首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
观测表明,高云的夏季块状分布和冬季带状分布,与低层赤道辐合带的夏季与冬季的形状十分相似;并且卷云和卷层云可以独立于深对流单独存在.作者对这两个观测分析结果进行动力学分析,结论如下:1)由于印度洋北面是青藏高原与亚洲大陆,夏季不能在北面副热带地区形成反气旋,从而印度洋赤道北面为西南气流,导致了赤道辐合带在该地区断裂并且相应的深对流在亚洲季风区的块状分布.2)利用斜压超长波理论,将Rodwell等的亚洲季风单向模型(即非绝热加热导致季风形成)作了修改,扩展为双向闭合模型.印度洋跨赤道偏南风产生大范围水汽辐合,其与地形的共同作用,产生了降水云系的高层加热,由于Sverdrup涡度平衡关系,导致了低层的偏南风而形成了一个相互作用的闭合过程,从而表明了亚洲夏季风是准定常的.3)通过详细分析涡度方程,证明除了恰好在赤道上之外,赤道辐合带上的水平辐合均会产生涡,并且这些涡由点涡(涡度的奇异部分)与各种尺度的涡(涡度的正则部分)组成.正涡度对应于云区,负涡度对应于晴空区,与赤道辐合带(ITCZ)的观测结果一致.4)由于辐合和切变产生涡,得到赤道辐合带和深对流的带状准定常维持的动力机制,即:由于赤道辐合带的辐合,其南北风辐合与东西风切变将产生涡,其与水汽的共同作用产生了深对流的上升降水云系,而降水云系的潜热诱导上升,进一步加强了水平辐合,从而表明了赤道辐合带的带状准定常维持的中介是不同尺度的涡.5)卷云和卷层云可以独立于深对流的原因是热带卷云和卷层云与流场是可以互相激发的,深对流不是其唯一的源.  相似文献   

2.
高云与高层垂直速度关系的个例研究Ⅰ.观测事实   总被引:1,自引:0,他引:1  
利用ISCCP D1、D2和ECMWF再分析资料,选取1998年1月和7月进行个例分析,得到以下结论:1)高云和垂直速度的关系密切.从月平均来看,南北半球的冬夏变化呈现出明显的不对称.热带1月份的云区和上升区集中在赤道以南,呈带状分布,其中南非及相邻的西印度洋、120°E~120°W的赤道太平洋、赤道与30°S之间的南美大陆为3个主要区域;7月份云区和上升区移至赤道以北,以块状分布为主,尤其是印度洋、西太平洋的热带地区、亚洲季风区和副热带高压中心的西部形成一个大范围的闭合块状区域.2)不同类型的高云在热带和热带外地区的云顶高度是不一样的:在热带地区,深对流云、卷层云和卷云的云顶高度在180 hPa和310hPa之间;在副热带和中高纬度的绝大部分地区,卷云的云顶高度在180 hPa和310 hPa之间,而卷层云、深对流云的则在310hPa到440 hPa之间.3)不同类型的高云与相应的垂直速度的逐日变化既十分密切又各有不同,其中深对流云和垂直速度、卷层云和深对流云的同步性较好,并且卷层云和卷云可以独立于深对流云而在局地产生,这与热带高云产生于深对流云的经典观点不同;此外,在热带地区呈现低频变化的特征,这表明在大气环流模式中改进高云的模拟能力可能会提高对大气低频振荡的模拟能力.  相似文献   

