首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional wind fields of the heavy rain on 12-13 June 2005 in Guangdong province are retrieved and studied with the volume scan data of the dual-Doppler radar located in the cities of Meizhou and Shantou. It is shown that the meso-β-scale and meso-γ-scale convergence lines located in the convective system at the low and middle layer play an important role in the heavy rainfall. The convergence line is the initiating and maintaining mechanism of the rain. A three dimensional kinematic structure model is also given.  相似文献   

2.
王智  高坤 《大气科学进展》2006,23(2):267-281
A relatively independent and small-scale heavy rainfall event occurred to the south of a slow eastwardmoving meso-α-scale vortex. The analysis shows that a meso-β-scale system is heavily responsible for the intense precipitation. An attempt to simulate it met with some failures. In view of its small scale, short lifetime and relatively sparse observations at the initial time, an adjoint model was used to examine the sensitivity of the meso-β-scale vortex simulation with respect to initial conditions. The adjoint sensitivity indicates how small perturbations of initial model variables anywhere in the model domain can influence the central vorticity of the vortex. The largest sensitivity for both the wind and temperature perturbation is located below 700 hPa, especially at the low level. The largest sensitivity for the water vapor perturbation is located below 500 hPa, especially at the middle and low levels. The horizontal adjoint sensitivity for all variables is mainly located toward the upper reaches of the Yangtze River with respect to the simulated meso-β-scale system in Hunan and Jiangxi provinces with strong locality. The sensitivity shows that warm cyclonic perturbations in the upper reaches can have a great effect on the development of the meso-β-scale vortex. Based on adjoint sensitivity, forward sensitivity experiments were conducted to identify factors influencing the development of the meso-β-scale vortex and to explore ways of improving the prediction. A realistic prediction was achieved by using adjoint sensitivity to modify the initial conditions and implanting a warm cyclone at the initial time in the upper reaches of the river with respect to the meso-β-scale vortex, as is commonly done in tropical cyclone prediction.  相似文献   

3.
A relatively independent and small-scale heavy rainfall event occurred to the south of a slow eastward-moving meso-α-scale vortex. The analysis shows that a meso-β-scale system is heavily responsible for the intense precipitation. An attempt to simulate it met with some failures. In view of its small scale, short lifetime and relatively sparse observations at the initial time, an adjoint model was used to examine the sensitivity of the meso-β-scale vortex simulation with respect to initial conditions. The adjoint sensitivity indicates how small perturbations of initial model variables anywhere in the model domain can influence the central vorticity of the vortex. The largest sensitivity for both the wind and temperature perturbation is located below 700 hPa, especially at the low level. The largest sensitivity for the water vapor perturbation is located below 500 hPa, especially at the middle and low levels. The horizontal adjoint sensitivity for all variables is mainly located toward the upper reaches of the Yangtze River with respect to the simulated meso-β-scale system in Hunan and Jiangxi provinces with strong locality. The sensitivity shows that warm cyclonic perturbations in the upper reaches can have a great effect on the development of the meso-β-scale vortex. Based on adjoint sensitivity, forward sensitivity experiments were conducted to identify factors influencing the development of the meso-β-scale vortex and to explore ways of improving the prediction. A realistic prediction was achieved by using adjoint sensitivity to modify the initial conditions and implanting a warm cyclone at the initial time in the upper reaches of the river with respect to the meso-β-scale vortex,as is commonly done in tropical cyclone prediction.  相似文献   

4.
Numerical simulation of a heavy rainfall case in Henan area during 16-17 July 2004 is performed using the LASG (State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics) mesoscale model AREM (Advanced Regional Eta Model) developed by Yu (1989) and Yu et al. (1994). The results are shown: the air in the middle part of troposphere within the horizontal range of meso-βscale convective system is heated by condensation latent heat. The isobaric surface in the middle and upper part of troposphere is rising, and thus meso-βscale high is formed; the isobaric surface in the lower part of troposphere is depressed, and thus meso-βscale low is formed. The interaction between the high and low layer flow promotes the strong development of the vertical motion. While the rising motion is developing strongly, obvious compensation sinking motion appears around it. In the south of rising motion region, the divergence current in the upper part of troposphere backflows towards south, which leads to the vertical circulation appearing in the upper part of troposphere. The sinking branch of the circulation integrates in the compensation sinking air current in the south of rising motion region and takes the horizontal momentum of upper air to the lower part of troposphere and forms a new meso-βscale jet. In the north of the rising motion region, a mesoscale vertical circulation develops in the low layer of troposphere. The divergence current of the sinking branch of the circulation, which flows southward, converges with warm and humid air current in the low layer of troposphere which flows from southwest, and forms a meso-βscale convergence line. Then it strengthens the convergence over the low level of heavy rain area. In the east of the rising motion region, a mesoscale vertical circulation also develops in low layer of troposphere. The divergence current of the sinking branch of the circulation, which flows westward, causes originally more consistent southwest air current in this region to the east deflection, and thus forms the cyclone curve in the southwest air current. The convergence is further strengthened in the meso-βscale convergence line. The strong development of ageostrophic vorticity in the lower part of troposphere is the important factor of the formation of the meso-βscale cyclone. At last the three-dimensional structure chart of development of heavy rain meso-βscale stream filed is given.  相似文献   

