首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 312 毫秒
1.
云粒子成像仪(Cloud Imaging Probe, CIP)和降水粒子成像仪(Precipitation Imaging Probe, PIP)在云微物理和人工影响天气的观测研究中具有重要的作用。受限于仪器的成像测量原理,CIP和PIP所测云微物理数据质量因伪粒子的影响而降低,因此,急需一款能够对仪器所测数据进行订正的软件以满足云微物理分析的数据质量要求。在对测量过程中影响仪器测量准确性因素分析的基础上,提出了一套可提高仪器测量数据准确性的方法。利用LabVIEW图像化编程语言,编写出了一款可处理CIP和PIP图像数据的软件,可满足对CIP和PIP所测数据的质量控制要求。利用所开发的软件对2010年4月20日一次降水性层状云的飞机探测资料进行处理,获取了整个降水性层云的垂直结构特征与粒子谱的变化特征,表明本软件有助于云降水微物理的研究。  相似文献   

2.
机载光阵探头探测时,云粒子(液态和固态)进入二维光阵探头的采样区前,会因与探头探测臂发生机械碰撞,或者与探头外壳产生的湍流和风切变相互作用而破碎。破碎程度与粒子类型、大小、粒子密度、探头入口设计以及飞行空速等有关。利用2008年7~9月探测飞机(Y-12)在山西省太原地区的航测资料并对飞机采样期间的云粒子破碎现象进行介绍和分析,分析结果表明,粒子到达时间间隔分布具有双模态特征:长时间模态是粒子空间分布的真实结构,短时间模态则是云粒子破碎的结果。提出用粒子到达时间间隔阈值作为粒子破碎的判定标准,给出适用于2008年太原地区航测资料的粒子破碎识别阈值,其中适合于探头云粒子成像仪(CIP)的阈值是2×10-5 s,而探头降水粒子成像仪(PIP)的阈值是1×10-4 s。所提的阈值对于以Y-12为机载探测平台,以CIP和PIP探头为探测仪器所获取的其它航次云微物理图像资料的粒子破碎处理也是有一定的参考使用价值。  相似文献   

3.
基于历史航测数据,对Holroyd云粒子形状分类方法的阈值进行了改进,使得改进阈值后的Holroyd云粒子形状分类方法更适合机载云粒子成像仪(Cloud Imaging Probe, CIP)在我国华北地区所测冰晶粒子形状识别。将改进阈值后的方法应用于山西一次降水性层状云的飞机观测资料分析发现,此次降水性层云中无论在水平分布还是垂直分布上,出现频率在15%以上的冰晶粒子形状有4种,其中有3种较为固定,分别是霰、线形状和不规则状,另外一种形状则与具体的云内环境有关,垂直方向上不同温度区间内为枝状(?8~0°C)和微小状(?12~?8°C),不同高度的水平方向上则是枝状(5200 m)、微小状(5500 m)和板状(5800 m);云中冰晶粒子数浓度在水平和垂直方向上波动较大,最小值小于1 L?1,最大值则大于20 L?1,垂直方向上的最大值分别位于每层云中的下部;云中冰水含量值在水平方向和垂直方向上波动范围也很大,其在垂直方向上的云中最大值区域与冰晶粒子数浓度的最大值区域基本一致。  相似文献   

4.
改进的Holroyd云粒子形状识别方法及其应用   总被引:1,自引:0,他引:1  
黄敏松  雷恒池 《气象学报》2020,78(2):289-300
云降水粒子形状是影响云微物理过程的重要因素,准确的云粒子形状信息是诸多云微物理参量计算的前提。为获取机载云粒子成像仪(CIP)所测云粒子的形状信息,文中提出了一种改进的Holroyd云粒子形状识别方法,即先对云粒子形状进行预分类,然后针对预分类后的完整粒子和可识别的部分状粒子,分别选出合适的参数及其阈值再进行具体的分类,最终可将云粒子分为微小状、线形状、聚合状、霰、球形、板状、不规则和枝状。利用实测数据对原始的Holroyd方法和改进的Holroyd方法进行识别效果对比验证。结果表明改进的Holroyd方法在云粒子形状识别的准确度方面比原Holroyd方法有较大的提高。将所提方法应用于太原地区一次降水性层状云的云微物理飞机观测资料以分析不同的降水阶段云中冰晶粒子的形状分布、增长机制、冰晶粒子数浓度以及冰水含量的垂直分布特征,所获取的云中冰晶粒子属性表明新提出方法有助于云微物理分析。   相似文献   

