首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The development of the boundary layer during a cold air outbreak in the FramStrait is documented by aircraft measurements. The convection was organisedinto roll vortices with aspect ratios increasing from 2.9 near the ice edgeto more than 6 at 100 km further downstream. This increase coincides with anincrease of the latent heat release in the cloud layer. The stability parameter-zi/L varies from about zero at the ice edge to 30 at a distance of 200 kmdownstream over open water where the satellite picture still shows cloudstreets. The increase is mainly due to the deepening of the boundary layer.The turbulent vertical sensible and latent heat fluxes near the surface amountto 400 W m-2 within a 300 km off-ice zone. 25% of the upward heat fluxin the subcloud layer is carried out by organised roll motions. Experimentswith a 2-dimensional non-hydrostatic model show a similar roll aspect ratio inthe first 50 km, but further downstream where condensational heating is moreimportant the modelled roll wavelengths are distinctly smaller than the observedones.  相似文献   

2.
During the field experiment ARKTIS 1993 ten cases of boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice in the Spitsbergen region were observed by aircraft over a distance ranging from about 50 km over the ice to about 300 km over the water. The modification depends decisively on the initial conditions over the ice, the boundary conditions at the bottom and top of the boundary layer and on the conditions of the large-scale flow. The modification of the bulk boundary-layer characteristics in relation to these conditions is presented.Besides the air-sea temperature contrast, the most important role for the boundary-layer modification is played by the stability on top of the boundary layer and by the divergence of the large-scale flow. According to the high variability of these conditions the observed boundary-layer modifications were very variable ranging from 100 to 300 m thick boundary layers with air temperatures between -32 and -22 °C over the ice to thicknesses between 900 and 2200 m and air temperatures between -15 and -5 °C after 300 km fetch over the open water. In most cases the large-scale flow was anticyclonic and divergent over the ice and changed to cyclonic and convergent over the water and an ice-sea breeze was superimposed on it.The sensible and latent heat fluxes are the dominant terms in the surface energy budget over the open water and ranged between 200 and 700 W m-2 whereas the net longwave radiation is the dominating term over the ice with the heat fluxes only about 10 W m-2.  相似文献   

3.
为选择飞机人工增雨的作业区和作业时机,利用中尺度模式、加密探空和PMS粒子探测系统的资料,分析了江淮气旋冷锋共同影响降水过程中的宏微观结构、适宜冷云云中冰晶增长的区域和可播区。结果表明,可以在降水前的水汽由低层向高层输送和冰晶增长区由高层向低层传播的过程中选择作业时机,在上升速度区、-10℃层云水高值区和冰水转化区等区域中选择作业区。  相似文献   

4.
A moderate cold air outbreak from the Arctic ice over the warm West-Spitsbergen current on 15 and 16 May 1988 during the field experiment ARKTIS '88 is analysed using data from four aircraft and one research vessel.The downstream development of cloud coverage appears to depend sensitively on the moisture content above the inversion. The cloud amount determines the energy balance at the sea surface. Under daytime conditions and little cloud cover, energy is added to the ocean in spite of sensible and latent heat losses.The downstream temperature increase in the boundary layer is controlled by sensible heat flux and by longwave radiation cooling. The entrainment sensible heat flux is the dominating term in the region near the ice edge. The downstream moisture increase is controlled by surface evaporation. Condensation processes play no significant role.On 16 May 1988 cloud streets near the ice edge changed to closed cloud meanders in the downstream direction. The aspect ratio increased from 3 to around 10 over a distance of 200 km. In the cloud street region, the dynamical generation of turbulent kinetic energy due to wind shear at the tilted inversion was larger than the thermal generation.Cloud droplet concentration, mean droplet radius and liquid water content increased linearly with height. The maximum liquid water content was only 0.1 g/kg near the top of a 400 m thick closed cloud and clearly below the adiabatic value. The net longwave radiation flux decreased by 50 W/m2 at cloud top and increased by 13 W/m2 at cloud base.  相似文献   

