首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden.Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime–continental aerosol; 2) moderately polluted maritime–continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO4 ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.  相似文献   

2.
Summary One of the great unknowns in climate research is the contribution of aerosols to climate forcing and climate perturbation. In this study, retrievals from AERONET are used to estimate the direct clear-sky aerosol top-of-atmosphere and surface radiative forcing effects for 12 multi-site observing stations in Europe. The radiative transfer code sdisort in the libRadtran environment is applied to accomplish these estimations. Most of the calculations in this study rely on observations which have been made for the years 1999, 2000, and 2001. Some stations do have observations dating back to the year of 1995. The calculations rely on a pre-compiled aerosol optical properties database for Europe. Aerosol radiative forcing effects are calculated with monthly mean aerosol optical properties retrievals and calculations are presented for three different surface albedo scenarios. Two of the surface albedo scenarios are generic by nature bare soil and green vegetation and the third relies on the ISCCP (International Satellite Cloud Climatology Project) data product. The ISCCP database has also been used to obtain clear-sky weighting fractions over AERONET stations. The AERONET stations cover the area 0° to 30° E and 42° to 52° N. AERONET retrievals are column integrated and this study does not make any seperation between the contribution of natural and anthropogenic components. For the 12 AERONET stations, median clear-sky top-of-atmosphere aerosol radiative forcing effect values for different surface albedo scenarios are calculated to be in the range of −4 to −2 W/m2. High median radiative forcing effect values of about −6 W/m2 were found to occur mainly in the summer months while lower values of about −1 W/m2 occur in the winter months. The aerosol surface forcing also increases in summer months and can reach values of −8 W/m2. Individual stations often have much higher values by a factor of 2. The median top-of-atmosphere aerosol radiative forcing effect efficiency is estimated to be about −25 W/m2 and their respective surface efficiency is around −35 W/m2. The fractional absorption coefficient is estimated to be 1.7, but deviates significantly from station to station. In addition, it is found that the well known peak of the aerosol radiative forcing effect at a solar zenith angle of about 75° is in fact the average of the peaks occurring at shorter and longer wavelengths. According to estimations for Central Europe, based on mean aerosol optical properties retrievals from 12 stations, the critical threshold of the aerosol single scattering albedo, between cooling and heating in the presence of an aerosol layer, is close between 0.6 and 0.76.  相似文献   

3.
Abstract

Ground‐based sunphotometry measurements acquired under clear sky conditions can be used to investigate atmospheric aerosol optical properties. Such measurements are not only important in their own right as a technique for monitoring generic aerosol dynamics, but also represent a direct means of evaluating the contribution of aerosol induced radiative forcing in the modelling of climate change. In this paper we analyze derived aerosol optical properties using datasets from the Canadian AEROCAN (AERosol CANada) sunphotometer network.

The AEROCAN network currently includes eight sunphotometers distributed across Canada at sites chosen in order to obtain a diverse sampling of continental, maritime and arctic aerosols. Some of these sites have been operational since 1993 as part of the Boreal Ecosystem‐Atmosphere Study (BOREAS). These instruments permit standard and automatic multi‐wavelength measurements of solar extinction radiance centred on the solar disk as well as sky radiance scans off the solar disk. These data yields aerosol optical depth, the Ångström exponent, aerosol particle volume size distribution, refractive index, column‐averaged single scattering albedo, and precipitable water vapour content.

