首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
柴达木盆地属于高寒干旱内陆盆地,水资源短缺,生态环境十分脆弱,蒸散发是生态系统水分耗散的主要方式,研究其变化特征对区域水资源合理开发与生态环境保护具有重要意义。本研究以柴达木盆地灌木林地和高寒草甸为观测点,采用涡动相关仪观测的2020年通量资料计算实际蒸散发量,分析不同下垫面实际蒸散发量在不同时间尺度的变化特征,并探究了气象因子与实际蒸散发量的相关性。结果表明:(1)灌木林地和高寒草甸蒸散发过程主要集中在生长季,呈正态分布,但变化范围有一定差异,高寒草甸实际日蒸散发量和实际月蒸散发量大于灌木林地。其中,灌木林地日平均蒸散发量为0.48 mm,高寒草甸日平均蒸散发量为1.28 mm;灌木林地蒸散发量8月达到峰值,为40.47 mm,高寒草甸蒸散发量7月达到峰值,为88.92 mm。(2)对于不同下垫面,气温和土壤温度变化趋势大致相同,饱和水汽压差和风速有一定差异,实际日蒸散发量与气温、土壤温度、饱和水汽压差显著相关,但是与风速相关性不大,各季节蒸散发量对各气象因子敏感程度不同,此外高寒草甸蒸散发量与土壤含水量呈显著相关。(3)不同下垫面水分消耗变化特征表明灌木林地各月水汽交换以下垫面水分...  相似文献   

2.
多年冻土区土壤蒸散发对气候变化的敏感性分析   总被引:1,自引:0,他引:1  
由于不同区域蒸散发对气候变化的敏感性各不相同,为摸清多年冻土活动层陆面过程中冻土-气候变化-水文循环之间的相互关系,选择青藏高原风火山区域的典型多年冻土区,依据气象站观测资料,应用Penman-Monteith公式计算了典型多年冻土区土壤蒸散发和蒸散发气候敏感系数,分析了多年冻土区土壤蒸散发对气候变化的敏感性。结果表明:多年冻土区土壤蒸散量对相对湿度的敏感性最高(-1. 291),其次为风速(0. 658),对空气温度的敏感性最低(0. 248);土壤完全融化的植被生长期,蒸散发对各气象因子的敏感性最高,土壤完全冻结的植被枯萎期,蒸散发对各气象因子的敏感性都最低;年内尺度,蒸散发对气温、相对湿度和风速的敏感性均在8月最高,在1月或12月最低;蒸散发对气温和相对湿度的敏感性变化与植物生长变化过程高度一致,而蒸散发对风速的敏感性则较为复杂,与土壤的冻融过程相关,分别在土壤逐渐融化的植物生长前期和土壤完全融化的植物生长期敏感性较高。  相似文献   

3.
黄河源区蒸散发量时空变化趋势及突变分析   总被引:4,自引:1,他引:3  
蒸散发量是流域水文过程的关键因子。由于缺乏区域面上实际蒸散发量的长期观测,很难得到长时间序列的蒸散发时空变化趋势。因此,本研究首先利用架设在黄河源若尔盖地区的涡动相关系统观测的2010年全年的蒸散发资料进行分析,对欧洲中心提供的ERA-interim和美国国家环境预报中心(NCEP)提供的地表变量再分析数据集进行了局地适用性评估,并依据再分析蒸散数据集,基于统计学方法分析了1979~2014年黄河源区蒸散发量的时空分布及变化特征。结果表明:(1)ERA-interim蒸散发再分析资料在黄河源区适用性较好,均方根误差为0.63,NCEP蒸散发再分析资料在4~7月、10~12月模拟值偏高,均方根误差为0.81。(2)进而利用ERA-interim蒸散发再分析资料,基于Mann Kendall方法及Sen斜率(Sen’s slope estimator)检验法,分析了黄河源区蒸散发量在1979~2014年期间的变化趋势。黄河源区蒸散发量总体上呈现北高南低的年变化趋势,北部兴海—共和—贵德地区增加最为迅速,年变化率在1.5~2.5 mm/a,西南部曲麻莱—治多—玉树地区减少最为明显,变化率为-1.0~-0.5 mm/a,东南部玛沁—玛曲—久治地区蒸散发量的变化在0.5~1.0 mm/a。(3)利用滑动t检验和SQMK(Sequential Mann Kendall)方法检测出发生突变的年份集中在20世纪80年代。  相似文献   