5.
Numerical simulation of a heavy rainfall case in Henan area during 16-17 July 2004 is performed using the LASG (State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics) mesoscale model AREM (Advanced Regional Eta Model) developed by Yu (1989) and Yu et al. (1994). The results are shown: the air in the middle part of troposphere within the horizontal range of meso-βscale convective system is heated by condensation latent heat. The isobaric surface in the middle and upper part of troposphere is rising, and thus meso-βscale high is formed; the isobaric surface in the lower part of troposphere is depressed, and thus meso-βscale low is formed. The interaction between the high and low layer flow promotes the strong development of the vertical motion. While the rising motion is developing strongly, obvious compensation sinking motion appears around it. In the south of rising motion region, the divergence current in the upper part of troposphere back lows towards south, which leads to the vertical circulation appearing in the upper part of troposphere. The sinking branch of the circulation integrates in the compensation sinking air current in the south of rising motion region and takes the horizontal momentum of upper air to the lower part of troposphere and forms a new meso-βscale jet. In the north of the rising motion region, a mesoscale vertical circulation develops in the low layer of troposphere. The divergence current of the sinking branch of the circulation, which flows southward, converges with warm and humid air current in the low layer of troposphere which flows from southwest, and forms a meso-βscale convergence line. Then it strengthens the convergence over the low level of heavy rain area. In the east of the rising motion region, a mesoscale vertical circulation also develops in low layer of troposphere. The divergence current of the sinking branch of the circulation, which flows westward, causes originally more consistent southwest air current in this region to the east deflection, and thus forms the cyclone curve in the southwest air current. The convergence is further strengthened in the meso-βscale convergence line.The strong development of ageostrophic vorticity in the lower part of troposphere is the important factor of the formation of the meso-βscale cyclone. At last the three-dimensional structure chart of development of heavy rain meso-βscale stream filed is given.  相似文献   

6.
Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-γ-scale convective phenomena are basically unsteady under the situation of strong shear at low-levels, white the meso-β-scale convective system is maintained up to 3 hours or more. The meso-β-scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-γ-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low inten-sifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-γ-scale warm cores with peak values of 4-8oC are associated with strong convective cells. The cloud top evapo-ration causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase microphysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.  相似文献   

7.
During 8-9 July 2007,several successively developed rainstorms along the Meiyu front produced heavy rainfall in the Huaihe River Valley,which led to the most catastrophic flooding in this region since 1954.Through mesoscale analysis of both conventional and intensive observations from upper air and surface stations,automatic weather stations,Doppler radars,and the FY-2C satellite,the current study examines the developing style and environmental conditions of the mesoscale convective systems(MCSs)that led to the development of the rainstorms.Our analysis showed that this event went through three phases.The first phase of the heavy rainfall(Phase Ⅰ)was caused by a meso-α-scale wind shear in the lower troposphere during 0200-1700 BT(Beijing Time)8 July.Phase Ⅱ was characterized by a reduction in rain rate and the formation of a low-level vortex between 1700 BT 8 and 0200 BT 9 July.In Phase Ⅲ,the well-organized mature meso-α-scale low-level vortex brought about intensified rains during 0200-0800 BT 9 July.Satellite and raclar observations showed a backward development of MCSs(new convective cells were generated at the back of the system)in PhaseⅡ,a forward development in Phase Ⅲ,and a spiral organization of the convective lines in Phase Ⅱ.The heavy rainstorm systems were initiated continuously along a surface mesoscale dew-point front with a horizontal scale of~300 km(as part of the Meiyu front)in the upper reaches of the Huaihe River Valley near Fuyang City,Anhui Province and then gradually decayed in the middle and lower reaches.It is hypothesized that lifting by strong low-level convergence is sufficient to trigger convection in the high CAPE(convective available potential energy)environment.  相似文献   