Spatial and temporal trends of these parameters as well as observed inter‐correlations are discussed. The results demonstrate the utility and significance of these types of measurements and illustrate the potential applications of networked sunphotometry data.  相似文献   

4.
Aerosol optical properties are simulated using the Spectral Radiation Transport Model for Aerosol Species(SPRINTARS)coupled with the Non-hydrostatic ICosahedral Atmospheric Model(NICAM). The 3-year global mean all-sky aerosol optical thickness(AOT) at 550 nm, the ngstr m Exponent(AE) based on AOTs at 440 and 870 nm, and the single scattering albedo(SSA) at 550 nm are estimated at 0.123, 0.657 and 0.944, respectively. For each aerosol species, the mean AOT is within the range of the Aero Com models. Both the modeled all-sky and clear-sky results are compared with observations from the Moderate Resolution Imaging Spectroradiometer(MODIS) and the Aerosol Robotic Network(AERONET). The simulated spatiotemporal distributions of all-sky AOTs can generally reproduce the MODIS retrievals, and the correlation and model skill can be slightly improved using the clear-sky results over most land regions. The differences between clear-sky and all-sky AOTs are larger over polluted regions. Compared with observations from AERONET, the modeled and observed all-sky AOTs and AEs are generally in reasonable agreement, whereas the SSA variation is not well captured. Although the spatiotemporal distributions of all-sky and clear-sky results are similar, the clear-sky results are generally better correlated with the observations. The clear-sky AOT and SSA are generally lower than the all-sky results, especially in those regions where the aerosol chemical composition is contributed to mostly by sulfate aerosol. The modeled clear-sky AE is larger than the all-sky AE over those regions dominated by hydrophilic aerosol, while the opposite is found over regions dominated by hydrophobic aerosol.  相似文献   

5.
Surface erythemal UV radiation is mainly affected by total column ozone, aerosols, clouds, and solar zenith angle. The effect of ozone on the surface UV radiation has been explored many times in the previous studies due to the decrease of ozone layer. In this study, we calculated the effect of aerosols on the surface UV radiation as well as that of ozone using data acquired from Ozone Monitoring Instrument (OMI). First, ozone, aerosol optical depth (AOD), and surface erythemal UVB radiation measured from satellite are compared with those from ground measurements. The results showed that the comparison for ozone was good with r 2 of 0.92. For aerosol, there was difference between satellite measurements and surface measurements due to the insufficient information on aerosol in the retrieval algorithm. The r 2 for surface erythemal UV radiation was high (~0.94) but satellite measurements showed about 30% larger values than surface measurements on average by not considering the effect of absorbing aerosols in the retrieval process from satellite measurements. Radiative amplification factor (RAF) is used to access the effect of ozone and aerosol quantitatively. RAF for ozone was 0.97~1.49 with solar zenith angle. To evaluate the effect of aerosol on the surface UV radiation, only clear-sky pixel data were used and solar zenith angle and total column amount of ozone were fixed. Also, RAF for aerosol was assessed according to the single scattering albedo (SSA) of aerosols. The results showed that RAF for aerosol with smaller SSA (< 0.90) was larger than that for with larger SSA (> 0.90). The RAF for aerosol was 0.09~0.22 for the given conditions which was relatively small compared to that for ozone. However, considering the fact that aerosol optical depth can change largely in time and space while the total column amount of ozone does not change very much, it needs to include the effect of aerosol to predict the variations of surface UV radiation more correctly.  相似文献   

6.
Surface irradiance measurements with high temporal resolution can be used to detect clear skies, which is a critical step for further study, such as aerosol and cloud radiative effects. Twenty-one clear-sky detection (CSD) methods are assessed based on five years of 1-min surface irradiance data at Xianghe—a heavily polluted station on the North China Plain. Total-sky imager (TSI) discrimination results corrected by manual checks are used as the benchmark for the evaluation. The performance heavily relies on the criteria adopted by the CSD methods. Those with higher cloudy-sky detection accuracy rates produce lower clear-sky accuracy rates, and vice versa. A general tendency in common among all CSD methods is the detection accuracy deteriorates when aerosol loading increases. Nearly all criteria adopted in CSD methods are too strict to detect clear skies under polluted conditions, which is more severe if clear-sky irradiance is not properly estimated. The mean true positive rate (CSD method correctly detects clear sky) decreases from 45% for aerosol optical depth (AOD) 0.2% to 6% for AOD > 0.5. The results clearly indicate that CSD methods in a highly polluted region still need further improvements.摘要根据位于华北平原的重污染站点——香河5年的分钟级别地表太阳辐射和人工订正的全天空成像仪数据, 对21种晴空识别 (CSD) 方法进行了评估:晴空识别准确率较高的方法云天识别准确率较低, 反之亦然;由于CSD 方法采用的参数阈值不适用于污染情况, 当气溶胶含量增加时, 识别准确率呈下降趋势.研究结果显示, 利用太阳辐射数据识别晴空的方法在高污染地区使用时需进行改进.  相似文献   