5.
We report the characteristics of the three-dimensional, time evolving, atmospheric boundary layer that develops beneath an idealised, dry, baroclinic weather system. The boundary-layer structure is forced by thermal advection associated with the weather system. Large positive heat fluxes behind the cold front drive a vigorous convective boundary layer, whereas moderate negative heat fluxes in the warm sector between the cold and warm fronts generate shallow, stably stratified or neutral boundary layers. The forcing of the boundary-layer structure is quantified by forming an Eulerian mass budget integrated over the depth of the boundary layer. The mass budget indicates that tropospheric air is entrained into the boundary layer both in the vicinity of the high-pressure centre, and behind the cold front. It is then transported horizontally within the boundary layer and converges towards the cyclone’s warm sector, whence it is ventilated out into the troposphere. This cycling of air is likely to be important for the ventilation of pollution out of the boundary layer, and for the transformation of the properties of large-scale air masses.  相似文献   

6.
一次回流型降雪过程的成因和相态判据分析   总被引:1,自引:0,他引:1  
杨晓君  张楠  陈宏  韩婷婷 《气象科技》2019,47(1):98-105
利用常规高空和地面观测资料、天津铁塔和雷达资料、全球资料同化系统(GDAS)分析资料、雷达变分同化分析系统资料、EC和NCEP再分析资料对2016年11月20—21日天津初雪天气进行成因分析,结果表明:本次过程是在高空槽和回流冷空气共同作用下产生的,主要水汽来源为对流层中低层槽前西南暖湿气流和回流东风,回流东风经渤海低空运行时吸收水汽由"干冷"变为"湿冷";动力条件主要来自回流冷垫的动力抬升作用,降水期间回流东风层厚度由1.5km增加至2km;锋面上的非地转次级环流可将回流东风水汽向上输送成为降水原料,同时可加强其上暖湿空气的垂直上升运动;高空云水粒子向云冰粒子的转换和边界层回流冷空气加强对本次雨雪相态转换是不可或缺的,回流冷空气北风分量风速和厚度陡增、800~950hPa出现均温层、云冰粒子陡增并向低空延伸、700~850hPa与850~1000hPa厚度的变化特征对雨雪相态的判别均有较好的指示作用。  相似文献   

7.
The formation mechanism of a cold sea-fog case observed over the Yellow Sea near the western coastal area of the Korean Peninsula is investigated using numerical simulation with a one-dimensional turbulence model coupled with a three-dimensional regional model. The simulation was carried out using both Eulerian and Lagrangian approaches; both approaches produced sea fog in a manner consistent with observation. For the selected cold sea-fog case, the model results suggested the following: as warm and moist air flows over a cold sea surface, the lower part of the air column is modified by the turbulent exchange of heat and moisture and the diurnal variation in radiation. The modified boundary-layer structure represents a typical stable thermally internal boundary layer. Within the stable thermally internal boundary layer, the air temperature is decreased by radiative cooling and turbulent heat exchange but the moisture loss due to the downward vapour flux in the lowest part of the air column is compensated by moisture advection and therefore the dewpoint temperature does not decrease as rapidly as does the air temperature. Eventually water vapour saturation is achieved and the cold sea fog forms in the thermal internal boundary layer.  相似文献   

8.
A warm on-ice air flow from the open water over the Arctic sea ice in the Fram Straitwas, for the first time, systematically measured on 12 March 1998 by aircraft in thelowest 3 km over a 300-km long distance. The air mass modification and the processesinvolved are discussed.Over the water, air temperature was lower than water temperature so that a convectiveboundary layer (CBL) was present as initial condition. As soon as the CBL passed theice edge, a shallow stable internal boundary layer (IBL) was formed. In the residual CBL, turbulence and pre-existing convective clouds dissolved within about 20 km. Within about the same distance, due to the transition from unstable to stable stratification, the influence of surface friction increased in the IBL and decreased above the IBL with consequent generation of a low-level jet at IBL top. The IBL was strongly stratified with respect to both temperature and wind. The wind shear was around 0.1 s-1 so that the Richardson number in the IBL was subcritical and turbulence was generated. The IBL top grew to about 145 m over 230 km distance. The growth of the IBL was not monotonic and was influenced by (a) inhomogeneous ice surface temperatures causedby both different ice thickness and changes in the cloud conditions, and (b) leads in theice deck. At the front side of the on-ice flow, the air mass boundary between the warmair and the cold Arctic air was sharp (12 K over 10 km) at low levels and tilted withheight. Observations suggest that the stratified IBL was lifted as a slab on top of thecold air.  相似文献   

