首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
基于肇庆市2014—2018年PM_(2.5)质量浓度数据,使用HYSPLIT模式计算肇庆市干季的后向气流轨迹,并应用聚类分析法、潜在源贡献因子分析和质量浓度权重轨迹分析方法评估PM_(2.5)污染物的外来输送特征和潜在源区。结果表明:(1)2015—2018年肇庆市PM_(2.5)污染维持在较高水平,2017—2018年PM_(2.5)污染略有加重趋势;(2)污染较重的月份主要在1—4和10—12月,1月PM_(2.5)污染最严重,而6月PM_(2.5)质量浓度最低,5、7和8月无PM_(2.5)污染超标;(3)全年PM_(2.5)日平均质量浓度与风速相关性最高,干季与风速的相关系数有所提高;(4)干季影响肇庆的气流有5条,其中超过1/2源自东北和偏北方向的气流,来自东北方向的气流轨迹对PM_(2.5)污染贡献最高,其次来自偏西方向绕过珠三角北部进入肇庆的轨迹和广东省内短距离输送的轨迹;(5)肇庆市干季PM_(2.5)外来输送潜在源区主要位于肇庆辖区内和珠三角中南部城市以及粤东、粤东北部分地区,其中佛山、珠海、中山、东莞、惠州、广州南部对肇庆PM_(2.5)质量浓度贡献均超过60μg/m;。  相似文献   

2.
利用东莞2014年12月—2015年2月地面风向、风速等气象要素、PM_(2.5)质量浓度等监测数据以及NOAA的NCEP/NCAR再分析资料,分析了极端PM_(2.5)质量浓度出现的天气类型。结果表明:东莞旱季极端PM_(2.5)质量浓度均出现在冷空气影响后,主要影响系统是减弱或变性的地面冷高压;该天气类型可以被划分为3种子类型:冷空气影响后、弱冷高压主体控制和冷空气影响末期;影响的气象因素主要有地面风切变线或辐合线、地面静小风状态、对流层低层弱的垂直风切变、较强的垂直逆温层和夜间稳定边界层。  相似文献   

3.
通过对2015年1—12月上海崇明岛崇南地区颗粒物(PM_(2.5)、PM_(10))浓度的连续监测,研究了PM_(2.5)、PM_(10)在不同季节的动态变化特征及与其他因子(SO_2、NO_2、O_3)的相关性,分析了风向风速和降雨对颗粒物浓度的影响。结果表明:崇明岛PM_(2.5)和PM_(10)浓度的季节变化明显,呈现冬季的春季的秋季的夏季的的特征,冬季PM_(2.5)和PM_(10)小时浓度均值分别为0.058 mg/m~3和0.085 mg/m~3,夏季PM_(2.5)和PM_(10)均值分别为0.034 mg/m~3和0.054 mg/m~3。PM_(2.5)和PM_(10)浓度分别与SO_2浓度和NO_2浓度显著正相关,与O_3显著负相关。全年来看,在西南风向时PM_(2.5)和PM_(10)浓度较高,这主要受该方向上游吴淞工业区、宝钢、石洞口电厂、罗店工业区等工业排放影响;从高浓度颗粒物(PM_(2.5)质量浓度≥0.115 mg/m~3)来向看,北和西北风向时出现高浓度颗粒物的频率最高,这主要是受到我国北方采暖季大气颗粒物输送过程对崇明岛区域的脉冲式污染影响所致;PM_(2.5)、PM_(10)实时浓度与相应的风速呈显著负相关。降雨量大于5 mm或持续3 h及以上的连续降雨对大气颗粒物起到显著的湿清除作用,降雨后PM_(2.5)和PM_(10)质量浓度分别降低了68.0%和66.9%,降雨时和雨后PM_(2.5)浓度为0.025~0.033 mg/m~3,均低于我国环境空气PM_(2.5)的一级浓度限值。  相似文献   