7.
The time series of the daily sums of global and direct irradiance recorded at Tartu-Tõravere Meteorological Station site (58°16′N, 26°28′E, 70 m a.s.l.) in 1955–2006 have been analyzed in seasonal timescales. The average daily ratio G/G clear of available global irradiance to its local climatic clear-sky value in the summer half-year corresponds to 65.5%, while that of the direct irradiance on the horizontal surface I′/I′ clear was 41% of the climatic clear-sky value. In the case of dry Rayleigh atmosphere as a reference, these ratios are 53.5% and 28%, respectively. The time series of the summer season totals reveal a longer interval of reduced values in 1976–1993 as well as two periods of frequent sunny summers in 1967–1975 and since 1994. The probability density distribution of the summer season totals during the observed period is strongly asymmetric; in spring, however, it is close to the normal distribution. In winter, there is a moderate negative correlation between the G/G clear and the North Atlantic Oscillation as well as the Arctic Oscillation indices.  相似文献   

8.
The current paper introduces an empirical method for estimating the vertical distribution of background stratospheric aerosol extinction profiles covering the latitude bands of 50±5°N,40±5°N,30±5°N,and 20±5°N and the longitude range of 75 135°E based on Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction measurements at wavelengths of 1020 nm,525 nm,452 nm,and 386 nm for the volcanically calm years between 1998 2004.With this method,the vertical distribution of stratospheric aerosol extinction coefficients can be estimated according to latitude and wavelength.Comparisons of the empirically calculated aerosol extinction profiles and the SAGE II aerosol measurements show that the empirically calculated aerosol extinction coefficients are consistent with SAGE II values,with relative differences within 10% from 2 km above the tropopause to 33 km,and within 22% from 33 km to 35 km.The empirically calculated aerosol stratospheric optical depths (vertically integrated aerosol extinction coefficient) at the four wavelengths are also consistent with the corresponding SAGE II optical depth measurements,with differences within 2.2% in the altitude range from 2 km above the tropopause to 35 km.  相似文献   

9.
中国不同地区气溶胶消光特性分析   总被引:14,自引:0,他引:14  
利用多波段太阳光度计在中国四个点(北京的密云,广东的新丰,青海的瓦里关,西藏的当雄)观测了450—900 um范围中多波长气溶胶光学厚度和Angstrom指数。本文分析了这些参数从1998年2月到1999年1月这一年中的特点。结果表明,在干旱和半干旱地区,如密云(17.12°E,40.65°N)和瓦里关(100.90°E,36.29°N),春季出现气溶胶光学厚度的最大值,大约是其它季节的2倍。在湿润地区,如新丰(114.2°E,24.5°N),虽然春季气溶胶光学厚度值也是最大,但只是比其它季节稍微大一些 瓦里关春季的Angstrom指数有最小值,约0.15,表明有比较大的粒子、密云和新丰的Angstrom指数也有很大的月际变化。但没有明显的季节倾向。这表明,气溶胶的源比较复杂。  相似文献   

10.
气溶胶对北京中尺度对流系统影响的数值试验   总被引:7,自引:5,他引:2  
利用可分辨云模式(WRF),模拟研究了不同气溶胶浓度对北京地区2001年8月23日一次产生强降水和冰雹的对流天气的影响。结果表明,气溶胶浓度的增加不利于对流云的发展,导致地面降水减小,但是对降水结构没有明显影响。气溶胶浓度增加导致云中水成物数浓度和质量浓度均发生变化,其中云水、冰晶和雪含量增加,而雨水、霰和雹含量减小。从云微物理学分析发现,气溶胶浓度减小有利于高层云的形成,云滴有效半径随着气溶胶浓度增加而减小。  相似文献   