9.
Large vortices with scales ranging from hundreds meters to tens of kilometers are generallyfound in the atmospheric convective boundary layer(CBL).These vortices play important roles in the vertical transport of momentum,heat,water vaporand other tracers in the boundary layer.On the basis of the view of interaction between theconvection in CBL and the gravity waves in the upper stable layer the authors developed aconvection-wave theory on the formation of large vortices.According to the theory thewavenumber spectrum of the large vortices mainly depends on the atmospheric conditions in bothof the upper and lower layers,such as wind speed,wind direction shear,stratification as well astemperature jump.In the present paper satellite image and weather data in a case of cold air outbreak over warmocean are analyzed to study every stage of the convective processes,such as cloud street,convective cell as well as their transformation.According to the theory the wavenumbercompositions for cloud street and convective cell are calculated,respectively,on the basis of theatmospheric conditions at every stage.The distributions of vertical motions,convergent band anddisturbed interface are obtained and compared with the cloud patterns in the convective processes.Thus the study seems to offer a likely explanation for the origin of large vortices in CBL.  相似文献   

10.
Large vortices with scales ranging from hundreds meters to tens of kilometers are generally found in the atmospheric convective boundary layer(CBL).These vortices play important roles in the vertical transport of momentum,heat,water vapor and other tracers in the boundary layer.On the basis of the view of interaction between the convection in CBL and the gravity waves in the upper stable layer the authors developed a convection-wave theory on the formation of large vortices.According to the theory the wavenumber spectrum of the large vortices mainly depends on the atmospheric conditions in both of the upper and lower layers,such as wind speed,wind direction shear,stratification as well as temperature jump.In the present paper satellite image and weather data in a case of cold air outbreak over warm ocean are analyzed to study every stage of the convective processes,such as cloud street,convective cell as well as their transformation.According to the theory the wavenumber compositions for cloud street and convective cell are calculated,respectively,on the basis of the atmospheric conditions at every stage.The distributions of vertical motions,convergent band and disturbed interface are obtained and compared with the cloud patterns in the convective processes.Thus the study seems to offer a likely explanation for the origin of large vortices in CBL.  相似文献   

11.
利用2010年8月18日副热带高压后部层状云降水中山区层状云的飞机穿云观测资料,结合雷达、卫星云图及天气图等资料,详细分析了此次高后降水中山区层状云的宏观特征、微物理结构,并对降水形成机制进行初步探讨.结果表明:此个例由两层云构成,上层为冷云,下层主要为暖云;冷层粒子图像显示主要以板状为主,平板柱状、柱状和霰粒为辅,冰粒子的聚合体在整个冷层都有出现;降水形成机制为播种—喂养机制,冷云中观测到丛集和淞附现象,其中淞附现象主要发生在冷云的中下部靠近融化层附近.  相似文献   

12.
The three-dimensional nonstationary model of a convective cloud is used for investigating a thunderstorm with hail which developed over Pyatigorsk on May 29, 2012 and produced a severe hailstorm. The values of cloud characteristics (liquid water content, ice content, vertical velocity, etc.) are obtained. The importance ofconsidering wind shear is noted. The simulation results are used to analyze the transformation of precipitation field and the electric charge structure of the analyzed cloud during its development.  相似文献   