4.
利用2014—2016年宁波市镇海地区逐时气象观测资料和大气成分监测资料,对宁波地区霾天气的变化特征进行统计分析。结果表明:2014—2016年宁波地区霾天气小时出现频率为28.8%,湿霾出现频率为61.0%。近3 a宁波地区霾天气小时出现频率呈下降趋势,秋冬季(11月至翌年1月)霾天气小时出现频率较高,夏季(6—8月)霾天气小时出现频率较低;从日变化来看,霾天气小时出现频率峰值集中出现在上午09时和夜间20—23时。宁波地区重度霾的PM_(2.5)、PM_(10)颗粒物浓度为轻微霾的2.13倍和1.92倍,干霾颗粒物浓度高于湿霾,宁波地区霾天气的颗粒物组成较稳定,PM_(2.5)/PM_(10)比重为0.7左右。宁波地区颗粒物浓度与风速和降水量的相关性较好,春季和夏季风速与PM_(2.5)浓度的相关性较高,秋季和冬季风速与PM_(10)浓度的相关性较高;降水与PM_(10)浓度的相关性高于PM_(2.5)浓度。静稳天气时地面风速小易造成细颗粒物浓度的积累增长,冬季西北偏北风和东北风是影响宁波地区PM_(2.5)浓度变化的重要输送路径,当风向为西北风时,冬季和春季PM_(10)浓度增加明显。  相似文献   

5.
利用常规气象站地面观测资料、环境监测站污染物监测资料以及欧洲中心再分析资料等,对辽宁省一次秸秆燃烧引起的重污染天气过程进行分析,探讨不同城市间污染程度的差异及成因。结果表明:(1)此次重污染过程主要污染物成分为CO,PM_(2.5)质量浓度与CO和NO_2质量浓度的时间变化有很好的对应关系,能见度受PM_(2.5)质量浓度和相对湿度共同影响;(2)营口和盘锦前期1.0 mm以上的弱降水过程对污染物湿沉降作用明显,而其他城市降水量较小反而有利于污染物的吸湿增长;(3)重污染期间,地面至700 hPa高度的水平风速均接近4 m·s~(-1),大气层结稳定,逆温层明显,抑制了污染物的垂直扩散;(4)除锦州外,其他4市850 hPa和900 hPa高度间0℃左右的暖层长时间维持,可能为污染物颗粒表层水分相态的变化、碰并增长提供了有利的环境;(5)污染期间,吉林和黑龙江一带存在大量火点,大面积秸秆集中燃烧是下风向辽宁中部地区主要污染源,在有利于污染物积累的天气条件下,需要加强本地和外来污染源的控制。  相似文献   

6.
为了解成都市PM_(2.5)污染特征及其与地面气象要素的关系,利用环境空气质量监测资料和地面气象观测资料,分析了PM_(2.5)质量浓度的季节、月和日变化特征,并分不同空气质量等级分析空气质量与地面气象要素的关系。结果表明:PM_(2.5)质量浓度具有明显的季节、月和日变化特征,且成都市区6个监测站的变化趋势比较一致;成都市相对湿度较大,地面风速较小,约62%的样本分布在相对湿度80%~100%,约85%的样本分布在地面风速0~2 m·s~(-1),地面风速对成都市PM_(2.5)的水平输送、扩散、稀释不利;降水对PM_(2.5)的清除量随PM_(2.5)初始浓度、降雨持续时间和累积降雨量增加而增大。  相似文献   