8.
The Advanced Weather Research and Forecasting Model (ARW) is used to simulate the local heavy rainstorm process caused by Typhoon Matsa over the northeastern coast of Zhejiang Province in 2005. The results show that the rainstorm was caused mainly by the secondary spiral rainband of the Stationary Band Complex (SBC) structure. Within the secondary spiral rainband there was a strong meso-β-scale convergence line generated in the boundary layer, corresponding very well to the Doppler radar echo band. The convergence line comprised several smaller convergence centers, and all of these convergence columns inclined outward. Along the convergence line there was precipitation greater than 20 mm occurring during the following one hour. During the heavy rainstorm process, the Doppler radar echo band, convergence line, and the precipitation amount during the following one hour, moved and evolved synchronously. Further study reveals that the vertical shear of radial wind and the low-level jet of tangential wind contributed to the genesis and development of the convergence columns. The combined effect of the ascending leg of the clockwise secondary circulation of radial wind and the favorable environment of the entrance region of the low-level jet of tangential wind further strengthened the convergence. The warm, moist inflow in the lower levels was brought in by the inflows of the clockwise secondary circulation and uplifted intensely at the effect of convergence. In the convectively instable environment, strong convection was triggered to produce the heavy rainstorm.  相似文献   

9.
The Meiyu front heavy rain process in 1-3 June 2000 is numerically simulated in this paper, and results are then analyzed to show the effects of geostrophic balance collapse,unbalanced flow occurrence,low level jet (LLJ) development,and gravity waves genesis and propagation on the rainstorm.Analyses indicate that the sudden northwest movement of subtropical high may destruct the local geostrophic balance,leading to an increase in the local pressure gradient and the occurrence of ageostrophic flow,and meanwhile the adjustment of circulation starts to build a new balance.During the process,an LLJ and gravity waves appear correspondingly.The dispersion of unbalanced energy through the divergence/convergence of the geostrophic departure winds, promotes the propagation of strong wind cores along the LLJ,and the dispersion direction is influenced by the steering flow and the moisture concentration area.The development of LLJ is one of important conditions,which induces the heavy rain especially in the left front part of the jet where the convergence and shear of winds occur.It is also found that the genesis of disturbance, meso-vortex,and meso-convective system provides a favorable condition for the rainstorm.The above results are clearly illustrated by the high spatial and temporal resolution simulation data from a mesoscale numerical model.  相似文献   

10.
The capacity of Tropical Rainfall Measuring Mission (TRMM) Satellite for measuring rainfall was examined by using TMI-85.5 GHz microwave image data and precipitation data during a heavy rainfall experiment in southern China. From comparisons with the distribution of rain amount in an hour with BB T of 85.5 GHz microwave, it is clear that the center of heavy rain corresponds with an area of low BB T value. The location and shape of BB T distribution is similar to that of precipitation, and the larger the rainfall rates, the lower the BB T . A statistic analysis shows that the correlation coefficients between BB T and rain rates is negative and significant. Especially, when the rain rate is over 7 mm/h, the correlation degree between BB T and rain rates is more significant. The results shows that TRMM/TMI-85.5 G has great ability to measure convective heavy rain.  相似文献   

11.
With PSU/NCAR nonhydrostatic mesoscale model MM5, the rainfall process of tropical storm Fitow(0114) is simulated for 00:00 UTC 31 Aug. – 00:00 UTC 2 Sept. 2001. Mesoscale separation is performed on the results with the filtering scheme. Analyses show that the MM5 model well reproduced the position and intensity of heavy rain. Mesoscale characteristics of heavy rain were well represented in rainfall time scale, rainfall area, stream field and divergence at lower and upper levels. The interaction between inverted typhoon troughs and the mesoscale systems lead to heavy rain occurrence. The distribution of divergence fields at lower and upper levels can have a kind of indication for the rainfall. Heavy rains are closely associated with topography and land-sea distribution in South China. Weak instability is favorable to the generation of heavy rain.  相似文献   