13.
Observations made on 8 and 9 May 1988 by aircraft and two ships in and around the marginal ice zone of the Fram Strait during on-ice air flow under cloudy and cloud-free conditions are presented.The thermodynamic modification of the air mass moving from the open water to the ice over horizontal distances of 100–300 km is only a few tenth of a degree for temperature and a few tenth of a gram per kilogram for specific humidity. This is due to the small temperature differences between sea and ice surfaces. During the day, the ice surface is even warmer than the sea surface. The stably stratified 200–400 m deep boundary layer is often topped by a moisture inversion leading to downward fluxes of sensible as well as latent heat.The radiation and energy balance at the surface are measured as functions of ice cover, cloud cover and sun elevation angle. The net radiationR Nis the dominating term of the energy budget. During the day, the difference ofR Nbetween clear and overcast sky is only a few W/m2 over ice, but 100–200 W/m2 over water. During the night,R Nover ice is more sensitive to cloud cover.The kinematic structure is characterized by strong shears of the longitudinal and the transversal wind component. The profile of the latter one shows an inflection point near the top of the boundary layer. Dynamically-driven roll circulations are numerically separated from the mean flow. The secondary flow patterns have wavelengths of about 1 km and contribute substantially to the total variances and covariances.  相似文献   

14.
The modification of a relatively cold air mass over the warm water of Lake Michigan is studied by using a two-dimensional nonlinear mesoscale model. Considerable amounts of heat and water vapor are supplied from the water surface to the lower atmosphere by turbulent eddies. A convective mixed layer develops and grows toward the downwind region with stratocumulus clouds over the lake.The model simulates the warming and moistening of the mixed layer, the development of a boundary layer, the divergence and convergence of wind near the coastlines, and the turbulent fluxes.The model warming of the mixed layer across the lake was about 2.2 °K and the moistening of the mixed layer was about 0.8 g kg–1, which are comparable to 2.7 °K and 0.8 g kg–1 observed by Lenschow (1973). The convective boundary layer, which includes the cloud layer, subcloud layer, and superadiabatic layer near the water surface, is well simulated. The tilt of the inversion which coincides with the cloud top is also well reproduced. When a prescribed cooling rate is applied at the cloud top, stronger turbulence and a deeper cloud layer are generated. Without the cooling, the cloud is shallow and the shape of the cloud base is determined by surface conditions. The rise of the inversion is due to upward vertical motion, and deepening of the convective layer in the downwind region.  相似文献   

15.
大气对流边界层中的涡漩结构   总被引:4,自引:1,他引:4  
桑建国 《气象学报》1997,55(3):285-296
大气边界层中存在尺度从几百米到几十公里的大涡漩运动。它们在边界层中动量、热量、水汽等垂直输送中起重要作用。作者从边界层中对流和上部稳定层中波动相互作用的观点,发展得出大涡结构的对流波动理论。根据此理论,大涡的波谱构成主要由上、下层大气中风向、风速、层结以及两层之间的温度跃变等因素决定。本文根据卫星云图和天气资料分析了一次冷空气爆发流经暖洋面上形成云街、对流单体以及它们之间的相互演化的过程,并用对流波动理论,依据各阶段的大气条件计算出它们的波数构成,并得出了垂直速度、辐合带、界面扰动的分布,解释了云街、对流单体的形成、结构及相互转化的原因  相似文献   

16.
An evolving convective Arctic planetary boundary layer (PBL) containing longitudinal roll vortices (rolls) was observed with aircraft data during the 1983 Marginal Ice Zone Experiment and the 1984 Arctic Cyclone Experiment.The PBL is observed to grow rapidly as the very cold and dry air flows off the ice over the relatively warm water. There is very large sensible heat flux, a result of the large surface-air temperature differences. Coherent structures were identified in these PBL's by use of power, coherence squared and phase spectra of the data. A systematic method of separating the rolls from organized thermal plumes was devised, based on theoretical characteristics for roll circulations and the resulting modified mean wind profile. The rapid mixing by the rolls aids in the establishment of equilibrium and an observed adiabatic modified mean Ekman layer. Rolls that form in a thermally neutral atmosphere over ice have different characteristics than those that appear in the unstable stratification over water. The rolls become increasingly more convective in character with distance from the ice edge. They have aspect ratios (wavelength/PBL height) that decrease with distance from the ice edge in agreement with linear theory. This is in contrast to the cloud street wavelength to inversion height ratio which is observed to increase downwind from the ice edge.  相似文献   

