的纬向热力差异及其相应的温度和气压对比均发生反转.东亚大陆(包括青藏高原)的动力和热力作用究竟是否是东亚副热带季风雨带提前建立的机制值得进一步研究.文章最后讨论了有关东亚副热带季风的共识与分歧.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号