7.
利用激光测风雷达2017年12月1日至2018年2月28日在兰州城区获取的风场资料,分析了兰州冬季风场结构特征,并通过聚类分析得到了冬季影响兰州地区的天气形势,分析了不同天气形势下的风场特征,在此基础上分析了局地环流主导下的风场和污染物浓度日变化特征及两者之间的相关性。结果表明,兰州2017年冬季低空水平风速整体较小,平均风向以偏东风为主;风场日变化特征明显,午后至傍晚水平风速大于其他时刻,03:00(北京时,下同)-08:00 250~650m维持偏西风,650m以上偏南风增加,其余时刻各高度均以偏东风为主。兰州地区受弱高压控制时,局地环流占主导,城区污染严重。各高度污染系数最大值对应的风向存在差异,200 m以上污染系数迅速减小,增加污染物的排放高度至200 m以上可有效减少近地面污染物浓度。  相似文献   

8.
利用WRF-Chem模式,模拟了2014年1月3—4日深圳市发生的一次冷锋前大陆高压脊影响下的重度霾污染天气过程的发生、发展及消散各阶段的温度场、风场、大气边界层以及污染物的三维结构特征,分析了PM_(2.5)时空变化特征及与气象环境场的关系,结果表明:(1)模式对该次重霾污染天气过程PM_(2.5)模拟值与实测值的相关性较好,能够较好地再现该次霾过程的污染物质量浓度场特征,但PM_(2.5)质量浓度整体略偏大;(2)PM_(2.5)质量浓度模拟结果表明,高质量浓度位于深圳中西部地区,中西部污染较东部严重,PM_(2.5)污染时段主要出现在20:00—02:00,与霾严重时段相吻合;(3)通过分析此次污染过程温度场、风场、大气边界层以及污染物的三维结构,首要污染物PM_(2.5)质量浓度的分布与大陆高压脊影响下造成的持续大范围弱北风、强下沉气流、较低的大气边界层以及逆温层有密切关系。持续弱北风和强下沉气流不利于污染物的水平和垂直扩散,较低大气边界层促进污染物在边界层内快速积累;逆温层的存在进一步抑制了大气垂直扩散能力,使得霾天气加剧。  相似文献   

9.
为深入了解晋城市颗粒物浓度时空分布特征,对晋城市2017年12月至2018年5月国控点、小型站和微型站PM_(2.5)及PM_(10)小时浓度数据进行收集整理,并进行空间插值分析和时间变化趋势分析及与气象监测数据的相关分析。结果表明:颗粒物浓度在冬、春季节具有明显差异,冬季PM_(10)与PM_(2.5)高值区主要位于东北部及东南小部分区域,春季PM_(10)高值区位于城区南部区域,PM_(2.5)高值区主要集中于城区。晋城市城区和郊区PM_(10)与PM_(2.5)月均浓度整体呈单峰型变化,PM_(10)在4月份最高(157.54±5.67μg·m~(-3)),PM_(2.5)在1月份最高(94.08±2.25μg·m~(-3))。冬季PM_(2.5)/PM_(10)平均为0.57,春季平均为0.45。颗粒物小时浓度的变化呈现单峰单谷的型式,冬季PM_(10)与PM_(2.5)小时平均浓度最高值均出现在10时,春季均出现在09时。监测期间晋城市PM_(10)与PM_(2.5)的小时浓度值与相对湿度有较高的正相关性(p0.01),与风速、风向有较高的负相关性(p0.01),与温度和气压的相关性较低。冬季,东北至正南风向时,PM_(10)与PM_(2.5)的浓度普遍高于西北风向时的浓度,对晋城冬、春季国控点颗粒物浓度贡献率最高的风向风速为东南偏南风向,风速在1 m/s以内。  相似文献   