17.
一次西南涡特大暴雨的中尺度诊断分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用LAPS中尺度分析模式大气资料,对2008年7月一次西南涡暴雨过程进行天气学降水运动的中尺度诊断计算与分析。诊断计算包括:可降水量、层结不稳定能量、对流可降水量、水汽权重平均风速、水汽通量散度、云水、云冰总量及其通量散度和垂直速度与凝结函数降水率等。结果表明:“西南涡-切变线”系统的暴雨发生在暖湿气团与变性冷气团之间的中尺度风场辐合上升运动区,中尺度雨团发生在层结不稳定的暖湿气团一侧。计算的中尺度垂直运动与凝结函数降水率场,降水率为暴雨到特大暴雨。计算的水汽通量辐合降水率与凝结函数降水率不会完全重合,且水汽通量辐合既可致中尺度“雨”,又可成大尺度“云”,并且云水、云冰通量辐合/辐散,可解释为它们的“正”/“负”碰并增长,而碰并增长产生水凝物增量(降水率)也促成大暴雨。因此,在凝结函数降水率场中产生的中、小尺度对流雨团,加上水汽与云水、云冰通量辐合及其碰并增长,并且借助层结不稳定能量释放和可能产生的强迫“次级环流”及水汽与云水、云冰输送,是这次“西南涡-切变线”系统造成襄樊特大暴雨的天气学成因。  相似文献   

18.
During cold air outbreaks, cold and stably stratified air masses are advected from land or ice surfaces over a warmer sea surface. Due to the heating from below, a convective boundary layer develops. For small fetches, convection is organized in the form of horizontal roll vortices, which at greater distances join in a zone with open or closed cells. The formation of the convective boundary layer, and the associated roll vortices, is simulated with a numerical model and results are compared with observations obtained during the MASEX experiment off the east coast of the United States. To validate the model, a comparison with a one-dimensional mixed-layer model is also made, with special attention given to the exact representation of the observed initial and boundary conditions. Comparisons between model results and observations show good qualitative and quantitative correspondence in mean temperature and heat flux profiles respectively at different distances from the coast. Maximum values of vertical velocity are well reproduced. Turbulent kinetic energy is found to be concentrated in the small updraft regions of the rolls, which is in accordance with observations from the MASEX-experiment.  相似文献   

19.
The mesoscale weather prediction model ’Lokal-Modell’ (LM) of the Deutscher Wetterdienst is applied to the situation of an Arctic cold air outbreak in the Fram Strait region in April 1998. Observations are available from a flight along 50E carried out during the ARTIST campaign. Initial and time-dependent boundary data for the simulation are taken from a larger scale operational model system. Using the standard configuration of LM, the simulation reproduced the propagation of cold air and the characteristic structure of the atmospheric boundary layer (ABL) in fair agreement with the observations. However, a detailed comparison revealed three basic problems. Firstly, there is evidence that the available data on sea-ice conditions were insufficient approximations to the true state for several reasons. A modification of the sea-ice data towards observations revealed that parts of the discrepancies were due to the original sea-ice data. Secondly, a control run with the model in its standard configuration shows an insufficient warming of the ABL downstream of the ice edge due to underestimation of surface heat fluxes. A simple modification of the approach for the scalar roughness length resulted in the strongest benefit, while comparative studies showed only a slight sensitivity to different types of parametrisation of turbulent mixing or the inclusion of an additional moist convection parametrisation. Thirdly, in all the simulations the deepening of the convective ABL downstream of the ice edge is weaker than observed. This may be partly due to the thermal stratification above the ABL in the analysis data, which is more stable than observed; but it may also be a hint to the fact that processes near the inversion are insufficiently parametrised in mesoscale models with resolutions as used in LM. The simulated cloud layer in the convective ABL is similar to that observed with respect to condensate content, a sharply defined cloud top, a diffuse lower bound, and continuous light precipitation.  相似文献   

20.
A two-dimensional numerical model is used to study the influence of small non-precipitating clouds on horizontal roll vortices in the planetary boundary layer. The model explicitly represents the large-scale two-dimensional motions whilst small-scale eddies are parameterized by a buoyancy dependent mixing-length hypothesis. It is applied to conditions corresponding to an observed case of cloud street formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号