4.
珠江流域实际蒸散发的时空变化及影响要素分析   总被引:1,自引:0,他引:1  
采用基于互补相关理论的平流-干旱模型,根据60个气象站1961—2010年气象资料,计算并分析了珠江流域实际蒸散发(ETa)的时空变化特征,通过对实际蒸散发的辐射能量项、空气动力学项与主要气象要素的相关分析,对珠江流域实际蒸散发的时空变化进行了归因研究。结果表明:(1) 珠江流域多年平均实际蒸散发量为665.6 mm/a。1961—2010年,珠江流域实际蒸散发量呈明显的下降趋势,下降幅度为-24.3 mm/(10 a)。夏秋季节实际蒸散发的下降对年际尺度实际蒸散发的下降具有明显的贡献。(2) 珠江流域东南沿海地区年实际蒸散发量较高(大于690 mm),该区年实际蒸散发量呈现显著的下降趋势。流域中部有一条呈东北-西南走向的条带状实际蒸散发低值区,年均实际蒸散发量在630 mm以下,但该区域的时间变化趋势不明显。(3) 气温日较差和日照时数的下降以及大气压的增加使得辐射能量项的下降,是造成实际蒸散发下降的主要原因;平均气温、最高、最低气温的上升使空气动力学项呈现增加趋势,从而在一定程度上贡献于实际蒸散发的下降。春秋冬三季平均风速的下降引起空气动力学项的下降趋势或减缓其增加趋势,反过来在一定程度上减缓了实际蒸散发的下降趋势。   相似文献   

5.
刘波  姜彤  翟建青  张文红 《气象》2010,36(3):112-116
水量平衡和蒸散发过程研究是水文循环研究的重要方面。正确的观测和计算地表实际蒸散发量对认识气候变化条件下的水循环特征、实现区域水资源的可持续开发利用具有非常重要的意义。传统蒸渗仪功能单一,不仅安装费用较高,日常维护和观测需要大量的人力物力,观测精度也常常受到仪器系统误差或人为因素的影响。围绕着陆面蒸散发观测和解决"蒸发悖论"的科学问题,设计了用于研究气候变化对水循环、陆面蒸散发影响的野外自动观测实验的新系统,站址选择在江西省南昌县生态实验站。该新型蒸渗仪(Lysimeter)系统采用先进的高分辨率称重系统(陆面蒸散发观测精度:0.01 mm)、高精度土壤水分水势传感器(pf:0-7,国际专利号:102004010518.9)和动态IP解析技术的GPRS数据采集器(24 bit,512 k),通过地表气象站、土壤水分水势、蒸渗仪和地下水位等独立的观测实验对比,确定陆地表面实际蒸散发量以及蒸散发过程的有关参数。该系统无论在测量的精度及频次上都比传统观测方法有极大的提高。另外,除了应用于陆面实际蒸散发量的观测外,该系统装置了2004年获得国际专利的新型土壤水分、温度和水势传感器,观测精度较高,观测频次可调节幅度较大,且适应多种环境条件,能够根据不同的科学目标进行新的组合和设计。  相似文献   

6.
活动层水热状况与地-气系统间能水交换直接影响着寒区生态环境、水文过程以及多年冻土的稳定性。利用唐古拉站2007年实测资料和SHAW模型,对研究点活动层土壤剖面温湿度进行了模拟。土壤温度方面,模型的纳什效率系数NSE≥0.93;水分方面,纳什效率系数的平均值为0.69,说明SHAW模型可用于多年冻土区活动层内水热动态变化的模拟研究。基于模型的输出结果,对唐古拉站活动层土壤冻融过程中的水分动态、地表能量收支的变化特征进行了分析讨论。结果表明:(1)活动层冻融过程中,土壤水分的冻结和融化响应时间随土壤深度的增加而逐渐滞后,水分迁移通量随土壤深度的增加逐渐减小;(2)地表能量平衡收支在季风活动引起的降水与活动层的冻融循环共同影响下,表现出明显的季节性变化特征。同时,通过改变SHAW模型植被输入参数中的叶面积指数,分析了植被覆盖变化对多年冻土区土壤蒸散发的影响。结果表明:植被蒸腾量、土壤蒸发量与总的蒸散发量与植被的叶面积指数呈正相关关系,而浅层土壤含水率(20 cm)则表现为负相关,当叶面积指数在-100%(裸土)~100%变化时,总蒸散发量的变化幅度为-5%~13%。  相似文献   

