首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
西安城市内涝分布特征及其与降雨量的关系   总被引:2,自引:0,他引:2       下载免费PDF全文
利用西安市市政部门2007—2012年城市内涝资料及相应时段西安城区自动气象站逐小时降雨资料,对西安城区17例内涝过程进行了时空分布特征分析,对58个内涝点内涝进行了内涝等级划分并研究了积水深度与降雨强度的关系,建立了部分内涝点积水深度与降雨量方程。结果表明:西安城市内涝点空间分布较为均匀;内涝发生频率最高为41%,最低为18%;7—8月为城市内涝发生高峰期,占年内涝总次数的70%;07:00—08:00、15:00—16:00为城市内涝日变化中两个明显的高峰时段;城市内涝按积水深度划分为微风险、低风险、中风险、高风险四个等级,其中中风险等级内涝占西安总内涝次数的45%;短时强降水是造成城市积涝的主要原因,1h和3h降雨量是积水深度的重要影响因素。  相似文献   

2.
利用2012—2019年新疆伊犁河谷10个气象站逐小时降水资料,分析该区域不同季节降水的日变化特征。结果表明:(1)伊犁河谷春季、夏季和冬季的累计降水量日变化呈单峰型,秋季呈双峰型。四季累计降水量日变化的低值都出现在下午(15:00—19:00),高值时段在春季、秋季和冬季的上午(10:00—12:00),夏季高值出现在前半夜(22:00)。(2)同一季节累计降水频次和累计降水量的日变化特征类似,逐时平均降水量和降水频次峰值的空间分布均存在明显区域差异。(3)伊犁河谷四季均以短历时降水事件为主,该类事件在夏季出现比例最高(89%),冬季出现比例最低(70%),且短历时降水事件是夏季总降水量的主要贡献者,而长持续性降水事件是冬季总降水量的主要贡献者。(4)伊犁河谷四季降水的日循环与降水的持续性之间都存在密切关系,其中持续2~8 h和1~4 h的降水事件是春季和夏季降水量日变化峰值的主要贡献者,不同持续时间降水事件对秋季和冬季降水量日变化峰值的贡献大致相等。  相似文献   

3.
利用浙江省71个气象观测站的逐小时降水数据,分析2004—2016年夏季(6—8月)降水日变化特征。结果表明:(1)浙江省夏季降水量和降水频次日变化总体上呈现"一主一次"的双峰特征,降水量和降水频次主峰值分别出现在17:00前后和19:00前后。近13 a来,夏季降水量和降水频次有明显的增加趋势。(2)降水日变化特征区域差异明显。浙中西部地区和沿海岛屿的降水量、降水频次和强度日变化波动幅度较小,降水强度的峰值出现在09:00—11:00;浙南地区降水量、降水频次和强度日变化具有单峰特点,峰值均出现在15:00—20:00。(3)降水日变化与不同持续时间的降水事件有关,≥6 h持续性降水事件的降水峰值易出现在09:00前后,而<6 h短时降水事件的降水峰值出现在15:00—22:00。不同区域降水事件有所差异,浙中西部地区和沿海岛屿的降水量来源于持续性降水和短时降水事件的共同贡献,浙南地区降水量主要来源于短时降水事件的贡献。(4)短时强降水(20~50 mm·h^(-1))和特强降水(≥50 mm·h^(-1))易发生在温州、台州和宁波等沿海地区,其中杭州湾、台州局部地区是短时特强降水的高发区;短时强降水的日变化具有单峰特征,降水峰值出现在15:00—20:00。  相似文献   

4.
利用甘肃兰州地区144个区域自动站和国家站2010—2018年4—9月逐小时降水资料和地理信息数据,详细分析了兰州市短时强降水的时空分布特征,探讨短时强降水频次与地形因子的关系。结果表明:兰州市短时强降水的阈值为10 mm·h~(-1),短时强降水事件主要发生在7月下旬至8月,21:00—22:00是集中高发时段;短时强降水频次空间分布不均,总体呈南多北少的分布格局,各站虽有显著差异,但未发生明显离散,符合正态分布,且与海拔高度、迎风坡向及坡度等地形因子显著相关,短时强降水高发区主要集中在山谷喇叭口、南风迎风坡、城市热岛区、高寒山区。  相似文献   