11.
Reported in this article are the results of the analysis of extensive observations of aerosol optical, micro-physical characteristics, and precipitable water content (PWC) that have been carried out using compact, multi-band solar radiometers, over a semi-arid station, Agra (27°10′N, 78°05′E, 169 m AMSL) during winter 2004. The aerosol optical depth (AOD), Angstrom wavelength exponent (α), and PWC show, higher values on hazy- and foggy-days and lower values on clear-days. The turbidity coefficient (β) shows higher values for smaller values of α and vice versa. The aerosol size spectra exhibit bi-modal distribution with abundance of accumulation-mode particles during fog and haze occasions, and relatively coarse-mode particles on clear-days. The above features have been explained with co-located PWC and surface-level meteorological parameters. The NOAA HYSPLIT five-day back trajectories indicate the influence of trans-boundary pollution transport over the experimental station during the study period.  相似文献   

12.
根据位于华北平原的重污染站点——香河5年的分钟级别地表太阳辐射和人工订正的全天空成像仪数据,对21种晴空识别(CSD)方法进行了评估:晴空识别准确率较高的方法云天识别准确率较低,反之亦然;由于CSD方法采用的参数阈值不适用于污染情况,当气溶胶含量增加时,识别准确率呈下降趋势.研究结果显示,利用太阳辐射数据识别晴空的方法在高污染地区使用时需进行改进.  相似文献   

13.
In this study, the annual and seasonal variations of all-sky and clear-sky surface solar radiation (SSR) in the eastern and central Tibetan Plateau (TP) during the period 1960–2009 are investigated, based on surface observational data, reanalyses and ensemble simulations with the global climate model ECHAM5-HAM. The mean annual all-sky SSR series shows a decreasing trend with a rate of ?1.00 Wm?2 decade?1, which is mainly seen in autumn and secondly in summer and winter. A stronger decrease of ?2.80 Wm?2 decade?1 is found in the mean annual clear-sky SSR series, especially during winter and autumn. Overall, these results confirm a tendency towards a decrease of SSR in the TP during the last five decades. The comparisons with reanalysis show that both NCEP/NCAR and ERA-40 reanalyses do not capture the decadal variations of the all-sky and clear-sky SSR. This is probably due to a missing consideration of aerosols in the reanalysis assimilation model. The SSR simulated with the ECHAM5-HAM global climate model under both all-sky and clear-sky conditions reproduce the decrease seen in the surface observations, especially after 1980. The steadily increasing aerosol optical depth (AOD) at 550 nm over the TP in the ECHAM5-HAM results suggests transient aerosol emissions as a plausible cause.  相似文献   

14.
Summary Two UV-Biometer 501A instruments were used to estimate global erythemal irradiance at two locations in southwest Sweden; the Earth Sciences Centre, University of G?teborg (57.69° N; 11.92° E) and the island of Nordkoster, 200 km to the north (58.83° N; 10.72° E). A semi-empirical radiative transfer model was used to calculate the global erythemally effective irradiance under clear skies. A ratio of the hourly measured to clear-sky modelled irradiance was then derived for zenith angles 35–70°. Subsequent comparisons were then made with routine measurements of sunshine duration at G?teborg and sunshine duration, cloud cover, type and height at Nordkoster. Cloud transmission of UV-B irradiance decreases with increasing solar zenith angle, with cloud attenuation being 8% stronger at Nordkoster Island for zenith angles >>;60°. Transmission also decreases with increasing cloud cover such that overcast cloud conditions reduce transmissions by an average of 75%. In addition, cloud type affects the amount of ground incident irradiant flux. Fractus cloud afforded the least UV-B transmission (0.16), while cirrus filaments afforded the most (0.95). The spatial and temporal distribution of clouds appears tobe non-random. Under conditions of 1 to 3 octas, sky cover, clouds appear to be concentrated in line with the sensor and Sun on more occasions than that expected given a random cloud distribution. The same cloud cover condition also resulted in many instances of ground incident irradiance above clear-sky values. The presence of cumuliform clouds appears to increase the likelihood of the latter phenomena. Received January 4, 1998  相似文献   

