首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2014年深圳市东北部吓陂监测站PM_(2.5)的年均质量浓度为47.0μg/m~3,在全市处于较高污染状态,并呈现出冬季秋季春季夏季的季节变化特征。气象要素的分析表明,2014年吓陂监测站夏季时降水较多、湿度最大、风速最大、气温最高、边界层高度最高,最有利于污染物的扩散和清除;冬季时降水最少、湿度最小、风速最小、气温最低、边界层高度最低,最不利于污染物的扩散和清除。后向轨迹聚类分析表明,吓陂监测站的后向轨迹主要分为5类,其中来自北方内陆地区的气团污染最重,来自南海地区的气团污染最轻。进一步利用潜在源贡献因子进行源区识别分析,结果表明:2014年吓陂监测站的PM_(2.5)主要来源于本地源的排放及周边地区(尤其是广东东北部地区)的短距离输送,此外江西等内陆地区的长距离传输在一定程度上也可能导致吓陂监测站PM_(2.5)质量浓度的升高。  相似文献   

2.
统计分析2012—2013年宁波空气质量及污染物浓度,得出秋冬季宁波市空气质量最差,AQI均值92,首要污染物主要为PM2.5、SO2、PM10,其中,PM10、PM2.5的浓度超过了国家二级标准。2013年空气质量下降、污染程度明显加重主要表现为秋冬季空气污染加重。应用HYSPILT4模式计算输送轨迹并聚类分析,表明大气污染是可以通过中远距离输送影响到下风向的地区;外来污染源对宁波空气质量影响明显。宁波秋季轨迹比较复杂,共有7条轨迹,主要来自津京冀、黄海南部、浙江西南地区和东海,共占72%;冬季有4条轨迹,主要来自浙北和津京冀,共占81%。由此可见,宁波空气污染受其特定的地理环境和大气环流背景影响,存在远、近不同距离的污染物输送问题,西北方向的输送轨迹对宁波空气质量有明显影响,其AQI、PM2.5、PM10、NO2、SO2平均浓度分别可达104、72.9μg·m-3、122.8μg·m-3、54.1μg·m-3、37.8μg·m-3,远高于其它轨迹。特别是秋季来自京津冀、黄海南部以及冬季来自浙江北部、山西河北的轨迹,造成宁波重度或严重污染的重要原因之一。在重污染天气预报预警中,预报员需要密切关注PM2.5浓度变化。大气污染的防治除政府相关部门继续进行能源结构调整、交通源排放控制外,还需要更大范围区域乃至全国的协作才能从根本上改善城市的空气质量。  相似文献   

3.
南京四季大气粗细粒子中PAHs的污染特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了南京2009—2010年大气粗、细粒子中PAHs(多环芳烃,Polycyclic Aromatic Hydrocarbons)在四季不同的组成特征及来源。结果表明,南京细粒子中PAHs的浓度范围是19.11~131.31 ng/m~3,而粗粒子是17.77~134.85 ng/m~3。局地排放与区域传输的综合作用,使得南京不同采样点的PAHs浓度相关度较高,具有相同的污染源及污染过程。除了秋季PAHs主要分布于粗粒径段,南京大气中PAHs以细粒子为主。春、冬季分别受到了来自ENE-S和NNW-NE方向污染气团的远距离输送影响,夏季局地排放的污染物受到了西南清洁气团的稀释作用,秋季不同于其他季节,仅以局地贡献为主。源解析结果显示,不同季节PAHs来源存在差异,最主要的排放源是机动车源,其次是燃煤/焦化,秋季受较多的生物质燃烧贡献。秋季特殊的排放源贡献,以及局地贡献为主的污染形式,可能是其浓度分布不同于其他季节的根本原因。  相似文献   

