首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
云水酸化数值模式计算   总被引:1,自引:0,他引:1  
莫天麟  邓振勤 《气象学报》1986,44(2):199-205
假定形成在硫酸、硫酸盐和硝酸盐核上的云滴,溶解酸、碱性气体在很短时间达到气—液平衡,进行了云水酸度的数值模式计算。计算结果表明,云水酸化不仅与云空气中酸、碱性气体和气溶胶粒子组分的初始浓度有关,而且还与云含水量有关。  相似文献   

2.
1986年6—7月梅雨季节在上海进行了云水和地面雨水的pH值测量和化学组分分析,结果表明:上海酸雨属于硫酸型酸雨;雨水酸度与其化学组分有关,pH≥6的云、雨水中含有大量的Ca2+离子浓度,而pH<5的云、雨水中有大量的SO2-4离子浓度;As雨水的酸化以云下冲刷过程为主;Ns雨水的酸度可能主要决定于云内雨除过程,NS云内云水的酸化过程,不仅受向上输送局地污染物的影响,而且受平流输送外来污染物的影响。  相似文献   

3.
本文将水汽在云滴上凝结增长的物理过程与气溶胶、气体的化学过程相结合,对气溶胶核化清除的化学效应进行了研究。 计算结果表明:气溶胶的核化清除造成了云滴化学成分随云滴大小分布的非均匀性,这种非均匀性又对云滴内发生的气体吸收、液相氧化产生影响。 本文还比较了不同污染状况下,不同大小的云滴内气溶胶核化清除与液相氧化对云滴化学的相对贡献的差异。 因此,这种云滴化学的非均匀性(云微化学)的研究对于云化学的野外观测及数值模拟都是重要的。  相似文献   

4.
中国西南典型地区酸雨形成过程研究   总被引:20,自引:1,他引:20  
本文根据云水和雨水化学特性的观测和雨水酸化模式的模拟计算,研究了中国西南地区酸雨的形成过程。结果表明:在重庆和贵阳等重污染城市,云下过程对雨水的酸化起主要作用,在污染较轻的中小城镇和乡村地区,雨水酸度主要决定于云内过程。 但是云下过程对雨水中的主要酸碱离子浓度都有不可忽视的明显影响。雨水的酸化主要是由于SO2与H2O2和O3的氧化,气溶胶起较弱的缓冲碱化作用。在重庆和贵阳等地,当地SO2浓度已高达饱和,其值增减50%,都不会对该地雨水酸度有明显影响,起控制作用的是氧化剂浓度。  相似文献   

5.
This paper describes a diagnostic study of the feedback mechanism in greenhouse effects of increased CO_2 and oth-er trace gases(CH_4,N_2O and CFCs),simulated by general circulation model.The study is based on two sensitivity exper-iments for doubled CO_2 and the inclusion of other trace gases,respectively,using version one of the community climatemodel(CCM1)developed at the National Centre for Atmospheric Research.A one-dimensional(1-D)and atwo-dimensional(2-D)radiative-convective models are used to diagnose the feedback effect.It shows that thefeedback factors in global and annual mean conditions are in the sequence of surface albedo,water vapor amount,watervapor distribution,cloud height,critical lapse rate and cloud cover,while in zonal and annual mean conditions in thetropical region the above sequence does not change except the two water vapor terms being the largest feedback compo-nents.Among the feedback components,the total water vapor feedback is the largest(about 50%).The diagnosis alsogives a very small feedback of either the cloud cover or the lapse rate,which is substantially different from the 1-Dfeedback analysis by Hansen et al.(1984).The small lapse rate feedback is considered to be partly caused by theconvective adjustment scheme adopted by CCM1 model.The feedback effect for doubled CO_2 is very different from that of the addition of other trace gases because of theirdifferent vertical distributions of radiative forcing although the non-feedback responses of surface air temperature forboth cases are almost the same.For instance,the larger forcing at surface by the addition of other trace gases can causestronger surface albedo feedback than by doubled CO_2.Besides,because of the negative forcing of doubled CO_2 in thestratosphere,cloud height feedback is more intense.The larger surface forcing in the case of other trace gases can also in-fluence atmospheric water vapor amount as well as the water vapor distribution,which will in turn have strongerfeedback effects.All these indicate that it is incorrect to use“effective CO_2”to replace other trace gases in the generalcirculation model.  相似文献   