3.
利用ISCCP D1、D2和ECMWF再分析资料,选取1998年1月和7月进行个例分析,得到以下结论:1)高云和垂直速度的关系密切。从月平均来看,南北半球的冬夏变化呈现出明显的不对称。热带1月份的云区和上升区集中在赤道以南,呈带状分布,其中南非及相邻的西印度洋、120°E~120°W的赤道太平洋、赤道与30°S之间的南美大陆为3个主要区域;7月份云区和上升区移至赤道以北,以块状分布为主,尤其是印度洋、西太平洋的热带地区、亚洲季风区和副热带高压中心的西部形成一个大范围的闭合块状区域。2)不同类型的高云在热带和热带外地区的云顶高度是不一样的:在热带地区,深对流云、卷层云和卷云的云顶高度在180 hPa和310 hPa之间;在副热带和中高纬度的绝大部分地区,卷云的云顶高度在180 hPa和310 hPa之间,而卷层云、深对流云的则在310 hPa到440 hPa之间。3)不同类型的高云与相应的垂直速度的逐日变化既十分密切又各有不同,其中深对流云和垂直速度、卷层云和深对流云的同步性较好,并且卷层云和卷云可以独立于深对流云而在局地产生,这与热带高云产生于深对流云的经典观点不同;此外,在热带地区呈现低频变化的特征,这表明在大气环流模式中改进高云的模拟能力可能会提高对大气低频振荡的模拟能力。  相似文献   

4.
利用观测分析资料和SINTEX-F海气耦合长时间(70年)数值模拟结果,分析了印度洋海温年际异常与热带夏季季节内振荡(BSISO)各种传播模态之间关系及其物理过程。结果表明,印度洋海温年际异常与热带BSISO关系密切,当印度洋为正(负)偶极子情况,中东印度洋北传BSISO减弱(加强);当印度洋为正(负)海盆异常(BWA)情况,印度洋西太平洋赤道地区(40°E -180°)东传BSISO加强(减弱)。印度洋海温年际变化通过大气环流背景场和BSISO结构影响热带BSISO不同传播模态强度的年际变化。在负(正)偶极子年夏季,由于对流层大气垂直东风切变加强(减弱),对流扰动北侧的正压涡度、边界层水汽辐合加强更明显(不明显),导致形成BSISO较强(弱)的经向不对称结构,因此北传BSISO偏强(减弱)。印度洋BWA模态通过影响赤道西风背景以及海气界面热力交换,导致赤道东传BSISO强度产生变化。在正BWA年夏季,赤道地区西风较明显,当季节内振荡叠加在这种西风背景下,扰动中心的东侧(西侧)风速减弱(加强)更明显,海面蒸发及蒸发潜热减弱(加强)更明显,导致扰动中心的东侧(西侧)海温升高(降低)幅度更大,从而使边界层产生辐合(辐散)更强、水汽更多(少),因此赤道东传BSISO偏强;而在负BWA年,赤道地区西风背景减弱,以上物理过程受削弱使赤道东传BSISO偏弱。  相似文献   

5.
通过非对流云的气候资料分析和个例分析表明:(1)非对流云有季节变化,也随海陆分布的不同而变化,还与大气三圈环流及季风等密切相关。由于它们的相关性,在大气环流模式(GCM)中对非对流云的模拟必须与提高模式其他部分的模拟能力相辅相成。(2)产生于中高纬度大范围上升气流的非对流云,由赤道辐合带积云对流所致的高空赤道地区的卷云与卷层云和形成于副热带冷海水上空的层云与层积云是新一代大气环模式显式预报的3类主要非对流云。这3类非对流云均是大尺度的,GCM的网格能显示分辨,但在垂直方向如何提高GCM的分辨率问题仍是一个有待研究的问题。(3)在GCM中如何模拟冷海水上空的层云和赤道ITCZ所对应的大范围卷云和卷层云是十分困难和必要的。(4)通过对东亚及西太平洋区域非对流云系的个例分析,可以认为在新一代大气环流模式中,应显式预报行星大槽及赤道辐合带所对应的非对流云系。在模拟这些非对流云系时,应考虑它们的生消过程、平流过程与辐射过程。由于一段时间内大气环流模式尚难以分辨锋面与α中尺度的气旋,因此有必要在GCM中参数化这些系统,或采用更小的网格距。至于对非对流云所对应的降水参数化问题的研究,需要进一步的观测为基础。  相似文献   