4.
利用阿勒泰平原地区阿克达拉大气本底站2010年1月1日—2016年12月31日的臭氧质量浓度数据与PM_(10)等相关气象资料相结合,对臭氧质量浓度的日、周、月、季节、年变化特征以及影响臭氧浓度变化的主要因素进行了分析。结果分析表明:臭氧每小时平均质量浓度日变化规律呈显著单峰型,夜晚的变化较小,白天变化较大,01:00前后达到最小值,16:00左右达到峰值;臭氧每日平均质量浓度变化不具有较为明显的"周末效应"现象,峰值出现在星期六,日平均质量浓度为63.2μg·m~(-3),最低值出现在星期一,日平均质量浓度为60.0μg·m~(-3),日平均质量浓度最高值和最低值仅相差3.2μg·m~(-3);臭氧月平均质量浓度最高出现在2014年5月,为85.1μg·m~(-3),最低月平均质量浓度出现在2015年11月,为32.2μg·m~(-3);春、夏季臭氧质量浓度较高,秋季和冬季明显低于春季和夏季;2010—2016年臭氧浓度趋势线整体呈下降趋势,其中2012—2014年臭氧浓度连续月变化有明显的单峰型年度变化规律;臭氧浓度与PM_(10)质量浓度变化具有明显的逆向变化趋势,同时存在时间变化上的延迟性,并且臭氧的浓度变化早于PM_(10)质量浓度的变化。  相似文献   

5.
利用后向轨迹模式研究TRACE-P期间香港大气污染物的来源   总被引:34,自引:1,他引:33  
利用Hysplit4.7轨迹模式和2001年3月NCEP再分析气象资料,计算2001年3月TRACE-P期间抵达香港地区的后向气流轨迹,并分析香港地区大气输送特征。对轨迹进行聚类分析后得到到达香港的6类典型气团。结合香港鹤咀测站所测量的大气污染物的浓度,进一步分析不同来源气团的化学特征。抵达香港的气流轨迹结果表明来自大陆的气团占47.5%,局地输送性气团占34.6%,海洋性气团占18.7%。鹤咀测站的污染性气体O3 、SO2、CO在大陆气团影响下的平均浓度分别为31.1、3.0、486.1 μg/m3;在海洋性气团影响下分别为20.0、1.0、319.4 μg/m3;在局地输送气团影响下分别为20.0、1.2、308.0 μg/m3。  相似文献   

6.
基于2017-2019年河源市空气质量数据,分析了河源市首要污染物的年际变化特征,同时利用2019年东埔国控站点的首要污染物与气象要素进行了相关性分析,并以典型污染日为案例,分析了气象条件对污染过程的影响。结果表明:2017-2019年细颗粒物(PM2.5)污染日比重大幅度降低,以臭氧(O3)为首要污染物的污染日逐年增加,污染形式逐渐从颗粒物污染向臭氧污染发生转变。O3浓度与温度和湿度分别呈正负相关关系,高浓度O3主要出现在(20-30℃,25%-55%)阈值之间,在吹西北偏北风时O3浓度也较高。PM2.5和PM10与湿度也呈负相关关系,温度与湿度组合在(8-13℃,40%-55%)范围内时两者容易同时出现高值;在夏季PM2.5和PM10还与温度具有较强的正相关关系,这意味着高温情况下河源有出现颗粒物与O3复合污染的可能。河源市典型污染日具有风速较小局部扩散不利的特征,低温低湿条件下容易出现PM2.5污染,且主要受到区域的传输影响;而高温低湿条件下容易发生O3污染,且较高的前体物浓度容易加剧O3的本地污染。  相似文献   

7.
根据2008—2015年上海崇明东滩大气成分观测站(以下简称东滩站)大气颗粒物(PM)观测数据,分析其浓度水平、变化趋势、影响气团和潜在源区。结果表明,2008—2015年东滩站PM质量浓度的长期变化趋势不显著,但细粒子(PM_(2.5))比例不断升高。PM_(2.5)/PM_(10)从0.84上升至0.92,表明二次气溶胶占比趋于增加。对8年大样本数据进行后向轨迹聚类,发现东滩站主要受大陆型、海洋型、大陆/海洋混合型气团影响,三者所占比率分别为32.0%、38.8%、29.3%。海洋型气团中PM_(2.5)本底质量浓度为11~15μg·m^(-3),而大陆型气团中PM_(2.5)本底质量浓度的季节差异显著,在29~56μg·m^(-3)波动,对东滩站具有明显的输入效应。东滩站PM_(2.5)的潜在源区随季节变化,秋季和冬季主要受华北、黄淮、苏皖影响,春季收缩至苏皖和浙江北部,夏季则转换至长三角南部的浙江及浙闵沿海。总体而言,上海及周边的苏锡常、杭嘉湖对东滩PM_(2.5)浓度贡献最显著,来自渤海、黄海近海污染回流的贡献也不可忽视。  相似文献   