5.
黄敏松  雷恒池 《大气科学》2021,45(2):369-378
由层状云和镶嵌在层状云中的对流单体组成的积层混合云系是一种重要的降水系统,为研究云粒子破碎对积层混合云系中对流较强区域和层云区域中的云微物理参量测量影响的差异,本文提出了一个时变阈值的破碎粒子识别方法,并利用该方法研究了破碎云粒子在层云区域与对流区域对云微物理参量测量影响的异同。经研究发现破碎粒子对粒子谱影响在小粒径端(500 μm以下)和大粒径(1000 μm以上)两端都存在,其中在层云区,破碎粒子在小粒径端的主要影响位于300 μm以下,而在对流云区,主要影响的小粒径段位于500 μm以下。就整体平均而言,破碎粒子对对流云区粒子谱的影响要比对层云区的影响高出20%以上。在粒子数浓度测量上,破碎粒子对整个层云区粒子数浓度影响的平均值是4.56倍,对整个对流云区粒子数浓度影响的平均值是8.47。与层云区相比,破碎云粒子对对流云区的粒子数浓度影响更大,其影响程度就平均而言接近2倍的关系。在冰水含量测量上,破碎粒子对整个层云区冰水含量测量影响的平均值是1.34倍,对整个对流云区冰水含量测量影响的平均值是1.74倍。与层云区相比,破碎云粒子对对流云区的冰水含量测量影响大约增加了30%。  相似文献   

6.
黄敏松  雷恒池 《气象科技》2015,43(6):1060-1064
利用机载云降水粒子成像仪进行飞机入云观测是云微物理研究的一种重要探测手段。机载云降水粒子成像仪对所采集到的云粒子图像信息先进行压缩处理后再传入电脑进行存储。后续的粒子图像信息回放,需要借助专门的软件才能实现,为实现对云降水粒子图像信息的回放,在分析云降水粒子图像数据格式的基础上,利用图形化语言LabVIEW编写了粒子图像数据的解压缩程序,并采用消息队列和JKI状态机的组合形式进行软件架构的系统设计,最终开发出云降水粒子图像回放软件。该软件可实现对云降水粒子成像仪的粒子图像数据进行读取与显示,还可对粒子图像信息进行提取和存储,可辅助云降水物理的研究。  相似文献   

7.
利用2019年5月20日机载DMT和SPEC粒子测量系统获取的飞机云微物理探测资料,结合高空、地面、卫星云图产品等常规气象数据,分析了东北冷涡在发展成熟期的云宏微观结构特征。结果表明:飞机探测区域为冷性层积混合云,云水充沛。云粒子探头(CDP)和二维云粒子图像探头(CIP)探测到的最大粒子数浓度分别为362.10cm~(-3)、191.08L~(-1),液态含水量变化范围为0~0.88g/m~3;CDP粒子谱呈指数型下降,谱宽较窄;CIP粒子谱呈双峰结构。云粒子图像探测仪CPI表明,层积云上部主要为冰雪晶粒子,以冰晶的核化和凝华增长为主;中上部粒子主要为小冰晶形态,也有冰晶聚合体和枝状冰晶;中下部是过冷水和冰晶粒子的共存区,过冷水较为丰富。  相似文献   

8.
高性能机载云粒子成像仪研制及应用   总被引:1,自引:0,他引:1  
机载云粒子成像仪是目前直接观测云中粒子谱分布和形状特征的关键设备,在云物理结构探测、遥感反演验证、数值模式云物理过程改进和人工影响天气等领域具有十分重要的作用。因此,针对现有进口仪器性能和应用方面的不足,开发更高性能的云粒子探测仪器十分必要。通过2011年启动的国家重大科学仪器设备开发专项—机载云粒子谱仪与成像仪研制项目,研制出国产高性能机载云粒子测量系统。经过多年的研制和反复测试,解决和显著改进了激光光束均匀化、弱信号探测、多路并行处理及微粒消衍射等关键技术,从而提高了探测器像元的光功率均匀性和一致性,使光斑区域内平均光功率密度提高约3倍,从而改进了粒子成像能力。采用更高分辨率国产光电线阵探测器,测量响应时间明显缩短,对小云粒子的探测能力明显提高。研制的仪器通过一系列基础参数测试、系统优化、环境适应性实验和累计60多架次的飞行测试。对2018年11月5日进行的两架次对比探测结果的初步分析表明,新研制的云粒子成像仪对小粒子浓度的测量精度较进口仪器提高一个量级左右,测量数据起伏更小,稳定性更高,并且可正确获得更清晰可靠的云粒子形态特征。   相似文献   