6.
中国东部云-降水对应关系的分析与模式评估   总被引:2,自引:1,他引:1  
为评估和改进模式中不同类型云与降水的对应关系,利用1998—2007年卫星-台站融合降水资料和国际卫星云气候计划的卫星观测云资料,采用诊断方法分析了中国东部季风区冬季层云、夏季对流云、层云与降水的水平分布及季节变化对应关系,并评估了BCC_AGCM模式的T42和T106分辨率版本对云-降水对应关系的模拟能力。观测资料分析结果表明,中国东部冬季云带和雨带都稳定少动,降水主要来自雨层云和高层云,南部沿海层云和层积云也对降水有贡献;夏季,中国东部表现为层积混合云降水特征,对流云带与降水带具有较好的对应关系,并具有一致的移动特征。对流降水主要来自深对流云和卷层云,深对流云云量和降水中心完全吻合,卷层云云带则表现出比深对流云主体和降水带偏北的现象;层云降水主要来自高层云和层积云。模式评估结果表明,中、低分辨率版本的BCC_AGCM模式均模拟出了冬季层云和稳定少动的降水带、夏季深对流云、卷层云和降水带的对应关系及随季风推进的移动特征。与T42模式版本相比,T106模式版本在夏季对流云云量的模拟及其与降水带的对应关系方面有所改善,说明改进的BCC_AGCM积云对流参数化方案与高分辨率模式网格更匹配,但冬季层云云量模拟误差变大,与降水带的对应关系变差,其原因值得进一步分析研究。  相似文献   

7.
河南春季一次层状云降水云物理结构分析   总被引:5,自引:3,他引:5  
金华  王广河  游来光  酆大雄 《气象》2006,32(10):3-10
河南2000年4月14日的降水由冷锋和西南涡产生,降水云系分布不均匀,云图上云区间有带状云隙,雷达回波图上出现两条带状回波,云带内部分布也不均匀,垂直方向上降水云系有分层现象。分析了降水云系的微物理特征,根据可播度的PMS指标确定了航线上过冷水丰富的区域,结合卫星、雷达资料讨论了过冷水丰富区域的分布特征,还讨论了降水云系内部存在的对流不稳定。  相似文献   

8.
黄昕  周天军  吴波  陈晓龙 《大气科学》2019,43(2):437-455
本文通过与观测和再分析资料的对比,评估了LASG/IAP发展的气候系统模式FGOALS的两个版本FGOALS-g2和FGOALS-s2对南亚夏季风的气候态和年际变率的模拟能力,并使用水汽收支方程诊断,研究了造成降水模拟偏差的原因。结果表明,两个模式夏季气候态降水均在陆地季风槽内偏少,印度半岛附近海域偏多,在降水年循环中表现为夏季北侧辐合带北推范围不足。FGOALS-g2中赤道印度洋"东西型"海温偏差导致模拟的东赤道印度洋海上辐合带偏弱,而FGOALS-s2中印度洋"南北型"海温偏差导致模拟的海上辐合带偏向西南。水汽收支分析表明,两个模式中气候态夏季风降水的模拟偏差主要来自于整层积分的水汽通量,尤其是垂直动力平流项的模拟偏差。一方面,夏季阿拉伯海和孟加拉湾的海温偏冷而赤道西印度洋海温偏暖,造成向印度半岛的水汽输送偏少;另一方面,对流层温度偏冷,冷中心位于印度半岛北部对流层上层,同时季风槽内总云量偏少,云长波辐射效应偏弱,对流层经向温度梯度偏弱以及大气湿静力稳定度偏强引起的下沉异常造成陆地季风槽内降水偏少。在年际变率上,观测中南亚夏季风环流和降水指数与Ni?o3.4指数存在负相关关系,但FGOALS两个版本模式均存在较大偏差。两个模式中与ENSO暖事件相关的沃克环流异常下沉支和对应的负降水异常西移至赤道以南的热带中西印度洋,沿赤道非对称的加热异常令两个模式中越赤道环流季风增强,导致印度半岛南部产生正降水异常。ENSO相关的沃克环流异常下沉支及其对应的负降水异常偏西与两个模式对热带南印度洋气候态降水的模拟偏差有关。研究结果表明,若要提高FGOALS两个版本模式对南亚夏季风气候态模拟技巧,需减小耦合模式对印度洋海温、对流层温度及云的模拟偏差;若要提高南亚夏季风和ENSO相关性模拟技巧需要提高模式对热带印度洋气候态降水以及与ENSO相关的环流异常的模拟能力。  相似文献   