5.
孤立对流云是江淮地区重要的降水云系,通过分析江淮地区2013—2016年6—9月的多普勒天气雷达数据,统计得到664个对流云,其中孤立对流云196个,占江淮地区对流云发生频率的29.5%,7月和8月是江淮地区孤立对流云的高发期,6月相对较少,9月最少,同时12:00(北京时,下同)—18:00是孤立对流云的高发时段,05:00—07:00孤立对流云发生频率最低。针对2013年7月20日安徽定远出现的孤立对流云个例,综合分析多普勒天气雷达和C波段连续波雷达探测资料,发现此次暖区孤立对流云内部强反射率因子中心交替生成,导致内部反射率因子呈强弱交替出现的波状结构,沿着移动方向由弱到强,降水粒子下落速度与之对应,降水粒子最大落速出现在孤立对流云中下部的强反射率因子区域,速度超过10 m·s-1。  相似文献   

6.
铜仁地区滑坡临界雨量研究   总被引:1,自引:0,他引:1  
利用铜仁地区2010—2014年以来61起滑坡事件对应的区域气象站以及气象台站逐小时降水资料,采用统计分析的方法分析了滑坡发生前后的降水类型,建立了不同时效的有效雨量和激发雨量组合的预报模型。结果表明:滑坡前期3天累积雨量与滑坡暴发当日3h最大雨量组合预报模型的准确率最大,空报率最小,滑坡暴发当日24h雨量与滑坡暴发当日3h最大雨量组合预报模型的准确率次之,并分别得到这两种情况下判断滑坡是否发生的判别曲线,根据判别曲线和24h及3h降水预报,可以制作铜仁地区的滑坡预报。  相似文献   

7.
新疆夏季降水日变化特征   总被引:4,自引:2,他引:2       下载免费PDF全文
利用1991-2014年新疆16个国家基准气象站逐时降水资料,分析了新疆夏季不同区域降水日变化基本特征,揭示出新疆夏季降水日变化呈现显著的南、北疆区域差异,有别于我国中东部的一些新事实。结果显示:北疆降水量日变化呈现准单峰型特征,峰值主要发生在傍晚前后(16:00-20:00,地方时,下同);南疆降水量日变化呈现三峰特征,峰值分别出现在傍晚(17:00-18:00)、午夜后(00:00-01:00)和上午(10:00)。新疆夏季降水事件以6 h以内的短历时性质为主(平均为85%,比例明显高于我国中东部),而持续12 h以上的较长历时降水事件偶有发生;在天山东麓以外的新疆绝大部分地区,6 h以内短历时降水事件对总降水量的贡献率达54%,高于我国中东部地区。新疆西部和北疆北部降水量日变化主峰的贡献者是2~3 h短持续性降水为主的事件;而天山中-东部降水量日变化峰值则是来自于12 h内各不同持续时间降水事件的大致均等贡献。  相似文献   

8.
基于昌吉市2008—2015年逐时自动降水资料,分析了主汛期(5—8月)降水日变化特征。结果表明,降水主要集中在夜间21:00至翌日03:00,最大值出现在02:00,最小值出现在14:00;逐时降水频次为明显的单峰型,降水易发生在21:00至翌日08:00,降水频次的高峰值出现在01:00,降水最不易产生于午后15:00至18:00;降水强度变化的波动性较大,大值区出现在21:00至翌日02:00和午后15:00至19:00,最高值出现在18:00,最低值出现在04:00至08:00;在≥0.1 mm、≥1 mm和≥3 mm的逐时降水频次中,夜间降水频次较白天高,≥0.1 mm的降水出现次数较多;降水主要以夜雨,且以短时间(1—4h)的降水为主,贡献率最大的是持续7h的降水,最小的为12h;总云量和低云量的变化与降水量成显著正相关关系。  相似文献   