10.
长时间序列空气质量数据和气象数据分析济南大气污染与气象条件关系的研究相对较少。利用2010-2016年济南市环境空气质量监测数据、气象再分析和观测数据,分析了济南市PM_(2.5)污染特征、PM_(2.5)浓度与2 m温度(T)、2 m相对湿度(RH)、10 m高度U和V风速(U和V)、10 m风速(WS)、K指数(K)、A指数(A)和边界层高度(BLH)的相关性、天气类型对PM_(2.5)浓度的影响,并基于逐步回归分析方法构建统计模型,利用解释方差量化气象条件对PM_(2.5)浓度变化的影响。分析发现,济南PM_(2.5)浓度存在显著的季节变化和年际变化特征,年均PM_(2.5)浓度呈下降趋势;近地面PM_(2.5)浓度与T、RH、K和A显著正相关,与WS和BLH显著负相关,U和V与PM_(2.5)浓度相关性不显著(p0. 05);不同天气类型对应的PM_(2.5)浓度均值存在显著差异;基于回归模型分析发现气象条件可以解释10%~40%的PM_(2.5)浓度逐日变化,气象条件的影响有明显的季节变化。  相似文献   

11.
基于来自于CMIP5中CESM模式的三种RCP情景下的气象场的降尺度模拟,应用区域空气质量模式系统RAMS-CMAQ模拟2045-2050年中国地区气溶胶浓度.三种RCP情景下气象场的降尺度模拟表明,与RCP2.6相比,在RCP4.5和RCP8.5下,华北和华南的近地表温度差减小,风速在华北和华南地区增加,在中部地区下降.RCP2.6情景下,模拟的2045年到2050年平均的PM 2.5浓度在华北平原,长三角的部分地区和四川盆地最高,约为40-50μg m-3,在中国中部和珠三角的部分地区约为30-40 μg m-3.与RCP2.6相比,在RCP4.5和RCP8.5下,PM2.5增加了4-12μgm-3,其中在RCP4.5和RCP8.5下,SO42-和NH4+的浓度增加,在RCP4.5下,NO3-浓度降低,在RCP8.5下,NO3-浓度升高,在RCP4.5和RCP8.5下,BC浓度变化很小,而OC浓度下降,其中在RCP8.5下,西南和东南部分地区的OC有所增加.不同的气溶胶物种浓度在RCP4.5和RCP2.6之间的差异以及RCP8.5和RCP2.6之间的差异具有相似的年度变化,这表明气候变化对不同物种的影响趋于一致.  相似文献   

12.
Surface ozone (O3) and fine particulate matter (PM2.5) are dominant air pollutants in China. Concentrations of these pollutants can show significant differences between urban and nonurban areas. However, such contrast has never been explored on the country level. This study investigates the spatiotemporal characteristics of urban-to-suburban and urban-to-background difference for O3 (Δ[O3]) and PM2.5 (Δ[PM2.5]) concentrations in China using monitoring data from 1171 urban, 110 suburban, and 15 background sites built by the China National Environmental Monitoring Center (CNEMC). On the annual mean basis, the urban-to-suburban Δ[O3] is ?3.7 ppbv in Beijing–Tianjin–Hebei, 1.0 ppbv in the Yangtze River Delta, ?3.5 ppbv in the Pearl River Delta, and ?3.8 ppbv in the Sichuan Basin. On the contrary, the urban-to-suburban Δ[PM2.5] is 15.8, ?0.3, 3.5 and 2.4 μg m?3 in those areas, respectively. The urban-to-suburban contrast is more significant in winter for both Δ[O3] and Δ[PM2.5]. In eastern China, urban-to-background differences are also moderate during summer, with ?5.1 to 6.8 ppbv for Δ[O3] and ?0.1 to 22.5 μg m?3 for Δ[PM2.5]. However, such contrasts are much larger in winter, with ?22.2 to 5.5 ppbv for Δ[O3] and 3.1 to 82.3 μg m?3 for Δ[PM2.5]. Since the urban region accounts for only 2% of the whole country’s area, the urban-dominant air quality data from the CNEMC network may overestimate winter [PM2.5] but underestimate winter [O3] over the vast domain of China. The study suggests that the CNEMC monitoring data should be used with caution for evaluating chemical models and assessing ecosystem health, which require more data outside urban areas.  相似文献   