9.
三次高原切变线过程演变特征及其对降水的影响   总被引:1,自引:0,他引:1  
为了揭示高原切变线的动、热力等特征,进一步认识高原切变线线演变机制,应用MICAPS资料、NCEP 1°×1°再分析资料和风云卫星红外亮温资料,选取出现在初夏(2008年5月19 22日)、盛夏(2007年7月1 3日)和夏末(2009年9月19 21日)的三次高原切变线个例,对夏季高原切变线不同时期、不同发展阶段的演变特征及其对降水影响进行了分析。结果表明:(1)当切变线两侧南北风速减弱,特别是北风风速减弱时,切变线过程趋于减弱。冷暖空气势力强弱影响切变线所处位置,初夏和盛夏切变线位置偏北,夏末切变线位置偏南。(2)切变线活动期间有正涡度、辐合上升运动与切变线配合。当切变线减弱消失,辐合带先于正涡度带减弱消失。切变线附近多正涡度中心和辐合中心,可能与低涡活动有关。盛夏和夏末切变线正涡度辐合中心东移特征明显,辐合上升区更为偏东且较强。(3)切变线附近通常有TBB-20℃的带状或块状区域,切变线维持发展阶段,TBB进一步降低,盛夏切变线和形成初期的夏末切变线多TBB低值中心,对流活动比较旺盛。(4)由于地形的阻挡和加热,高原东坡和南坡是大气不稳定能量聚集地。盛夏在切变线附近近地层聚集的高温、高湿能量明显。初夏切变线引发的降水以稳定性降水为主,降水量小,呈零散分布,盛夏和夏末切变线引发降水其对流不稳定降水特征明显,带来的降水更强、范围更广,呈带状分布在切变线附近。(5)500 hPa切变线也是水汽聚集带,切变线附近上空的水汽和不稳定能量聚集,正涡度东传和对流发展是切变线引发强降水的重要机制。  相似文献   

10.
基于AREM模式分别对2010年夏季发生在重庆的两次西南涡暴雨过程进行数值模拟,并利用模拟结果对暴雨过程的动力和热力场演变以及涡度收支变化进行分析。结果表明:1)西南涡造成的降水落区位于低涡中心附近,整个降水过程雨带分布与低涡移动路径相一致;2)整层水汽通量辐合极值出现时间超前于最大降水出现时间,降水增强阶段,整层水汽呈增长趋势,说明存在稳定的水汽输送;3)最强辐合出现时间略早于最大正涡度出现的时间,说明大气辐合能够促进涡度的发展,辐合中心比正涡度中心位置低;4)涡度辐合辐散项对低涡的发展加强起最主要的作用;涡度平流项和涡度辐合辐散项的作用集中体现在中低层大气中,而垂直对流项和扭转项的作用则在中高层更为明显;降水的强弱与涡度变率的大小及伸展高度相对应。  相似文献   

11.
The origins of the pre-Debby (2006) mesoscale convective system (MCS) and African easterly wave (AEW) and their precursors were traced back to the southwest Arabian Peninsula, Asir Mountains (AS), and Ethiopian Highlands (EH) in the vicinity of the ITCZ using satellite imagery, GFS analysis data and ARW model. The sources of the convective cloud clusters and vorticity perturbations were attributed to the cyclonic convergence of northeasterly Shamal wind and the Somali jet, especially when the Mediterranean High shifted toward east and the Indian Ocean high strengthened and its associated Somali jet penetrated farther to the north. The cyclonic vorticity perturbations were strengthened by the vorticity stretching associated with convective cloud clusters in the genesis region—southwest Arabian Peninsula. A conceptual model was proposed to explain the genesis of convective cloud clusters and cyclonic vorticity perturbations preceding the pre-Debby (2006) AEW–MCS system.  相似文献   