9.
袁敏  黄敏松  段炼 《气象科技》2018,46(1):170-177
2014年3月12日利用机载粒子探头(DMT)对我国宜昌及周边地区的非降水云系进行了探测时发现了少量的飞机积冰,本文分析了积冰云层中云微物理量的分布特征。垂直平均分布表明,CAS、CIP和PIP粒子数浓度分别大于300个·cm~(-3)、1个·cm~(-3)和10~(-5)个·cm~(-3),粒子中值直径最大值分别为3μm、89μm和1389μm。谱分布表明,3650m高度重力碰并和凇附过程使得CIP和PIP粒子谱较宽,3650m以下谱宽较窄,粒子以凝结增长为主,大粒子和冰晶粒子主要是由高层下落造成。平飞观测统计表明,3350m的CAS和CIP粒子平均数浓度均大于3650m的值,但PIP粒子数浓度、粒子平均和最大中值直径则相反。平飞时间变化表明,3350m高度CAS粒子数浓度和直径大致呈反相关,3650m大云滴和冰雪晶粒子的数浓度和中值直径随时间波动较大。  相似文献   

10.
机载含水量仪是目前云中液态水含量唯一的探测仪器,其准确性直接影响人工增雨作业条件判别。基于2015年和2017年四川盆地南部开展的10架次飞机云物理探测试验,考察机载热线含水量仪LWC-100探测数据发现存在异常极大值、负值数量多等问题。通过分析DMT(Droplet Measurement Technologies)公司云粒子探头(cloud droplet probe,CDP)、云粒子图像探头(cloud imaging probe,CIP)、降水粒子图像探头(precipitation imaging probe,PIP)数据,提出对入云前的干功率进行重新计算的3种方法:方法1以CDP探头的不同粒子尺度分档为标准,不低于某一档尺度的粒子数浓度大于0记为入云;方法2以CDP的数浓度大于10 cm-3为入云判定条件;方法3以CDP,CIP,PIP 3种探头探测的粒子数浓度同时大于0记为入云。结果显示:3种方法均有效纠正液态水含量不为0的情况,负值数量也较探测数据明显减少。方法1以不小于5 μm的粒子数浓度大于0记为入云,校验计算得到的液态水含量以负值数量和大小作为评价依据较方法2和方法3更优。  相似文献   

11.
In recent years, the Cloud Imaging Probe (CIP) and Precipitation Imaging Probe (PIP) produced by Droplet Measurement Technologies (DMT) have been introduced by a number of meteorological research and operation centers in China. The supporting software provided by DMT, i.e., PADS (Particle Analysis and Display System), cannot output detailed information on each individual particle, which definitely limits the in-depth utilization of cloud and precipitation particle image data in China. In this paper, particle-by-particle information was extracted by decompressing the CIP and PIP original particle image data, based on which a new definition of the dimension for nonspherical particles is proposed by using the area of the convex hull enclosing a particle to obtain the equivalent diameter of a circle with equal area. Based on the data detected during one flight in Inner Mongolia, the particle size distribution obtained using the new particle size definition and that used by the other four existing definitions are compared. The results show that the particle number concentration calculated using different particle size definitions can vary by up to an order of magnitude. The result obtained based on the new particle size definition is closest to that calculated with the area-equivalent diameter definition.摘要 国内许多气象部门已引进美国DMT公司的云粒子图像探头 (CIP) 和降水粒子图像探头 (PIP) . 由于其配套软件不能输出逐个粒子的详细信息, 在很大程度上限制了对云降水粒子图像探测数据的深入挖掘. 通过解析CIP和PIP原始数据, 提出了一种基于包围粒子凸多边形的面积求取粒子尺度的新定义. 利用在内蒙古的一次航测数据, 对比分析了基于新定义及已有的四种粒子尺度定义求取的粒子尺度谱分布.  相似文献   

12.
利用机载云粒子探测设备入云进行观测是目前获取云粒子微物理特征最直接有效的手段。国内已有多家单位引进美国DMT(Droplet Measurement Technologies)公司的云粒子图像探头CIP(cloud imaging probe)。由于其配套软件不能输出逐个粒子的详细信息,在很大程度上限制了对云粒子图像探测数据的深入挖掘和分析。基于解析粒子图像原始数据,对粒子图像数据进行质量控制,并根据粒子形状几何特征将粒子形状分为8类(微小、线状、聚合状、霰状、球状、板状、枝状和不规则状)。利用2018年12月—2019年3月河南省3次冬季航测获取的灰度CIP探测数据,分析云粒子形状及各形状粒子面积的统计特征,并对比基于不同形状粒子的质量-尺度关系与将所有粒子视作球形液滴计算所得的粒子水凝物含量,发现后者超过前者约1个量级。  相似文献   