13.
Estimating the impacts on PM2.5pollution and CO2emissions by human activities in different urban regions is important for developing efficient policies.In early 2020,China implemented a lockdown policy to contain the spread of COVID-19,resulting in a significant reduction of human activities.This event presents a convenient opportunity to study the impact of human activities in the transportation and industrial sectors on air pollution.Here,we investigate the variations in air quality attributed to the COVID-19 lockdown policy in the megacities of China by combining in-situ environmental and meteorological datasets,the Suomi-NPP/VIIRS and the CO2emissions from the Carbon Monitor project.Our study shows that PM2.5concentrations in the spring of 2020 decreased by 41.87%in the Yangtze River Delta(YRD)and 43.30%in the Pearl River Delta(PRD),respectively,owing to the significant shutdown of traffic and manufacturing industries.However,PM2.5concentrations in the Beijing-Tianjin-Hebei(BTH)region only decreased by 2.01%because the energy and steel industries were not fully paused.In addition,unfavorable weather conditions contributed to further increases in the PM2.5concentration.Furthermore,CO2concentrations were not significantly affected in China during the short-term emission reduction,despite a 19.52%reduction in CO2emissions compared to the same period in 2019.Our results suggest that concerted efforts from different emission sectors and effective long-term emission reduction strategies are necessary to control air pollution and CO2emissions.  相似文献   

14.
The regional air quality modeling system RAMS-CMAQ was applied to simulate the aerosol concentration for the period 2045–2050 over China based on the downscaled meteorological field of three RCP scenarios from CESM (NCAR's Community Earth System Model) in CMIP5. The downscaling simulation of the meteorological field of the three RCP scenarios showed that, compared with that under RCP2.6, the difference in near-surface temperature between North and South China is weakened and the wind speed increases over North and South China and decreases over central China under RCP4.5 and RCP8.5. Under RCP2.6, from 2045 to 2050, the modeled average PM2.5 concentration is highest, with a value of 40–50 µg m−3, over the North China Plain, part of the Yangtze River Delta, and the Sichuan Basin. Meanwhile, it is 30–40 µg m−3 over central China and part of the Pearl River Delta. Compared with RCP2.6, PM2.5 increases by 4–12 µg m−3 under both RCP4.5 and RCP8.5, of which the SO42− and NH4+ concentration increases under both RCP4.5 and RCP8.5; the NO3 concentration decreases under RCP4.5 and increases under RCP8.5; and the black carbon concentration changes very slightly, and organic carbon concentration decreases, under RCP4.5 and RCP8.5, with some increase over part of Southwest and Southeast China under RCP8.5. The difference between RCP4.5 and RCP2.6 and the difference between RCP8.5 and RCP2.6 have similar annual variation for different aerosol species, indicating that the impact of climate change on different species tends to be consistent.摘要基于来自于 CMIP5 中 CESM 模式的三种 RCP 情景下的气象场的降尺度模拟, 应用区域空气质量模式系统 RAMS-CMAQ 模拟 2045-2050 年中国地区气溶胶浓度.三种 RCP 情景下气象场的降尺度模拟表明, 与 RCP2.6 相比, 在 RCP4.5 和 RCP8.5 下, 华北和华南的近地表温度差减小, 风速在华北和华南地区增加, 在中部地区下降. RCP2.6 情景下, 模拟的 2045 年到 2050 年平均的 PM 2.5浓度在华北平原, 长三角的部分地区和四川盆地最高, 约为 40-50 µg m–3, 在中国中部和珠三角的部分地区约为 30-40 µg m–3. 与 RCP2.6 相比, 在 RCP4.5 和 RCP8.5 下, PM2.5增加了 4-12 µg m–3, 其中在 RCP4.5 和 RCP8.5 下, SO42–和 NH4+的浓度增加, 在 RCP4.5 下, NO3–浓度降低, 在 RCP8.5 下, NO3–浓度升高, 在 RCP4.5 和 RCP8.5 下, BC 浓度变化很小, 而 OC 浓度下降, 其中在 RCP8.5 下, 西南和东南部分地区的 OC 有所增加.不同的气溶胶物种浓度在 RCP4.5 和 RCP2.6 之间的差异以及 RCP8.5 和 RCP2.6 之间的差异具有相似的年度变化, 这表明气候变化对不同物种的影响趋于一致.  相似文献   