9.
利用2008—2017年1—12月新疆伊犁河谷10个气象站逐小时降水资料,分析伊犁河谷近10 a全年降雨雪(以下统称降水)时空分布特征。结果表明,伊犁河谷暖、冷季平原区、山区年平均逐时累积降水量和降水频次变化特征极其明显,暖季山区降水量和降水频次明显高于平原区,而冷季山区则低于平原区。暖季平原区、山区降水量最大值分别出现在22:00和00:00(以下均为北京时间),最小值出现在14:00和13:00;而冷季平原区、山区降水量最大值分别出现在10:00和11:00,最小值出现在18:00和17:00。全天中暖季最易发生降水的时间为23:00—翌日08:00;而冷季最易发生降水的时间为04:00—13:00。降水强度暖、冷季变化特征不明显,变化趋势与降水量、降水频次存在差异。全年降水主要以短时段降水为主,其中,暖、冷季平原区、山区降水持续1 h的次数均为最大值,但暖季平原区降水持续2 h和暖季山区持续4 h的降水量及贡献率为最大值,而冷季平原区、山区最大值则均出现在降水持续4 h情况下。  相似文献   

10.
摘 要: 利用2014—2021年克州暖季( 4—10月)103个自动站逐小时降水资料,对其小时极端降水时空分布特征进行分析。结果表明:(1)降水量呈南部少于北部,平原少于山区、高海拔山区较小的特征;降水频次集中在西部山区,东南部最少;降水强度北部和平原大于西部和西南部山区。(2)克州暖季(4—10月)小时极端降水阈值、强度、频次和贡献率的局地差异明显,其贡献率高值区主要分布在平原和浅山区。(3)小时极端降水频次的高值时段为18:00—21:00,低值时段为13:00—16:00;降水强度在凌晨以及20:00—22:00较大,在12:00—13:00较小。(4)山区、浅山区和平原3类不同海拔梯度区域的小时极端降水指标存在差异,其中平原降水强度最大,频次最低;高海拔山区降水强度最低,频次最高。  相似文献   

11.
利用2012~2020年四川省156个国家气象观测站小时降水资料,以四川盆地、川西高原和攀西地区为考察重点,统计分析了全省极端小时降水的时空分布特征。结果表明:(1)四川省各站极端小时降水阈值、发生频次、平均强度及贡献率差异明显,高值区主要集中在盆地和攀西南部;盆地多站极端小时降水阈值在50 mm/h以上,小时降水极大值超过80 mm/h。(2)四川省极端小时降水事件主要集中在7月和8月,其中50 mm以上的小时强降水事件占比超过1/3;盆地、川西高原和攀西地区极端小时降水发生频次分别在7月、6月和8月达到最高,而小时强降水事件分别在8月、7月和6月出现最多。(3)四川省极端小时降水频次日变化峰值出现在02时,具有单峰和夜发特征,其中盆地、川西高原和攀西地区主峰值分别出现在05时、21时和02时;四川省50 mm以上小时强降水事件夜发占比达63.5%,各区域出现高峰时段差异大。   相似文献   

12.
乌鞘岭高速公路路段多发交通事故的气象条件分析   总被引:1,自引:0,他引:1  
利用2006年1月1日至2013年5月31日甘肃省乌鞘岭路段高速公路发生的一般、重大、特大公路交通事故个例和同期乌鞘岭气象站的气象观测资料,利用统计方法分析天气现象和气象要素与公路交通事故的关系。乌鞘岭路段的交通事故一年中3月、7月、9月发生的几率较大,这与季节交替时气象要素变化显著、雨带北移、降水日数增多有直接关系。乌鞘岭路段公路交通事故,由不良气象条件引发的占总事故数的81%。发生交通事故中不良天气的排序依次为结冰、降雨、降雪、积雪、大雾。普查气象要素与交通事故相关性,发现最低温度、地面最低温度、相对湿度、能见度、日降水量、极大风速与公路交通事故具有显著相关。  相似文献   

13.
山西地形复杂,汛期降水集中,短时强降水易引发地质灾害及城市内涝,是制约社会经济发展和人民安居的重要因素。本文通过分析山西省2011~2016年290个高密度自动气象站逐时降水资料,结合本地强降水预警业务规定,根据致灾风险程度将短历时强降水分为四级,全面细致分析了各级强降水的时空变化特征,对强降水的精细化预报有指示意义。结果表明:短时强降水主要受纬度和地形影响,各级强降水的累计降水量和降水小时数大值区一般沿太行山脉和吕梁山脉展布;短时强降水在每日15~18时高发,到了夜间20~23时,出现第二峰值;城区一般性强降水比乡村区域偏多偏强。  相似文献   