12.
The seasonal prediction skill of the Asian summer monsoon is assessed using retrospective predictions (1982–2009) from the ECMWF System 4 (SYS4) and NCEP CFS version 2 (CFSv2) seasonal prediction systems. In both SYS4 and CFSv2, a cold bias of sea-surface temperature (SST) is found over the equatorial Pacific, North Atlantic, Indian Oceans and over a broad region in the Southern Hemisphere relative to observations. In contrast, a warm bias is found over the northern part of North Pacific and North Atlantic. Excessive precipitation is found along the ITCZ, equatorial Atlantic, equatorial Indian Ocean and the maritime continent. The southwest monsoon flow and the Somali Jet are stronger in SYS4, while the south-easterly trade winds over the tropical Indian Ocean, the Somali Jet and the subtropical northwestern Pacific high are weaker in CFSv2 relative to the reanalysis. In both systems, the prediction of SST, precipitation and low-level zonal wind has greatest skill in the tropical belt, especially over the central and eastern Pacific where the influence of El Nino-Southern Oscillation (ENSO) is dominant. Both modeling systems capture the global monsoon and the large-scale monsoon wind variability well, while at the same time performing poorly in simulating monsoon precipitation. The Asian monsoon prediction skill increases with the ENSO amplitude, although the models simulate an overly strong impact of ENSO on the monsoon. Overall, the monsoon predictive skill is lower than the ENSO skill in both modeling systems but both systems show greater predictive skill compared to persistence.  相似文献   

13.
High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed,including the initiation,development,and propagation of rainfall anomalies over the tropical Indian Ocean.The characteristics of ISO over the tropical Indian Ocean are profoundly different before and after the onset of the Indian summer monsoon.Positive precipitation anomalies before monsoon onset appear one phase earlier than those after monsoon onset.Before monsoon onset,precipitation anomalies associated with ISO first initiate in the western tropical Indian Ocean and then propagate eastward along the equator.After monsoon onset,convective anomalies propagate northward over the Indian summer monsoon region after an initial eastward propagation over the equatorial Indian Ocean.Surface wind convergence and air-sea interaction play critical roles in initiating each new cycle of ISO convection.  相似文献   

14.
Research on the Asian-Pacific monsoon has a long history. This paper starts by summarizing field experiments investigating the Asian-Pacific monsoon. Since the 1960s, a number of international and regional monsoon projects and field experiments have been carried out, and substantial progress regarding research on the Asian-Pacific monsoon has been made. Second, the onset and the seasonal march of the Asian summer monsoon and the annual cycle of active and break periods of the monsoon, which are characterized by precipitation maxima and minima, are studied. Since the inter-tropical convergence zone (ITCZ or TCZ) is the dominating weather system and is the major birthplace of typhoons and tropical convective systems, the monsoonal rainfall and ITCZ are analyzed after the onset of the Asian monsoon. Finally, because the ITCZ has a close relationship with tropical convective systems and rainfall events in monsoon regions, analyses of the developments of deep convection and rainfall events are briefly introduced.  相似文献   

15.
Summary The structure and variability of the inter-tropical convergence zone (ITCZ) in the SW Indian Ocean in the austral summer is investigated. The ITCZ is identified by satellite microwave (SSMI) precipitable water (PW) values > 5 g cm–2, minimum outgoing longwave radiation (OLR) values < 220 W m–2 and the pattern of convergence in the low level (850 hPa) winds. According to OLR climatology, the ITCZ lies over 15°S latitude to the west of Madagascar (40–50°E), but near 10°S to the east of 60°E. Inter-annual and intra-seasonal variability is induced by the interaction of the convective NW monsoon and subsident easterly trades. Symptoms of the structure and variability are presented using tropical cyclone (TC) tracks, axes of PW exceedences and OLR, 850hPa wind and PW fields in the period 1988–1990. The shape and intensity of the ITCZ is modulated by the strength of the NW monsoon off east Africa and by standing vortices in the SW Indian Ocean. The topography of Madagascar imparts a distinctive break in convective characteristics, and distinguishes the SE African ITCZ from its maritime counterpart.With 6 Figures  相似文献   