6.
It is known that the cloud of expanding explosive gases is formed in the air during the explosion of the charge. This cloud takes a regular spherical shape at a certain distance from the charge, and expanding gases start the eddy-like mixing with the ambient air due to turbulent diffusion and the Richtmyer-Meshkov instability mechanism. The pattern of charge explosion in a cloudy environment does not differ much from the pattern of explosion in the free (cloudless) atmosphere: pressure and temperature jumps in the shock wave at different distances from the center of explosion are almost the same as during the explosion in the free atmosphere. However, the microstructure of the cloudy environment may considerably change during explosion in a cloud. These changes are mainly connected with the evaporation of globules in the shock wave and in the field of emission of explosive gases heated up to high temperature. These two factors may cause the formation of the transiucence zone which is generally spherical. Its radius depends on the charge power and on the water content of the cloudy environment where the charge is exploded. The present paper deals with the calculation of linear dimensions of translucence zones formed by the explosion of the charge with a given power in the cloudy environment.  相似文献   

7.
A one-dimensional, time-dependent model of the physics and chemistry of a warm stratiform cloud is used to study the possible impact of chemical inhomogeneity among cloud and raindrops on the oxidation of SO2 in clouds. The effects of chemical inhomogeneity are examined using two contrasting models: In Model 1 a bulk-solution parameterization is adopted which effectively treats all cloud and raindrops as if they are chemically homogeneous; in Model 2 we allow the cloud and raindrops to have a dichotomous distribution. The dichotomous distribution in Model 2 is simulated by assuming that the two groups of cloud droplets nucleate from two chemically distinct populations of condensation nuclei; one being acidic and the other being alkaline. While the two models yield essentially identical results when the ambient levels of H2O2 are greater than the ambient levels of SO2, the rate of conversion of SO2 to sulfuric acid and the amount of sulfate removed in the precipitation can be significantly enhanced in Model 2 over that of Model 1 under conditions of oxidant limitation (i.e., H2O2 < SO2). This enhancement is critically dependent upon the fraction of alkaline nuclei assumed to be present in Model 2 and arises from the rapid increase in the aqueous-phase reaction between O3+SIV at high pH. Our results suggest that cloud models which adopt a bulk-solution parameterization for cloud droplet chemistry, may underestimate the amount of in-cloud SO2 oxidation under oxidant-limited conditions.  相似文献   

8.
云对云中大气臭氧影响因子的分析   总被引:3,自引:0,他引:3  
应用一个较详细的气相光化学和液相化学耦合的箱体模式, 研究了云层对云中大气臭氧的影响过程。这一过程可分解为三个因子来考虑: 因子A (云的辐射效应), 由于云的存在改变太阳光辐射通量, 使得对流层光化学反应减弱或增强, 从而降低或增加臭氧浓度; 因子B(云的吸收效应), 云层中液态水对大气臭氧及其前体物 (NOx、NMHC、自由基等) 的直接吸收作用; 因子C(云的液相化学效应), 吸收进入云中的物质发生液相化学反应从而改变大气臭氧浓度。数值研究结果表明: 上述三因子对云中臭氧浓度影响的程度差别很大, 并且与云层的物理结构有密切关系。讨论了云的吸收及液相化学效应影响臭氧浓度的主要原因  相似文献   

9.
For investigating the physical reasons for the observed increase in rainfall, field observational programmes have been undertaken in the upwind and downwind of industrial complexes of the Bombay region. During these programmes, surface observations of trace gases ( SO2 and NOx), giant size hygroscopic and nonhygroscopic aerosols and rain water samples have been made in the years 1972, 1973 and 1974. Aircraft observations of trace gases (SO2 and NH3), giant size aerosols, cloud condensation nuclei as well as of cloud liquid water content, cloud droplet spectra and temperature have been made on limited days during August 1974. Results of the analysis of the surface and aircraft observations have indicated that the chemical, thermal and microphysical conditions of clouds are markedly different in the upwind and downwind regions of the industrial complexes in the Bombay region. It is hypothesised that observed increase in rainfall in the region following the industrialisation is due to the differences in the chemical and physical conditions in the downwind clouds.  相似文献   

10.
徐家骝  莫天麟 《气象科学》1994,14(4):287-299
用一组化学模式和二维时变积云模式及扩散模式相结合,研究了云和降水发展各阶段污染物浓度对云水和降水的降化影响及SO2冲刷过程的影响(侧重灵敏度试验的讨论)。  相似文献   

11.
Climate sensitivity to cloud optical properties   总被引:1,自引:0,他引:1  
A radiative–convective model was developed to investigate the sensitivity of climate to cloud optical properties and the related feedback processes. This model demonstrates that the Earth's surface temperature increases with cloud optical depth when the clouds are very thin but decreases with cloud optical depth when the cloud shortwave (solar) radiative forcing is larger than the cloud longwave (terrestrial) radiative forcing. When clouds are included in the model, the magnitude of the greenhouse effect due to a doubling of the CO2 concentration varies with the cloudoptical depth: the thicker the clouds, the weaker the greenhouse warming. In addition, a small variation in the cloud droplet size has a larger impact on the equilibrium state temperature in the lower atmosphere than the warming caused by a doubling of the CO2 concentration: a 2% increase in the average cloud droplet size per degree increase in temperature doubles the warming caused by the doubling of the CO2 concentration. These findings suggest that physically reliable correlations between the cloud droplet size and macrophysical meteorological variables such as temperature, wind and water vapor fields are needed on a global climate scale to assess the climate impact of increases in greenhouse gases.  相似文献   