14.
基于2019年1月~2020年12月西南地区东部大官山降水观测数据,分析了降水随海拔高度的变化特征。结果表明:2019~2020年,大官山降水量总体随海拔升高而增大,多年平均梯度变化率为1.32%/100 m,最大降水高度在海拔1900 m左右。各季降水梯度变化率中,夏、秋季高,冬、春季低,夏季为3.31 mm/100 m,秋季为1.39 mm/100 m,冬季为0.50 mm/100 m,春季为0.67 mm/100 m。各月降水梯度变化率中,7月最高,达5.06 mm/100 m,1月和11月最低,分别为0.23 mm/100 m和0.29 mm/100 m。降水日数和小雨日数随高度的线性变化趋势较明显,平均上升率分别为2.86 d/100 m和2.56 d/100 m。大雨日数在海拔1900 m左右最大,暴雨日数在海拔2500 m左右最大。降水日变化表现出多峰值特征,降水量和降水强度均在06~09时达到最大,降水频率也随海拔高度升高而增大,其中,高海拔降水频率在15时左右达到最大。降水随海拔高度的变化与天气过程密切相关,持续阴雨天气过程降水量的梯度变化较为平缓,暴雨天气过程降水量随海拔的升高而升高,局地阵雨中单次过程降水量与海拔高度相关性不明显。   相似文献   

15.
城市内涝的发生与气象条件紧密相关,强降水是致灾的关键因素。通过分析把握剑河县城降雨变化趋势,结合城区的易涝点及历史积水资料,得到内涝灾害风险的分布特征及演变规律,进一步开展气象条件致灾关键环节分析,有助于剑河县内涝灾害气象决策服务更加精细化,为加强城市灾害的应急处置和应对防范能力体系建设提供气象支撑。通过对剑河县国家气象观测站2007~2021年降水数据进行分析,剑河县城降水主要集中在4~9月,占全年降水的74.5%,该时段也是剑河县城短时强降水、大雨、暴雨的集中高发期,4~9月大雨以上量级降水出现日数呈增多趋势,近15a来1h最大降水量呈逐年波动增加趋势,且主要发生在4~9月。结合DEM数字高程数据得到的易积水路段点及历史积水内涝资料分析,当短时强降水发生时,县城易积水路段会出现不同程度的积水,当小时雨强达到20mm且未来降水持续时,有积水达到10~20cm的风险,对行人过往造成影响,需加强监测并提示相关部门注意易积水路段可能出现积水风险;小时雨强超过30mm时,有积水超过20cm的风险,对车辆及低洼路段建筑影响较大,需及时联系相关部门建议在易积水路段采取相应排水措施,避免出现积水内涝情况影响居民工作生活,同时开展公众服务建议居民注意出行安全;小时雨强超过50mm时,将出现30cm以上积水,对过往车辆及低洼段建筑影响很大,行驶车辆应当就近到安全区域暂避,避免将车辆停放在低洼易涝等危险区域,如遇严重水浸等危险情况应当立即弃车逃生。相关应急处置部门和抢险单位应当严密监视灾情,做好内涝可能引发的其他灾害应急抢险救灾工作。  相似文献   

16.
利用1994~2013年5~9月喀什市气象站逐小时降水资料,分析喀什近20a降水日变化特征。研究表明,20时至翌日06时为降水量的高值阶段,最大值出现在01时,07时至19时为降水量的低值时段,最小值出现在16时。降水频次的高值区为00时至07时,降水最不易产生的时间为17时。降水强度最高值在20时,次高值为01时,也是累积降水量较大时刻,降水强度最低值出现在15时也是累积降水量的低值区。喀什的降水主要以短时性降水(1~3h)为主,多发生在傍晚至夜间,1h降水频次最多的是量级≤1mm的降水,但1.1mm≤R1≤3.0mm量级的降水贡献率最高。小雨、中雨及大雨降水过程最易发生时段均为前半夜,下午为各量级降水过程发生最少的时段。  相似文献   

