首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
通过对张掖市2005~2006年紫外线强度监测资料综合分析,得出张掖市紫外线辐射3级强度以上占全年的58.8%,属于紫外线辐射高强度地区,对人体影响很大。日最大值出现在12:00—14:30时段,年以6—9月为最强。各季节紫外线变化以夏秋2季波动较大,主要是因为该季节天气现象复杂。统计分析发现,云量的多少对紫外线的辐射强度影响很大,当全天或11:00~16:00时段内云量达到6成以上时,紫外线强度均在2级以下。  相似文献   

2.
通过对2005年6月至2006年5月期间的紫外线辐射强度监测资料和同期太阳总辐射量、云量、相对湿度资料的统计分析,研究了紫外线辐射强度的变化特征及与相关气象因子的关系。指出紫外线辐射强度具有明显的季节变化,夏季最强,冬季最弱。紫外线辐射强度日变化有明显规律,日最大值出现时间多集中在12—14时。紫外线辐射强度与太阳总辐射量呈明显正相关,与云量、相对湿度呈明显负相关。  相似文献   

3.
临沂市紫外线辐射变化特征分析   总被引:5,自引:0,他引:5  
利用临沂市2004年7月至2005年6月逐日紫外线观测资料,分析太阳紫外线辐射强度指数和等级的年、季、月和日变化特征。指出临沂市日紫外线最大辐射强度为4级的日数为多数,即紫外线辐射指数为7~9的日数占52%,4级以上紫外线辐射主要出现在春夏季节,冬季紫外线辐射较弱,出现4级辐射日数很少且无5级辐射。晴空条件下,冬季太阳紫外线辐射强度日变幅明显小于其他季节,夏季日最大辐射强度出现在12-14时,较其他季节的日最大辐射强度出现时段滞后1小时。  相似文献   

4.
大连市紫外线辐射强度分析和预报方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用大连市2007年8月至2008年8月逐日紫外线观测资料,分析了紫外线辐射季、月和日变化特征及其与相关气象要素的关系。结果表明:大连市紫外线辐射强度具有明显的季节变化,夏季最大,春季次之,冬季最小。各季节紫外线辐射强度的日变化同位相,均为正午呈大致对称分布。无论何季节,日照总时数、14时能见度和太阳高度角均为影响大连市紫外线辐射强度的关键因素。同时,详细分析了雾对辐射强度的影响。并运用逐步回归方法,求得各季节紫外线辐射强度的预报方程,实现了预报的定量化。  相似文献   

5.
重庆主城区紫外线辐射强度变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
研究重庆主城区紫外线辐射强度的变化规律,为业务预报和客观预报方法的研究提供基础。利用2004年3月—2008年2月的实况观测资料,分析主城区紫外线辐射强度的日、月、季和年变化规律。结果表明:重庆主城区日平均最大辐射量出现在中午13时—14时。7月和8月的辐射强度为全年最强,出现辐射等级四级的概率最大;而1月和12月为全年最弱,没有出现过辐射等级高于三级的样本。季节平均辐射强度夏、春、秋、冬依次减弱。2004年和2006—2007年平均辐射强度相当,2005年较弱。  相似文献   

6.
利用紫外线观测仪器对辽宁4个地区紫外线辐射强度进行观测,研究了辽宁地区紫外线辐射强度的变化特征;分析了影响到达地面紫外线辐射强度的因子,结合MM5数值模式建立了统计预测模型,建立了紫外线辐射强度分级标准和对人体健康影响的对应关系。结果表明:辽宁地区的紫外线辐射强度,总体上是西、北部较东、南部稍强,但相差不大;紫外线辐射强度具有明显的季节变化,夏季最大、冬季最小。每年5~9月紫外线强度维持在一个较高的水平,日最大值出现在每日的11~14时。夏季紫外线对人体的影响最大,冬季基本无影响。云量的变化对紫外线强度的影响较大。紫外线辐射强度预报模型的预测结果较为理想。  相似文献   

7.
利用2008年4月至2012年12月菏泽市紫外线观测资料以及地面常规气象观测资料和空气质量资料,分析了该地区太阳紫外线辐射的变化特征及其与各因子的相关关系,并建立逐月预报方程。结果表明:菏泽紫外线辐射年总量达到187.98 W/m2,春夏两季明显高于秋冬两季,5月达到全年的最大值,1月为全年的最小值;3~9月紫外线辐射极大值均可达到5级,其他月份均可达到4级。不同天气条件下紫外线辐射强度存在明显差异,其中晴天紫外线辐射强且稳定,呈抛物线变化;多云天紫外线辐射波动较大,时强时弱;阴天紫外线辐射相对较弱。紫外线辐射强度与风速、能见度、气温呈正相关,与总云量、低云量、相对湿度呈负相关,与SO2、PM10、NO2、PM2.5多呈负相关。基于多元线性回归分析向后剔除变量方法得出的逐月预报方程,经检验总体预报效果较好,对当地紫外线等级预报工作具有参考意义。  相似文献   

8.
廖波  熊平 《贵州气象》2011,35(1):15-17
利用2005年1月—2009年12月紫外线辐射强度监测资料,分析贵阳市紫外线辐射强度的13、月、季节变化特征及其与太阳总辐射强度的关系。结果表明:25a紫外线辐射强度日变化曲线呈单峰型变化,两侧分布基本对称,13时达到峰值;年平均紫外线辐射强度为8.89W/m^2,一年中7月紫外线辐射强度最大,12月最小,季节变化特征明显;紫外线辐射强度与太阳总辐射强度呈线性正相关,相关系数为0.9。  相似文献   

9.
利用2009年11月-2010年10月青藏高原玛多自动气象站辐射平衡观测资料,分析了高原两种不同下垫面辐射平衡各分量的季节平均日变化和年变化特征.结果表明,各季节的平均总辐射日变化和年变化在两种下垫面的趋势基本一致,夏季总辐射为非零值的时间在早上要比冬季早2h左右,而在傍晚出现零值的时间要比冬季晚2h左右.夏季总辐射最强、冬季最弱,年变化最小值为0.544 MJ·m-2,出现在1月;最大值为1.001MJ ·m-2,出现在7月.在11:00-16:00(北京时)之间反射辐射冬季最强、夏季最弱.这种现象与总辐射日变化趋势恰好相反,反射辐射的年变化最小值出现在2月,平均最小值为0.157MJ· m-2;最大值出现在11月,平均最大值为0.326 MJ· m-2.1号点和2号点反射辐射差值冬季最大,达到0.06 MJ·m-2;春季最小,为0.03 MJ·m-2.净辐射年变化最小值为-0.025 MJ·m-2,出现在12月;最大值为0.477 MJ·m-2,出现在7月.地表反射率2个观测点的变化趋势大致相同,各季节地表反射率最大值、最小值和平均值都是2号点大于1号点,平均偏大8%.  相似文献   

10.
利用乌鲁木齐市建立紫外线辐射强度观测以来的5 a资料,统计分析了乌鲁木 齐市紫外线辐射强度随时间(年、月、日)的基本变化特征,紫外线辐射强度最大值的时间分 布特征,以及紫外线辐射强度与气象要素降水量、日最高气温的关系。结论表明,乌鲁木齐 市紫外线辐射强度有逐年缓慢增大的趋势,强紫外线辐射日数达全年的1/3多,日最大紫 外线辐射强度夏季是冬季的10倍。日最高气温与紫外线辐射强度指数的对应关系较好。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

17.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

18.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号