7.
王秀英  周秉荣  陈奇  李甫  权晨 《高原气象》2022,41(2):338-348
为了揭示青藏高原典型高寒草甸和高寒沼泽湿地耗水特征,以青藏高原玛沁地区高寒草甸和玉树隆宝地区高寒沼泽湿地为观测研究站,以实际蒸散发为研究对象,采用涡度相关系统,通过涡度相关理论进行原始观测数据预处理,分析了实际蒸散发在不同时间尺度和不同下垫面的变化特征,探究了典型环境因子对实际蒸散发的影响。结果表明:(1)高寒草甸和高寒沼泽湿地实际蒸散发主要集中在生长季,平均蒸散发分别为123.46 mm和146.76 mm,小时蒸散发在一天的14:00-15:00(北京时)达到最高值;(2)对于不同下垫面,蒸散发与气象因子的相关关系不同,高寒草甸净辐射对蒸散发的贡献最突出,高寒沼泽湿地土壤热通量对蒸散发的贡献最大,其次为净辐射;(3)不同下垫面水分消耗(The difference between ET and precipitation,IETP)变化特征说明高寒草甸和高寒沼泽湿地下垫面都以水分消耗为主,IETP占比分别为69%和80%。  相似文献   

8.
非参数化蒸散发估算方法在黑河流域的适用性分析   总被引:1,自引:0,他引:1  
陆面蒸散发是水循环过程中的重要组成部分,直接关系到地表的能量和水量平衡。基于哈密顿原理的非参数化蒸散发估算方法能够避免复杂的参数化过程,降低计算过程的不确定性。首先,利用非参数化方法估算了黑河流域不同下垫面的蒸散发,并利用地面观测数据进行了验证,分析了非参数化方法在不同下垫面和不同季节的适用性。对不同下垫面的验证结果表明,在湿润下垫面该方法会低估实际蒸散发,在干旱下垫面会高估实际蒸散发;对不同季节的验证结果表明,夏季蒸散发估算精度明显优于冬季。其次,进一步对非参数化方法进行了敏感性分析:在湿润下垫面,地表净辐射通量对估算结果影响较大;在干旱下垫面,地表净辐射通量和地表温度对非参数化估算方法结果影响较大。最后,利用非参数化方法结合遥感数据和大气驱动数据估算了黑河流域中上游的区域蒸散发,并利用地面观测数据结合足迹模型进行了验证,分析了非参数化方法估算区域蒸散发的适用性,估算结果能够反映该区域地表通量的分布特征,但是与地面观测数据相比存在一定的误差,不同下垫面的均方根误差在50~100W·m~(-2)之间。  相似文献   

9.
蒸散发模型结合微气象数据模拟陆面蒸散发研究进展   总被引:1,自引:0,他引:1  
蒸散发是水循环和能量平衡过程中的重要组成部分。通过归纳总结蒸散发模拟研究中最常用的模型,汇总分析了各模型的结构、参数意义、适用条件、改进与应用等方面。结果表明:Penman(P)模型适用于计算潜在蒸散发;Penman-Monteith(P-M)模型没有区分土壤蒸发和植被蒸腾的不同过程,不适于计算稀疏植被蒸散发。对于模型中冠层阻力rc的估算,目前最常用的方法是基于Katerji-Perrier(K-P)模型和Todorovic(T)模型计算求出;Priestley-Taylor(P-T)模型虽然结构简单,但是通过对参数α进行校准,其模拟精度往往较高;Mc Naughton-Black(M-B)模型是基于冷杉林这一特定植被类型提出的,且未考虑空气动力学阻力(ra)对蒸散发的影响,因而该模型的应用受到限制;Shuttleworth-Wallace(S-W)模型适用于稀疏植被覆盖条件下的蒸散发模拟,近年来学者们通过对S-W模型进行改进,以期提高模型模拟精度。然而,模型结构及所需参数数量均未得到优化;改进的双源(S-S-W)模型与S-W模型相比,从模型结构及参数数量方面都得到了改进,但是其适用性目前还未得到广泛验证;Clumping(C)模型的结构极其复杂,所需参数很多,一定程度上限制了其应用。未来蒸散发模型的发展方向应该是针对不同的环境条件、植被类型和下垫面状况,以更高精度的测定仪器为前提,在原有的模型基础上进行修正,或者通过模型之间的耦合,提出结构更加简单、参数更少的模型。  相似文献   