17.
通过对康定市历史泥石流灾害资料与历史气象降雨资料进行统计分析,揭示了康定市泥石流灾害与降雨的关系特征,并在此基础上,研制了康定市1h、3h降雨量诱发泥石流预警指标。结果表明:康定市境内各地均有发生泥石流灾害的可能性,东部地区是泥石流的高易发区。康定市境内泥石流灾害发生与当日降雨量、短时强降雨、前期有效降雨量关系密切。降雨量大且降雨强度强的月份(6~8月)易发生泥石流灾害。短时强降水的强度越大,发生灾害的风险越大,强降水出现频率最高的时段(19:00~02:00)也是泥石流高发时段。当降水强度<10mm/h和20mm/3h时,有出现泥石流的可能性,泥石流灾害气象风险等级为4~5级;当降水强度达到10~20mm/h、21~35mm/3h时,发生泥石流的可能性较大,风险等级为3级;当降水强度达到21~35mm/h、36~50mm/3h时,泥石流发生的可能性大,风险等级为2级;当降水强度>35mm/h、50mm/3h时,泥石流发生的可能性极大,风险等级为1级。   相似文献   

18.
"圣帕"(0709)、"碧利斯"(0604)和"格美"(0605)是近两年给湖南省造成严重灾害影响的三个台风.本文利用GRAPES2.5 模式对3个登陆福建热带气旋进行了数值模拟分析,利用模式输出的1h基本物理量计算湿位涡.结果表明:湿位涡对台风特大暴雨的预报有指示意义,湿位涡绝对值随着暴雨的增强而增大,7月15日05-08时之间暴雨增幅最大,为113 mm/3 h,而湿位涡值也相应出现了最大的增幅120 PVU,此后两者又一致地逐渐减弱.  相似文献   

19.
利用四川地区自动气象站逐小时降水观测资料,分析了2010~2019年5~9月短时强降水事件24h累计降水量、频次和强度的时空分布特征,探讨了短时强降水事件发生的频次、极值分布及其与地形、海拔高度等的关系。结果表明:四川地区平均24h累计降雨量基本在50mm以上,盆地东北部、西南部、南部及阿坝州东部甚至超过100mm,最大值出现在广安,达175mm。四川地区短时强降水事件开始时间的日变化特征表现为“V”型结构的夜间峰值位相,事件持续时段多为傍晚至凌晨,时长可达10h以上,最长甚至可持续22h。在强降水事件极值的日变化上,极大值频次和降水量呈单峰结构,在03时达到最大,其后逐渐减小至15时达到谷值,而后再次增大;降水强度呈弱双峰结构,分别在04时和16时达到谷值,13时和18时达到峰值,其日变化呈“增-减-增-减”的特征。四川短时强降水事件与复杂地形有密切的关系,5~6月事件活跃区在四川盆地中部,7月在盆地西部的龙门山脉一带,8月在雅安、乐山附近,9月在盆地北部且频次明显减少;短时强降水事件的最大小时雨强可达80mm以上,出现在7~8月的盆地西部龙门山一带和南部地区。短时强降水事件随着海拔高度的增加,发生频次和日数逐渐减少,海拔2000m以上地区基本无强降水发生日出现( 峨眉山气象站例外)。   相似文献   

20.
利用2013年3月至2017年2月天津西青地基35通道微波辐射计观测资料,分析天津地区大气水汽和液态水特征。结果表明:天津地区各季节积分水汽和积分液态水的日变化趋势基本一致,均呈单峰型日变化特征,其中夏季最大,秋季次之,冬季最小。各季节积分水汽最大值出现在23:00时(北京时,下同)的概率均明显大于其他时次,夏季和冬季的积分液态水的最大值出现在14时的概率最大,春季和秋季分别出现在10时和13时的概率最大。天津地区水汽密度由地面至3.5 km处逐渐减小,递减梯度由夏季、秋季、春季和冬季的顺序依次增大,各季节从1.5 km往上日变化均不明显。1 km以下,春季、夏季和秋季平均水汽密度的日变化曲线呈双峰型,主峰值分别出现在08时、11时和12时左右。冬季呈单峰型变化,峰值区出现在12-16时。液态水密度随高度分层变化,夏季的液态水密度大值区(0.08-0.14 g·m-3)为5-6 km,在18-20时出现最大值。秋季、春季和冬季液态水密度的大值区出现的高度为1.5-3.5 km,但数值依次减小,春季和冬季的最大值出现在05时前后,秋季则出现在02时左右。另外天津地区水汽、液态水与温度和降水量的变化趋势基本一致,除夏季06-18时及冬季部分时次外,水汽与温度呈正相关。液态水与温度相关性较差,但与降水量呈正相关,全年液态水与降水量夜间的相关性大于白天。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号