16.
利用ECHAM5全球大气环流模式研究了印度洋海温异常年际变率模态从冬至夏的演变对我国东部地区夏季降水影响的机制。观测资料研究表明:对于正的印度洋海温异常年际变率模态,春、夏季热带印度洋和澳大利亚以西洋面(东极子)均为水汽的异常源区,向马达加斯加以东南洋面(西极子)及印度洋邻近大陆提供水汽。夏季,印度洋地区南极涛动、马斯克林高压加强;而印度季风低压和南亚高压均减弱,对应于印度夏季风减弱。夏季印度洋地区正压性的纬向风异常经向遥相关使热带印度洋地区出现西风异常,导致海洋性大陆地区对流活动减弱,而菲律宾海地区对流活动加强,进而导致西太平洋副热带高压偏弱、位置偏东北。对于负的印度洋海温异常年际变率模态,则反之。模式结果基本支持了已有的观测资料诊断结果。  相似文献   

17.
The onset process of the tropical eastern Indian Ocean (TEIO) summer monsoon (TEIOSM) and its relationship with the cross-equatorial flows are investigated via climatological analysis. Climatologically, results indicate that the earliest onset process of the Asian summer monsoon occurs over the TEIO at pentad 22 (April 15–20). Unlike the abrupt onset of the South China Sea (SCS) summer monsoon, the TEIOSM onset process displays a stepwise advance. Moreover, a close relationship between the TEIOSM development and the northward push of the cross-equatorial flows over 80–90E is revealed. A difference vorticity center, together with the counterpart over the southern Indian Ocean, constitutes a pair of difference cyclonic vortices, which strengthens the southwesterly wind over the TEIO and the northerly wind to the west of the Indian Peninsula from the end of March to late May. Therefore, the occurrence of the southwesterly wind over the TEIO is earlier than its counterpart over the tropical western Indian Ocean, and the cross-equatorial flows emerge firstly over the TEIO rather than over the Somali area. The former increases in intensity during its northward propagation, which provides a precondition for the TEIOSM onset and its northward advance.  相似文献   

18.
徐志清  范可 《大气科学》2012,36(5):879-888
印度洋热力状况是影响全球气候变化和亚洲季风变异的一个重要的因素,但以往研究更多关注热带印度洋海温的变化,对南印度洋中高纬地区海温变化关注不够,由此限制了我们对印度洋的全面认识.本文研究了年际尺度上整个印度洋海温异常主导模态的特征及其对我国东部地区夏季降水的可能影响过程,以期望为气候变异研究及预测提供理论依据.研究结果表明:全印度洋海温异常年际变率的主导模态特征是在南印度洋副热带地区海温异常呈现西南—东北反向变化的偶极子模态,西极子位于马达加斯加以东南洋面,东极子位于澳大利亚以西洋面;同时,热带印度洋海温异常与东极子一致.当西极子为正的海温异常,东极子、热带印度洋为负异常时定义为正的印度洋海温异常年际变率模态;反之,则为负的印度洋海温异常年际变率模态.从冬至春,印度洋海温异常年际变率模态具有较好的季节持续性;与我国长江中游地区夏季降水显著负相关,而与我国华南地区夏季降水显著正相关.其可能的影响过程为:对于正的冬、春季印度洋海温异常年际变率模态事件,印度洋地区异常纬向风的经向大气遥相关使得热带印度洋盛行西风异常,导致春、夏季海洋性大陆对流减弱,使夏季西太平洋副热带高压强度偏弱、位置偏东偏北,造成华南地区夏季降水增多,长江中游地区降水减少;反之亦然.同时,印度洋海温异常年际变率模态可通过改变印度洋和孟加拉湾向长江中游地区的水汽输送而影响其夏季降水.  相似文献   

19.
A numerical experiment was done by using the IAP 9-Level AGCM to study the effects of radiation anomaly over East Asia on the Asian general circulation. The results show that the changes of Asian summer general circula-tion are remarkable in the Indian and China southwest monsoon, precipitation in India and the Yellow River and Huaihe River valley in China and area around the north Japan, the easterly anomaly of low-level zonal wind in the tropical Pacific and so on.  相似文献   

20.
TheEfectofHeatingAnomalyontheAsianCirculation-AGCMExperiment①WangHuijun(王会军)LASG,InstituteofAtmosphericPhysics,ChineseAcademy...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号