10.
利用国际耦合模式比较计划第六阶段(CMIP6)多模式的模拟结果,对比观测和青藏高原冻土图评估各模式对当前(1985-2014年)青藏高原与冻土相关气候变量以及多年冻土的模拟能力,并应用多模式集合平均的方法预估了未来4个SSP情景下2021-2040年、2041-2060年、2081-2100年高原多年冻土的变化趋势。结果表明:CMIP6各模式都能够较好地模拟出与冻土相关气候变量的分布特征与趋势,但对于气温的模拟有着较为明显的冷偏差,对于积雪的模拟明显偏大;利用冻结数模型(SFI)计算的当前多年冻土分布与青藏高原冻土图有较好的吻合,1985-2014年的表面多年冻土面积约为134.52×104km2(包含湖泊和冰川面积);随着气温的升高,21世纪青藏高原多年冻土呈现区域退化的趋势,在SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5情景下,青藏高原东部、南部以及北部边缘地区多年冻土呈现区域性退化,至2041-2060年间多年冻土面积分别减少13.81×104 km2、19.51×1...  相似文献   

11.
玉米作为一种重要的粮食作物,其产量对于国家粮食安全的影响至关重要。该文结合遥感与地面实测气温数据,基于地表温度与气温具有显著的线性相关关系,构建我国夏玉米主产区高温热害评估模型,并对该模型进行精度检验。结果表明:平原区域日平均气温的模拟结果决定系数在0.8以上,达到0.001显著性水平,均方根误差在1.8℃左右的小范围内波动;平原区域精度略高,山区精度略低(均方根误差为2.4℃)。利用该模型对2008—2018年黄淮海夏玉米主产区高温热害进行评估,发现2017年和2018年夏玉米受高温热害影响最严重,高温热害区主要分布在河北省东南部、河南省大部以及山东省西部,该结果与实际情况相符。  相似文献   

12.
暴雨强度公式可通过给定不同的b、n参数,用最小二乘法对公式进行拟合,求解参数S、R,计算均方根误差σbn,最终将最小均方根误差所对应的b、n以及S、R确定为暴雨强度公式的参数。首先用优选法寻找b1值下整个n的取值范围内的最小均方根误差σb1,再寻找b2值下整个n的取值范围内的最小均方根误差如σb2;然后根据σb1和σb2的大小用优选法进一步确定b值的取值范围,直到达到所要求的精度。这样既不会漏掉、又能很快找到最小均方根误差%所对应的b和n值及其所拟合的S和R。  相似文献   

13.
采用水量平衡模型和Penman公式分别计算了珠江流域七个子流域1961—2000年实际蒸散发(I_(ETa))和潜在蒸散发(I_(ETp)),并对供水条件变化下I_(ETa)与I_(ETp)的关系进行了定量化分析,对各子流域I_(ETa)和I_(ETp)关系的理论从属性进行判定,主要结论如下:1)珠江流域年实际蒸散发量远低于潜在蒸散发量,多数子流域I_(ETa)值不到I_(ETp)值的1/2。7个流域面积加权平均I_(ETa)为681.4 mm/a,I_(ETp)为1 560.8 mm/a。从蒸散发的变异性来看,则实际蒸散发I_(ETa)的变异性明显要高于潜在蒸散发I_(ETp)。2)东江、西江、北江、柳江和盘江等5个流域实际蒸散发I_(ETa)都与降水量呈现正相关关系,韩江、郁江两个流域I_(ETa)随降水变化的变化趋势不明显。各子流域的潜在蒸散发I_(ETp)与降水量呈现显著负相关关系。7个子流域平均情况下,随着降水量的增加,I_(ETa)呈现明显的增加趋势,而I_(ETp)呈现明显的下降趋势。3)通过对降水量P与实际蒸散发I_(ETa)及潜在蒸散发I_(ETp)的联合回归方程P-IET回归系数的T检验,判定韩江、柳江和盘江等三个子流域以及七流域面积加权平均I_(ETa)与P和I_(ETp)与P的关系满足理论意义上的严格互补相关;东江、西江、北江等三个流域I_(ETa)与P和I_(ETp)与P的关系满足"非对称"互补相关。4)基于极端干旱和极端湿润的边界条件,推导出非对称条件下的实际蒸散发互补相关理论模型。  相似文献   