12.
A one-dimensional cumulus cloud chemistry model(1CCCM)is developed to simulate cloudphysical processes and chemical processes during the evolution of a convective cloud.The cloudphysical submodel includes a detailed microphysical parameterized scheme of 20 processes.Thechemistry submodel is composed of three parts:gas phase chemistry,aqueous phase chemistry andscavenging of soluble gases.The gas phase reaction mechanism contains 85 reactions among 45species including 13 organics.The aqueous phase reaction mechanism contains 54 reactions among40 species and 12 ion equilibria.Mass of 19 gases is transported between the gas phase and theaqueous phase.With this model,studies may be made to analyze the interactions among processesduring lifetime of a cumulus cloud.  相似文献   

13.
A one-dimensional cumulus cloud chemistry model(ICCCM) is developed to simulate cloud physical processes and chemical processes during the evolution of a convective cloud.The cloud physical submodel includes a detailed microphysical parameterized scheme of 20 processes.The chemistry submodel is composed of three parts:gas phase chemistry,aqueous phase chemistry and scavenging of soluble gases.The gas phase reaction mechanism contains 85 reactions among 45 species including 13 organics.The aqueous phase reaction mechanism contains 54 reactions among 40 species and 12 ion equilibria.Mass of 19 gases is transported between the gas phase and the aqueous phase.With this model,studies may be made to analyze the interactions among processes during lifetime of a cumulus cloud.  相似文献   

14.
The vertical transport features of gaseous pollutants, with a negative exponent profile of concentration, by dif-ferent types of convective cloud systems are numerically investigated by using a two-dimensional, reactionless convective cloud transport model. The results show that an isolated, weak storm is able to pump pollutant gas out PBL and transport it to the mid-troposphere, whereas a deep, intense thunderstorm can very efficiently transport air pollutants up to the mid and upper troposphere and laterally spread with anvil, forming an extensive concentration surge layer at altitude of ten-odd kilometers altitude. Each type of convective transport results in concentration re-duction in PBL. In a wind shear environment the transport efficiency of deep thunderstorm significantly increases and the pollutants enter into clouds on the downshear side at low-level and spread downwind in anvil layer. On the other hand, for a cumulus cloud with plenty of liquid water, the gas dissolution effect is increased, and the irreversible aqueous reactions, in extreme, may significantly weaken the vertical transports of pollutant gases even with solubility coefficients no more than 103 M atm-1.  相似文献   

15.
TheVerticalTransportofAirPollutantsbyConvectiveClouds.PartⅢ:TransportFeaturesofDifferentCloudSystemsKongFanyou(孔凡铀)andQinYu(秦...  相似文献   

16.
由地基微波辐射计测量得到的北京地区水汽特性的初步分析   总被引:25,自引:3,他引:22  
首先对比分析了三种测量水汽技术(地基微波辐射计、探空、GPS)之间的差异, 得到地基微波辐射计与探空的差值为0.281cm, GPS与探空的差值为0.728 cm, 地基微波辐射计与GPS的差值为0.322 cm。接着就地基12通道微波辐射计测量得到的水汽总量 (简称PWV), 分析了北京地区水汽在四个季节中的日变化特征。秋季日变化差为0.162 cm, 冬季日变化差为0.130 cm, 春季日变化差为0.229 cm, 夏季日变化差为0.276 cm。另外, 北京地区四个季节中水汽最大值/最小值出现频率最高的时间段呈现一定的特征。即四个季节中在北京时间00:00到00:59和23:00到23:59这两个时间段中, 水汽出现最大值/最小值的概率较其他时间段都高, 其中冬季在北京时间10:00到10:59之间出现最小值的概率最高。水汽总量PWV每小时变化率在四个季节中都存在这样的现象: 出现正的水汽总量PWV每小时变化率的百分比与出现负的水汽总量PWV每小时变化率的百分比相当, 几乎都为50%。最后就水汽与温度相关性做了分析, 分别得到四个季节中各个小时水汽与温度的相关系数, 结果显示各个小时水汽与温度的相关性在四个季节中, 除了夏季从北京时间09:00到22:00为负相关外, 其他时间段内都为正相关。而且各个小时水汽与温度的相关系数都按照秋、春、 冬、夏的顺序递减。  相似文献   