15.
We investigated the regional-scale relationships between columnar aerosol loads and summer monsoon circulation, and also the precipitation over northeast Asia using aerosol optical depth (AOD) data obtained from the 8-year MODIS, AERONET Sun/sky radiometer, and precipitation data acquired under the Global Precipitation Climatology Project (GPCP). These high-quality data revealed the regional-scale link between AOD and summer monsoon circulation, precipitation in July over northeast Asian countries, and their distinct spatial and annual variabilities. Compared to the mean AOD for the entire period of 2001–2008, the increase of almost 40–50% in the AOD value in July 2005 and July 2007 was found over the downwind regions of China (Yellow Sea, Korean peninsula, and East Sea), with negative precipitation anomalies. This can be attributable to the strong westerly confluent flows, between cyclone flows by continental thermal low centered over the northern China and anticyclonic flows by the western North Pacific High, which transport anthropogenic pollution aerosols emitted from east China to aforementioned downwind high AOD regions along the rim of the Pacific marine airmass. In July 2002, however, the easterly flows transported anthropogenic aerosols from east China to the southwestern part of China in July 2002. As a result, the AOD off the coast of China was dramatically reduced in spite of decreasing rainfall. From the calculation of the cross-correlation coefficient between MODIS-derived AOD anomalies and GPCP precipitation anomalies in July over the period 2001–2008, we found negative correlations over the areas encompassed by 105–115°E and 30–35°N and by 120–140°E and 35–40°N (Yellow Sea, Korean peninsula, and East Sea). This suggests that aerosol loads over these regions are easily influenced by the Asian monsoon flow system and associated precipitation.  相似文献   

16.
Aerosol optical depth and Angstrom coefficients for three sites in Bangkok and suburbs are examined: Silpakorn University at Nakhon Pathom, NP (13.82°N, 100.04°E), the Asian Institute of Technology at Phatum Thani, AIT (14.08°N, 100.62°E) and the Thai Meteorological Department at Bangkok, BK (13.73°N, 100.57°E). Sunphotometers have been used to measure direct normal spectral irradiance at these sites for a period of 2 years (2004–2005). Cloudless conditions were selected and Bouguer’s law was employed to obtain aerosol optical depth. All three sites exhibit strong seasonal variations, with the highest values occurring at the height of the dry season in April, and the lowest occurring during the rainy season in July. April turbidity conditions are very high, as evidenced by maximum 500 nm optical depths of between 1.4 to 2.0 that were measured at all three locations. The Angstrom exponent α also showed a marked seasonal change, with highest values at the height of the dry season.  相似文献   

17.
An approximate expression of the sky radiance in almucantar is confirmed in this paper. Under the conditions with molecular optical depth<0.3, aerosol (or cloud) optical depth<0.6, solar zenith angle< 75° and scattering angle<30°, the errors of the sky radiance and the aerosol phase function computed from the expression are respectively less than 8 % and 10 %, but the phase functions computed from Box-Deepak formula and single-scattering formula can be 84 % and 260 % more than the exact value, respectively. Furthermore, by use of the expression we have inferred the volume scattering functions of 1°≤θ≤30° for retrieving aerosol size distribution with the conclusion that the distribution information in the range of 0.1相似文献   