12.
Large-scale and mesoscale analyses are made for extremely heavy rain(EHR) and meso-β scale low vortex(MSLV) in Jiading District of Shanghai Municipality during 6-7 July 2001.It is shown that the EHR forms in the situation of northern westerly trough linking together with southern inverted typhoon trough at northwest side of the West Pacific Ocean subtropical high. Numerical simulation is made using a 21-layer improved REM(regional η coordinate model) for this course.The results show that the precipitation forms earlier than MSLV.and the strong convergence in wind velocity mate(WVM) triggers the strong precipitation.The formative reasons of WVM.especially the weak wind velocity center are discussed,and the formative mechanisms of the MSLV and EHR are discussed using high spatial and temporal resolution modeloutput physical fields.The results show that the heavy rain releases latent heat and warms the air column,and enhances the low level positive vorticity that existed before.Then it causes the formation of MSLV.There is a positive feedback mechanism between low vortex and precipitation,so CISK must be an important mechanism.  相似文献   

13.
The new concept and analysis method for the rainfall peak are introduced in this paper,and an obser-vational study of a heavy rain case in the Meiyu front has been made with finer radiosonde and precipitationdata.It has found in this case that there are a lot of meso-β scale systems associated with the rainfall peaksin the Meiyu front.Meso-β scale systems can be divided into two kinds,i.e.,the moving and standing types.The moving type is characterized by the unstable gravity wave and has a path corresponding to the meso-α scalerain belts in the direction.The discussion about the meso-β systems is made by using the symmetric andtransversal wave instability theory.  相似文献   

14.
A case study is presented of the multiscale characteristics that produced the record-breaking persistent heavy rainfall event(PHRE) over Hainan Island,northern South China Sea(SCS),in autumn 2010.The study documents several key weather systems,from planetary scale to mesoscale,that contributed to the extreme rainfall during this event.The main findings of this study are as follows.First,the convectively active phase of the MJO was favorable for the establishment of a cyclonic circulation and the northward expansion of the Intertropical Convergence Zone(ITCZ).The active disturbances in the northward ITCZ helped direct abundant moisture from adjacent oceans towards Hainan Island continuously throughout the event,where it interacted with cold air from the midlatitudes and caused heavy rain.Second,the 8-daylong PHRE can be divided into three processes according to different synoptic systems:peripheral cloud clusters of a tropical depression-type disturbance over the central SCS in process 1;interactions between the abnormally far north ITCZ and the invading cold air in process 2;and the newly formed tropical depression near Hainan Island in process 3.In the relatively stable synoptic background of each process,meso-α and meso-β-scale cloud clusters repeatedly traveled along the same path to Hainan Island.Finally,based on these analyses,a conceptual model is proposed for this type of PHRE in autumn over the northern SCS,which demonstrates the influences of multiscale systems.  相似文献   

15.
The structure and organization of the extreme-rain-producing deep convection towers and their roles in the formation of a southwest vortex(SWV) event are studied using the intensified surface rainfall observations, weather radar data and numerical simulations from a high-resolution convection-allowing model. The deep convection towers occurred prior to the emergence of SWV and throughout its onset and development stages. They largely resemble the vortical hot tower(VHT) commonly seen in typhoons or hurricanes and are thus considered as a special type of VHT(sVHT). Each sVHT presented a vorticity dipole structure, with the upward motion not superpose the positive vorticity.A positive feedback process in the SWV helped the organization of sVHTs, which in turn strengthened the initial disturbance and development of SWV. The meso-γ-scale large-value areas of positive relative vorticity in the mid-toupper troposphere were largely induced by the diabatic heating and tilting. The strong mid-level convergence was attributed to the mid-level vortex enhancement. The low-level vortex intensification was mainly due to low-level convergence and the stretching of upward flow. The meso-α-scale large-value areas of positive relative vorticity in the low-level could expand up to about 400 hPa, and gradually weakened with time and height due to the decaying low-level convergence and vertical stretching in the matured SWV. As the SWV matured, two secondary circulations were formed,with a weaker mean radial inflow than the outflow and elevated to 300-400 hPa.  相似文献   

16.
The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002, focusing on the meso-β system. A mesoscale convective system (MCS) formed in the warm-moist southwesterly to the south of the shear line over the Dabie Mountains and over the gorge between the Dabie and Jiuhua Mountains. The mei-yu front and shear line provide a favorable synoptic condition for the development of convection. The GPS observation indicates that the precipitable water increased obviously about 2-3h earlier than the occurrence of rainfall and decreased after that. The abundant moisture transportation by southwesterly wind was favorable to the maintenance of convective instability and the accumulation of convective available potential energy (CAPE). Radar detection reveals that meso-β and -γ systems were very active in the MαCS. Several convection lines developed during the evolution of the MαCS, and these are associated with surface convergence lines. The boundary outflow of the convection line may have triggered another convection line. The convection line moved with the mesoscale surface convergence line, but the convective cells embedded in the convergence line propagated along the line. On the basis of the analyses of the intensive observation data, a multi-scale conceptual model of heavy rainfall in the mei-yu front for this particular case is proposed.  相似文献   