17.
采用非静力中尺度模式WRF研究地形辐射效应参数化对海南岛2012年7月5日多云天气条件下的海风环流结构和云水分布模拟的影响, 并分析了差异产生的可能原因。地形辐射效应是考虑坡地辐射强迫后, 辐射与大气中的各种气体、云以及非均匀下垫面间相互反馈的累积效应。其中地形辐射效应参数化的使用使得温度的模拟更接近实际, 对水汽的模拟也有一定改进能力, 对风速、风向的改进效果不明显。考虑地形辐射效应后, 海风的发生发展演变过程及风场的水平分布无显著变化, 但局地海风以及海风对流云的位置和强度有较明显的改变。山区四周的海风环流结构和对流云的变化与坡地辐射强迫直接相关, 考虑地形辐射效应后, 山坡向阳面的海风有所增强, 背阳面的海风减弱; 向阳坡谷风减弱, 背阳坡谷风增强; 同时紧临海岸的山坡对海风的影响与岛上山坡对谷风的作用类似。平坦地区的海风环流和海风对流云总体上有所减弱, 其变化原因比较复杂。各向海风的强度变化最终会改变海风辐合线的分布, 使海风潜在降水区域发生变化。   相似文献   

18.
Aerosols emitted from volcanic activities and polluted mid-latitudes regions are efficiently transported over the Arctic during winter by the large-scale atmospheric circulation. These aerosols are highly acidic. The acid coating on ice nuclei, which are present among these aerosols, alters their ability to nucleate ice crystals. In this research, the effect of acid coating on deposition and contact ice nuclei on the Arctic cloud and radiation is evaluated for January 2007 using a regional climate model. Results show that the suppression of contact freezing by acid coating on ice nuclei leads to small changes of the cloud microstructure and has no significant effect on the cloud radiative forcing (CRF) at the top of the atmosphere when compared with the effect of the alteration of deposition ice nucleation by acid coating on deposition ice nuclei. There is a negative feedback by which the suppression of contact freezing leads to an increase of the ice crystal nucleation rate by deposition ice nucleation. As a result, the suppression of contact freezing leads to an increase of the cloud ice crystal concentration. Changes in the cloud liquid and ice water contents remain small and the CRF is not significantly modified. The alteration of deposition ice nucleation by acid coating on ice nuclei is dominant over the alteration of contact freezing.  相似文献   

19.
During March and April of 1995 a major international field project was conducted at the UMIST field station site on Great Dun Fell in Cumbria, Northern England. The hill cap cloud which frequently envelopes this site was used as a natural flow through reactor to examine the sensitivity of the cloud microphysics to the aerosol entering the cloud and also to investigate the effects of the cloud in changing the aerosol size distribution, chemical composition and associated optical properties. To investigate these processes, detailed measurements of the cloud water chemistry (including the chemistry of sulphur compounds, organic and inorganic oxidised nitrogen and ammonia), cloud microphysics and properties of the aerosol and trace gas concentrations upwind and downwind of the cap cloud were undertaken. It was found that the cloud droplet number was generally strongly correlated to aerosol number concentration, with up to 2000 activated droplets cm−3 being observed in the most polluted conditions. In such conditions it was inferred that hygroscopic organic compounds were important in the activation process. Often, the size distribution of the aerosol was substantially modified by the cloud processing, largely due to the aqueous phase oxidation of S(IV) to sulphate by hydrogen peroxide, but also through the uptake and fixing of gas phase nitric acid as nitrate, increasing the calculated optical scattering of the aerosol substantially (by up to 24%). New particle formation was also observed in the ultrafine aerosol mode (at about 5 nm) downwind of the cap cloud, particularly in conditions of low total aerosol surface area and in the presence of ammonia and HCl gases. This was seen to occur at night as well as during the day via a mechanism which is not yet understood. The implications of these results for parameterising aerosol growth in Global Climate Models are explored.  相似文献   

20.
A simple system was constructed for the separation and collection of atmospheric particles and gases. The five-stage sampling train consists of a particle filter followed by four 7LiOH-impregnated filters to collect acidic gases. The treated filters quantitatively collect acidic gas-phase species of B, S, Cl, Br, I, As, Se, Sb and Hg. Simultaneous sampling with activated charcoal-impregnated and 7LiOH-treated filters revealed that B, S, and As species were found only as acidic gases, while the others had both acidic and nonacidic contributions. Concentrations of up to 48 elements on the particle filters and nine elements on the treated filters were determined using instrumental neutron activation analysis and neutron capture prompt -ray activation analysis. Minimum sampling volume estimates, average filter blank concentrations, and average atmospheric concentrations at College Park, MD and Wallops Island, VA are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号