18.
High-quality long-term records of spectral UV irradiance from the Network for the Detection of Atmospheric Composition Change-affiliated Bentham spectroradiometer at the high-mountain site Hoher Sonnblick (47.05° N, 12.95° E, 3,106?m above sea level) from the period 1997?C2011 have been investigated for the existence of trends. Throughout the year, significant upward trends are found at wavelengths of 315?nm and longer. The magnitudes at 315?nm range from +9.3?±?4.5?%/dec at 45° solar zenith angle (SZA) to +14.2?±?3.7?%/dec at SZA 65° for all-sky conditions. The trend estimates at 305?nm are considerably smaller and less significant, yielding between +5.1?±?6.5 and +7.9?±?7.3?%/dec, depending on SZA. Seasonally, the largest trends are found during winter and spring. Total ozone has significantly increased by year-round +1.9?±?1.3?%/dec since 1997 and therefore cannot explain these significant increases. They are rather attributed to decreases in total cloud cover and aerosol optical depth.  相似文献   

19.
Ground-based aerosol instrumentation covering particle size diameters from 25 nm to 32 µm was deployed to determine aerosol concentration and cloud condensation nuclei (CCN)-activation properties at water vapor supersaturations in the range of S = 0.20–1.50 % in the remote Brazilian northeast semi-arid region (NEB) in coastal (maritime) and continental (inland) regimes. The instruments measured aerosol number concentration and activation spectra for CCN and revealed that aerosol properties are sensitive with respect to the sources as a function of the local wind circulation system. The observations show that coastal aerosol total number concentrations are above 3,000 cm?3 on average, exhibiting concentration peaks depending on the time of the day in a consistent daily pattern. The variation on aerosol concentration has also influences on the fraction of particles active as CCN. At 1.0 % water vapor supersaturation, the fraction can reach as high as 80 %. Inland aerosol total concentrations were about 1,800–1,900 cm?3 and did not show much diurnal variation. The fraction of particles active as CCN observed inland depend on the history of the air masses, and was much higher when air masses were originated over the sea. It was found that (NH4)2SO4 and NaCl are the major soluble inorganic fraction of the aerosols at the coast. The major fraction of NaCl was present in the coarse mode, while ammonium sulfate dominates the inorganic fraction at the submicron range, with about 10 % of the total aerosol mass at 0.32 µm. Inorganic compounds are almost absent in particles with sizes around 0.1 μm. The study suggests that the air masses with high concentration of CCN originate at the sea. The feasible explanation lies in the fact that the NEB’s beaches have a particular morphology that produces a wide surf zone and creates a large load of aerosols when combined with strong and permanent winds of the region.  相似文献   

20.
The optical and radiative properties of aerosols during a severe haze episode from 15 to 22 December 2016 over Beijing, Shijiazhuang, and Jiaozuo in the North China Plain were analyzed based on the ground-based and satellite data, meteorological observations, and atmospheric environmental monitoring data. The aerosol optical depth at 500 nm was < 0.30 and increased to > 1.4 as the haze pollution developed. The Ångström exponent was > 0.80 for most of the study period. The daily single-scattering albedo was > 0.85 over all of the North China Plain on the most polluted days and was > 0.97 on some particular days. The volumes of fine and coarse mode particles during the haze event were approximately 0.05–0.21 and 0.01–0.43 μm3, respectively—that is, larger than those in the time without haze. The daily absorption aerosol optical depth was about 0.01–0.11 in Beijing, 0.01–0.13 in Shijiazhuang, and 0.01–0.04 in Jiaozuo, and the average absorption Ångström exponent varied between 0.6 and 2.0. The aerosol radiative forcing at the bottom of the atmosphere varied from –23 to –227,–34 to –199, and –29 to –191 W m–2 for the whole haze period, while the aerosol radiative forcing at the top of the atmosphere varied from –4 to –98, –10 to –51, and –21 to –143 W m–2 in Beijing, Shijiazhuang, and Jiaozuo, respectively. Satellite observations showed that smoke, polluted dust, and polluted continental components of aerosols may aggravate air pollution during haze episodes. The analysis of the potential source contribution function and concentration-weighted trajectory showed that the contribution from local emissions and pollutants transport from upstream areas were 190–450 and 100–410 μg m–3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号