17.
In this paper, the data collected during the Mesoscale Weather Experiments in East China are utilized to study the meso-α scale rain-bands of meiyu front heavy rain, its structural features as well as the mechanism of its development. It has been revealed that the precipitation band during the meiyu season is in the shape of ribbon, which is parallel to the surface quasi-stationary front. Sometimes two meso-α scale rain-bands are present. The meso-α scale rain-band is associated with meso-α scale convergence line. As shown by the two dimentional disturbance circulation, calculated through band-pass filtering, the single rain-band is quite different from the double rain-bands. The former is, to some extent, akin to the frontogenctical circulation in the vicinity of the high- and low-level frontal zones; the latter features roller-like circulations at middle and low-levels with their axes parallel to the rain-bands while at higher levels they run in the opposite direction. This kind of disturbance may be caused by the symmetric instability in the moist atmosphere.  相似文献   

18.
Typhoon-induced heavy rains are mostly studied from the viewpoint of upper-level westerly troughs. It is worthwhile to probe into a case where the rain is caused by tropical cyclone system, which is much heavier. During August 3 ~ 5, 1996, an unusually heavy rainstorm happened in the southwest of Hebei province. It was caused by 3 mesoscale convective cloud clusters on the periphery of a tropical cyclone other than the direct effects of a westerly trough. Generating in a weak baroclinic environment that is unstable with high energy, the cloud clusters were triggered off for development by unstable ageostrophic gravity waves in the low-level southeast jet stream on the periphery of the typhoon. There was a vertical circulation cell with horizontal scale close to 1000 km between the rainstorm area and westerly trough in northeast China. As shown in a computation of the Q vector of frontogenesis function, the circulation cell forms a mechanism of transforming energy between the area of interest and the westerly trough system farther away in northeast China. Study of water vapor chart indicates that high-latitude troughs in the northeast portion of the rain migrate to the southeast to enhance anti-cyclonic divergence in upper-level convection over the area of heavy rain and cause rain clusters, short-lived otherwise, to develop vigorously. It is acting as an amplifier in this case of unusually strong process of rain.  相似文献   

19.
The heavy rainfall in the summer of 1998 over China has been simulated with the NCCRegional Climate Model(RegCM_NCC).It was successful for RegCM_NCC to reproduce thelocation and seasonal shift of the seasonal rain belt in the summer of 1998 over China.The rainyseason in the summer of 1998 over China can be divided into 7 episodes,including the pre-summerrainy season in South China.the Meiyu onset over the Yangtze-Huaihe River Basin,shortappearance of North China rain season and the retreat of seasonal rain belt,the second Meiyuseason over the Yangtze River Valley,the rainy period over the Yellow and Huaihe River Valleyand the seasonal retreat of rain belt over North China.The shortcoming of the RegCM_NCC isover-estimation of precipitation amounts.The regions with large latent heat flux,upper soilmoisture and total runoff are located in the rainy area and move with the simulated rain belt duringthe different episodes.On the contrary,the regions with small sensible heat flux are located in thesimulated rainy area and move with the simulated rain belt during the different episodes.  相似文献   

20.
Extended range(10–30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper,a nonlinear cross prediction error(NCPE) algorithm that combines nonlinear dynamics and statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of precipitable water and is tested in 100 global cases of heavy rain. First,nonlinear relative dynamic error for local attractor pairs is calculated at different stages of the heavy rain process,after which the local change characteristics of the attractors are analyzed. Second,the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5,and is then used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded as eigenpeaks for heavy rain extreme weather are all reflected consistently,without failure,based on the NCPE model; the prediction validity periods for 1–2 d,3–9 d and 10–30 d are 4,22 and 74 cases,respectively,without false alarm or omission. The NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10–30 d and has the potential to be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel method provides new insights into extended range forecasting and atmospheric predictability,and also allows the creation of multi-variable chaotic extreme weather prediction models based on high spatiotemporal resolution data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号