13.
利用云和降水探测设备(DMT-PMS)对一次层状云降水过程进行了探测。分析发现CAS(云及气溶胶粒子探头)在该弱降水云中测得的云粒子平均浓度大于FSSP在其他地区层状云中所测平均值,CIP(二维云粒子图像探头)与2D-C及2D-GA2所测冰晶粒子平均浓度接近,PIP(二维降水粒子探头)与2D-P所测降水粒子平均浓度相当。观测发现云区雪晶浓度与冰晶浓度呈正相关关系,在冰晶浓度〈10^4个/m^3时,雪晶、冰晶浓度之比与冰晶浓度为负相关关系;在冰晶浓度〉10^4个/m^3的时刻,雪晶、冰晶浓度之比不因冰晶浓度变化而变化。温度为-10~-12℃的云区云水条件丰富,有较多的冰晶在该层孕育;降水粒子在温度-7~-10℃的云区生长。温度为-5~-7℃的云区云水不丰富,降水粒子蒸发变小;温度为-4~-5℃的云区仅有少量的降水粒子。  相似文献   

14.
郭金平 《气象》1996,22(4):41-45
分析了1991-1993年人工降水期间共13个架次粒子测量系统(PMS)获取的冰、雪粒子的二维图像资料,分析了雪粒子的形态特征,重点分析霰粒子出现的频率及其尺度谱特征;并利用霰粒子的直径大小,在一定的假设条件下,估算了观测高度以上云中所包含的过冷水的累积含量;借以了解飞行层以上的的人工降水潜力状况。初步分析结果表明,不少架次的飞行过程都出现有持续时间不等的霰粒子,估算出的最大积分过冷水含水量为13  相似文献   

15.
范烨  郭学良  张佃国 《大气科学》2010,34(6):1187-1200
2004年8~9月利用机载粒子测量系统 (Particle Measuring System, 简称PMS) 对我国北京及周边地区的三次锋面云系进行了探测, 本文分析了三次降水性层积云中各种粒子的垂直、水平和谱分布。结果表明, 三次降水云系基本是冷锋或者暖锋系统下形成的层积混合云系。云内以直径5~9 μm、200 μm和400~1000 μm的云和降水粒子为主。9月14日暖锋层积云系的粒子浓度最大, FSSP-100 (前向散射粒子谱探头)、 GA2(二维灰度云粒子图像探头)、 GB2(二维灰度降水粒子探头)分别探测的最大粒子浓度为318.97 cm-3、0.03 cm-3、0.0065 cm-3。8月12日和8月15日的冷锋层积云系有多个干层。GA2探测的平均浓度谱基本为单峰分布, 并找出了合适的拟合函数。冷锋层积云系的负温云层中存在着相同浓度量级的过冷云水和雨水、霰粒、柱状和针状冰晶, 过冷水含量可达到0.26 g/m3, 暖锋云系中则以霰粒、结淞粒子和冰雪晶聚合体为主, 也存在少量柱状、针状冰晶和过冷水滴。与我国北方地区13架次飞行探测结果比较, 北京及周边地区2003年8月15日、2004年8月12日和9月14日层积云0 ℃层以上的冰雪晶粒子直径最大, 浓度居中, 过冷水含量因云系结构不同而变化较大。  相似文献   

16.
利用2009年5月8日多普勒雷达资料和飞机穿云观测资料,综合分析了西风槽影响下山西省一次积层混合云的形成过程和微物理结构。结果表明,此次飞机探测到的积层混合云是由对流单体多次并合形成的带状对流云团减弱后形成的,云中嵌有明显的对流泡,最大强度为45~50dBZ,最大垂直尺度在6km左右。CDP(cloud droplet probe,前向散射粒子谱探头)、CIP(cloud ima-ging probe,二维灰度云粒子探头)、PIP(precipitation imaging probe,二维灰度降水粒子探头)测量的平均数浓度变化范围分别是132.4~220.2cm-3、1.54×10-1~6.28×100cm-3、9.09×10-4~7.34×10-3cm-3。二维图像表明,冷层中的固态粒子主要是形状不规则的霰粒子,说明过冷水供应充足;在-7℃左右观测到柱状聚合体和凇附程度不同的冰雪晶粒子,表明柱状冰晶通过凝华形成后,碰并和凇附是其增长为霰粒子的重要机制。不同高度的CDP平均谱(2~50μm)存在一定的差异,因低层水汽凝结作用较强,2~18μm的云粒子数浓度基本随高度的增加而降低;因暖层中碰并效率低和冷层中小冰晶浓度随高度增加,24~35μm粒子数浓度随高度增加而增大。CIP平均谱(25~1550μm),除4100m为双峰谱外,其他高度均为单峰谱。PIP平均谱(100~6200μm),4450m高度处的粒子谱宽和数浓度最大,3200~4000μm之间出现大值区域,表明对流单体及周边区域为较大固态降水粒子的形成提供了良好的环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号