15.
China has implemented a series of emission reduction policies since 2013, and the concentration of air pollutants has consequently decreased significantly. However, PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) pollution still occurs in China in relation to the interannual variations in meteorological conditions. Considering that El Niño–Southern Oscillation (ENSO) is the strongest signal modulating the interannual variation in the atmosphere–ocean system, in this study the authors investigate the variations in PM2.5 concentrations in four megacity clusters of China during the winter season associated with four individual ENSO events from 2014 to 2021. Results show that the wintertime PM2.5 concentrations in the Beijing–Tianjin–Hebei and Fenwei Plain regions during El Niño years are higher than those during La Niña years, which can be explained by the anomalous southerly (northerly) winds during El Niño (La Niña) favoring PM2.5 accumulation (diffusion). In the Pearl River Delta region, PM2.5 concentrations decrease in El Niño relative to La Niña years owing to the enhanced water vapor flux and precipitation, removing more PM2.5 from the atmosphere. The comprehensive effects of wind and precipitation anomalies lead to the unpredictability of the impacts of ENSO on PM2.5 over the Yangtze River Delta region, which should be analyzed case by case.摘要2013年以来中国实施了一系列减排政策, 大气污染物浓度明显下降, 但由于气象条件的年际变化, 中国PM2.5 (空气动力学直径小于2.5 µm的颗粒物) 污染仍然存在. 厄尔尼诺–南方涛动 (ENSO) 是调节大气–海洋系统年际变化的最强信号. 本文研究了2014–2021年四次ENSO事件期间, 中国四个特大城市群冬季PM2.5浓度的变化. 结果表明, 在京津冀和汾渭平原地区, 由于厄尔尼诺 (拉尼娜) 期间的偏南风 (偏北风) 异常有利于 PM2.5 的积累 (扩散), 冬季PM2.5浓度在厄尔尼诺年高于拉尼娜年. 在珠三角地区, 由于厄尔尼诺冬季水汽通量和降水的增加有利于大气中PM2.5的湿清除, 冬季PM2.5浓度在厄尔尼诺年低于拉尼娜年. 在环流和降水异常的综合作用下, ENSO对长三角地区PM2.5浓度的影响难以预测, 应逐案分析.  相似文献   

16.
We present mobile vehicle lidar observations in Tianjin, China during the spring, summer, and winter of 2016. Mobile observations were carried out along the city border road of Tianjin to obtain the vertical distribution characteristics of PM2.5. Hygroscopic growth was not considered since relative humidity was less than 60% during the observation experiments. PM2.5 profile was obtained with the linear regression equation between the particle extinction coefficient and PM2.5 mass concentration. In spring, the vertical distribution of PM2.5 exhibited a hierarchical structure. In addition to a layer of particles that gathered near the ground, a portion of particles floated at 0.6–2.5-km height. In summer and winter, the fine particles basically gathered below 1 km near the ground. In spring and summer, the concentration of fine particles in the south was higher than that in the north because of the influence of south wind. In winter, the distribution of fine particles was opposite to that measured during spring and summer. High concentrations of PM2.5 were observed in the rural areas of North Tianjin with a maximum of 350 μg m–3 on 13 December 2016. It is shown that industrial and ship emissions in spring and summer and coal combustion in winter were the major sources of fine particles that polluted Tianjin. The results provide insights into the mechanisms of haze formation and the effects of meteorological conditions during haze–fog pollution episodes in the Tianjin area.  相似文献   