14.
利用区域气候模式RegCM3以及考虑作物生长过程的耦合模式RegCM3_CERES对东亚区域进行20年模拟,研究作物生长对流域水文过程与区域气候的影响。结果表明:考虑作物生长过程的耦合模式模拟海河流域、松花江流域、珠江流域多年平均降水效果明显改进,在除黑河流域外的各流域模拟的温度负偏差有所减小,其中在海河流域、淮河流域的夏季改进尤为明显。各流域夏季(6、7、8月)月蒸散量最高,其中长江流域、海河流域、淮河流域、珠江流域的夏季月蒸散量基本上在100 mm左右,并且七大流域蒸散发的季节变化趋势跟总降水基本一致。多数流域考虑作物生长过程的耦合模式模拟得出蒸散发减少且进入的水汽增加,导致局地水循环率减小;黑河流域与黄河流域降水有所增加,其他流域均有不同程度的减小。针对长江流域,比较耦合模式RegCM3_CERES与模式RegCM3模拟结果显示,叶面积指数减少1.20 m2/m2,根区土壤湿度增加0.01 m3/m3,进而导致潜热通量下降1.34 W/m2(其中在四川盆地地区减少16.00 W/m2左右),感热通量增加2.04 W/m2,从而影响到降水和气温。  相似文献   

15.
以1981—2010年河南省113个气象观测站影响冬小麦生长及产量形成的主要气象因素为区划指标,利用K均值聚类算法,将河南省划分为5个农业气候生态区。根据2013—2017年地面农业气象观测数据,利用Sobol全局敏感性分析方法,各分区选择总敏感指数大于0.01的作物参数,得到9种敏感参数。以产量与叶面积指数为代价函数,采用差分进化马尔科夫链蒙特卡洛方法对敏感参数进行分区标定,并使用2018—2019年观测数据进行验证。结果表明:分区进行参数标定时,叶面积指数动态模拟精度和产量模拟精度均显著优于使用默认参数或整个研究区使用同一套优化参数时的精度,其中,使用分区调参后验平均值模拟关键生育期叶面积指数的总均方根误差为0.655,其模拟产量的均方根误差为672.016 kg·hm-2。该方法将农业气候学知识与差分进化马尔科夫链蒙特卡洛优化算法相结合,通过合理、高效地分区域标定作物模型参数,可为作物模型区域应用和模型参数调整优化提供科学依据。  相似文献   

16.
不同初始值对多年冻土水热过程的模拟有着深刻的影响。本文利用青藏高原三江源多年冻土区西大滩站观测数据,驱动通用陆面模式CLM4.5(Community Land Model version 4.5)对该站多年冻土进行为期14个月的模拟研究。设计三组试验,检验CLM4.5模式对多年冻土模拟性能,探究不同初始土壤温度、液态水含量以及含冰量对模拟结果的影响,并对土壤初始含冰量的计算进行改进,提高了模式对多年冻土水热过程的模拟。通过对比土壤含冰量模拟值,液态水含量和土壤温度观测值与模拟值,结果表明:(1)初始土壤温度、液态水含量会通过影响初始土壤含冰量进而影响CLM4.5模式对多年冻土水热过程的模拟。(2)CLM4.5默认初始土壤温度、液态水含量时,计算出的初始含冰量为0 m3·m-3,这使得模式不能准确模拟出多年冻土的特征。在2015年11月上旬至2016年8月上旬土壤含冰量大于0.01m3·m-3,其余时段土壤含冰量几乎为0 m3·m-3;整层土壤液态水含量从冬...  相似文献   