17.
对1960~2010年我国中东部地区霾日数的时空变化特征的分析结果表明:1)霾日数大值区主要分布在人口众多的四川盆地、北京-天津-河北地区、长江中下游地区以及广东-广西中部。2)季节变化上,霾日数冬季较多,其中北京-天津-河北地区中部和西南部、四川盆地和东北地区东部和南部等地超过20 d,夏季最少。3)霾日数气候趋势系数在北京-天津-河北地区、长江三角洲地区和珠江三角洲地区趋势系数高达0.8。4)霾日数呈现明显的上升趋势[3.69 d(10 a)–1],其气候趋势系数为0.82,通过了99.9%的信度检验。5)我国中东部气溶胶光学厚度和对流层NO2的空间分布与年平均霾日数的分布基本一致,近51年来能源消耗量的稳定上升趋势也表明,人为因素导致的大气污染物排放量增加是引起霾天气出现频率上升的重要因素。  相似文献   

18.
最近40年中国雾日数和霾日数的气候变化特征   总被引:30,自引:10,他引:20  
根据1971~2010年567个中国地面观测站点的雾日数和霾日数资料,分析了我国雾日数和霾日数的空间分布、季节变化以及年代际变化特征,并且利用REOF(旋转经验函数正交)分解对雾日数进行气候区划。结果表明:(1)雾主要分布在东南沿海地区、四川盆地地区、湘黔交界、山东沿海以及云南南部等地区。霾主要集中于华北、河南以及珠三角和长三角地区。(2)在季节变化上:秋、冬季雾和霾的分布大于春夏。(3)雾日数和霾日数年代际变化明显,雾日数在20世纪70至90年代较多,20世纪90年代以后减少;霾日数自2001年以来急剧增长。(4)雾日数可以共可分为10个区,其中华北区、川渝区以及长江中下游区是雾出现频率较高的几个重点区域。  相似文献   

19.
对防城港市影响最大的首要空气污染物为PM2.5和O3,空气污染日主要集中在秋冬季。空气污染按500 hPa环流形势可分为西北气流型、偏西气流型及西南气流型;按地面气压场可分为冷高压脊型、均压型、高压后部低压前部型。在无境外输入的情况下,PM2.5产生在风速小、气温较低、能见度小、湿度较大并且无降雨或降雨不明显的天气环境里,而O3产生在高温、低湿、日照充足、风速较大和能见度好的天气环境里。在垂直运动方面,中低层的下沉气流利于空气污染物累积。在温度层结分布方面,700~850 hPa的低层存在的逆温层对PM2.5浓度增加非常重要,近地面的逆温层对PM2.5浓度增加的作用要比低层弱,而近地面的逆温层对O3浓度的增加非常重要,但是低层的逆温却不重要。  相似文献   

20.
针对四川盆地大气污染及其成因的特殊性,本文使用四川盆地18个城市的大气污染监测和气象观测数据以及NCEP1°×1再分析资料,对2017年12月19日~2018年1月3日四川盆地由当地过量排放和外来沙尘输送双重影响的区域性大气污染过程进行分析。结果表明:2017年12月19~28日四川盆地环流场配置不利大气污染物扩散,垂直温度层结稳定,在当地污染源持续排放下污染物浓度缓慢上升,此阶段为静稳型大气污染。之后29日冷空气过程打破前期不利污染物扩散的环流场及垂直温度层结,导致气态污染物下降明显,但伴随冷空气活动的外来沙尘使PM10浓度迅速增大,使四川盆地部分城市出现沙尘型重污染;特别是广元地区受沙尘直接影响最严重,PM10浓度是原来的4.5倍;成都市虽没有通过沙尘天气的表观判断,但对颗粒物离子浓度和化学组分都有显著影响;因此,当时PM10和CO浓度24h比值变化受沙尘输送和天气条件共同影响,在不同时段和地区都存在明显差异,初步揭示出由静稳型大气污染向沙尘型污染转换阶段的内在变化特征,具有重要科学价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号