17.
采用1961—2010年松花江流域60个气象站逐日资料,基于平流-干旱模型(AA模型)计算并分析了流域实际蒸散发时空变化特征,采用相关分析方法研究了影响实际蒸散发变化的主要气象要素。结果表明,1961—2010年,松花江流域年均实际蒸散发为420.8 mn,总体呈现增加趋势,增加速率为4.9 mm/10a,呈"减-增-减-增"年代际波动变化。季节上,春、冬两季实际蒸散发增加趋势较明显,夏、秋两季则呈现与年实际蒸散发类似的年代际波动。春、夏、秋三季和年实际蒸散发的空间分布特征基本一致,高值主要出现在流域南部,低值区主要分布在流域西部。冬季绝大部分区域的实际蒸散发呈现微弱上升趋势。1961-2010年,松花江流域年和四季的平均气温、最高气温和最低气温都呈上升趋势,其中平均气温和最低气温上升显著,日照时数和风速大都呈现显著下降趋势。相关分析结果表明,松花江流域实际蒸散发的时空变化是各气象要素共同影响的结果,而且各气象要素在不同时期对实际蒸散发的影响是有差异的。总体上看,松花江流域实际蒸散发的增加主要是由平均气温,特别是最低气温的增加引起,特别在春、冬季体现得较为明显。夏、秋季节,影响实际蒸散发的要素包括气温日较差、实际水汽压、平均风速及降水量等气象要素,但夏、秋季节这些要素的多年变化趋势不明显,导致夏、秋实际蒸散发的总体变化趋势并不明显。  相似文献   

18.
利用区域气候模式RIEMS产品分析日蒸散量及其影响   总被引:1,自引:0,他引:1  
利用区域气候模式RIEMS输出的各种气象参数,采用了BEF等4种不同方法计算了沂沭河上游流域的潜在蒸散量,并与该流域6个气象站实测蒸发数据计算的陆面潜在蒸散量进行了比较。结果表明,根据平均偏差、平均绝对偏差、均方根差和相关系数指标的综合判断,该4种方法的估测精度从高到低依次为双线性曲面回归经验函数法(BEF)、Hargreaves-Samani(Harg)法、Pristley-Tayler(P-T)法和Penman-Monteith(P-M)法。在时间序列上,4种方法计算的逐日蒸散量与观测值呈相同的变化趋势,但计算值在蒸散发最强、最弱和降水最多、气温最高的7-9月有较大差异。BEF法估测的精度最高,与观测值最接近,Harg法、P-M法和P-T法都有明显的偏高现象。BEF法只需要较少的参数就能得到较高的估测精度,因此可作为利用区域气候模式RIEMS产品计算沂沭河流域蒸散量的首选方法,进而为RIEMS模式中耦合的陆面水文过程模型TOPX提供满足精度要求的日蒸散量驱动参数。  相似文献   

19.
近几十年来,随着全球气候变暖,青藏高原降水整体呈现增加趋势,气候暖湿化趋势明显;与此同时,位于青藏高原东南缘的中国西南地区整体上呈现暖干化趋势,干旱事件频发。探讨青藏高原及其周边地区降水的水汽来源变化、揭示降水趋势性变化的原因已经成为当前研究热点。本文评述了近年来青藏高原降水的水汽来源研究,重点关注青藏高原变湿、西南地区变干的水汽来源变化原因以及青藏高原南北水汽来源差异,讨论了尚未解决的科学问题,展望了未来研究方向。现有研究表明,青藏高原以西的西风带控制区蒸散发贡献的水汽整体呈现减少趋势,青藏高原以南和以东的季风控制区蒸散发贡献的水汽整体呈现增加趋势,上述水汽源区贡献变化导致了青藏高原及其周边不同区域降水趋势性变化的差异。展望未来,水汽来源分析的模型和数据需要进一步验证及减少不确定性,青藏高原下垫面和蒸散发变化对周边地区降水的影响机制研究有待加强,全球变化与青藏高原降水水汽来源变化的关系尚需深入分析。  相似文献   

20.
基于SWAT模型的汉江流域径流模拟   总被引:1,自引:0,他引:1  
夏智宏  周月华  许红梅 《气象》2009,35(9):59-67
应用SWAT(Soil and Water Assessment Tool)分布式水文模型对汉江流域1971-2000年30年逐月径流进行了模拟.结果表明:模型模拟精度高于评价标准(模拟效率Ens>0.5,相关系数r 2>0.6),SWAT模型适用于汉江流域的径流模拟;水量平衡各要素中,30年月、年平均蒸散发量、地表径流量、土壤对地下水补给量、土壤含水变化量、地下水侧流量分别占降水量的55.97%、25.88%、17.64%、0.26%、0.25%,蒸散发是该流域水量的主要输出项;各月30年平均降水量变化趋势与地表径流量变化趋势较一致,而与基流量变化趋势一致性较差;30年流域降水量年变化趋势与地表径流量、基流量的变化趋势较一致;30年月、年地表径流量对降水的响应程度高于基流.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号