8.
秸秆焚烧导致湖北中东部一次严重霾天气过程的分析   总被引:1,自引:0,他引:1  
利用地面气象要素、火点信息及污染物资料,研究了2014年6月12~13日湖北省中东部地区一次重度霾天气的成因及污染特征。结果表明:导致此次霾天气的主要原因是安徽省北部大面积秸秆焚烧所形成污染气团受偏东北气流输送的影响,12日在湖北中东部形成了两条"带状"的能见度低值区,最低能见度仅为2.1 km。秸秆焚烧污染物输送气流由北向南影响湖北,主要作用于孝感—武汉—咸宁一带,3个地区细颗粒物(PM2.5)峰值浓度均超过了600μg/m3,且武汉和孝感的PM2.5与PM10质量浓度比值在12日增加到0.76和0.77,并出现了0.96和0.93的最大值,随着污染气团的传输,其中PM2.5所占比例会出现明显下降。SO2质量浓度的变化特征不显著,NO2质量浓度在污染物质量浓度达到峰值前1~3 h达到峰值,而CO是秸秆焚烧产生的主要污染气体,其质量浓度变化与PM2.5和PM10呈正相关关系,相关系数分别为0.66和0.67。风矢量和分析表明:6月12日湖北省中东部存在明显的东北来向气流输送,污染物的输送是该时段霾天气发生的主要影响因子,而6月13日湖北省东北边界处的输送气流已经明显减弱消失,东南部风矢量和异常偏小导致的污染物堆积是该地区污染持续的主要原因。  相似文献   

9.
城市近郊常受到城区污染物扩散和输送的影响,2010年7月21日至8月6日利用β射线颗粒物连续监测仪和黑碳仪对北京西北郊区PM2.5和黑碳气溶胶(BC)进行了连续观测。结果表明,北京西北郊区夏季PM2.5和BC的质量浓度分别是(133.16±81.64)、(2.89±1.62)μg/m3。受明显的山谷风的影响,来自观测点东南方的城区的气流使PM2.5和BC浓度升高,来自观测点西北方向的风则使PM2.5和BC浓度降低。受局地排放、区域输送和气象条件的共同影响,郊区的PM2.5和BC浓度表现出明显日变化特征,二者浓度在上午、傍晚和夜间显著上升。  相似文献   

10.
大气污染除了受本地污染源的影响外,外来污染物的输送也是重要的影响因子之一。本文基于拉格朗日混合单粒子轨迹模型(HYSPLIT)分析了河南省重污染过程空气输送通道的特征,并结合地面风场观测资料和NCEP再分析资料对污染发生时的气象背景场进行了探讨。结果表明:在1986—2015年冬季气候平均态下,河南省盛行西北气流,空气输送主要来自西北欧亚大陆,经河北、陕西和山西等地区进入河南地区。2015年河南省17次重污染过程主要空气污染输送分别来自南方(32%)、偏北方(24%)和偏东方(27%),3条通道在输送过程中高度基本维持在900 h Pa以下;重污染过后西北风加强,南风消失,污染物迅速扩散。由2015年12月5—13日河南地区重污染过程的模拟表明,偏北空气输送通道所占比例虽然不是最高的,但经过污染物浓度高值区携带的污染物较多,同时由于风速减弱,不利于污染物扩散。气象观测资料进一步证明河南省重污染过程发生时处于静稳天气状态,同时东南风带来了较多的水汽输送,相对湿度偏高不利于污染扩散。  相似文献   

11.
将2001-2008年分为沙尘天气相对多年和相对少年,计算兰州市春季逐日4个时次的4d气团后向轨迹。通过聚类分析得到春季到达兰州市区的主要气团轨迹组,结合可吸入颗粒物PM10日均质量浓度资料,通过计算潜在源贡献因子PSCF(potential source contribution function)和浓度权重轨迹CWT(concentration-weighted trajectory),得到影响兰州市春季PMlo质量浓度的潜在源区以及不同源区对兰州市春季PM10质量浓度贡献的差异。结果表明,在沙尘天气相对多年,西路径和西北路径发生比例最高,分别占总轨迹的33%和19.4%,其中有50%以上为污染轨迹,是造成兰州市春季高质量浓度PM10污染的主要输送路径。沙尘天气相对少年的主要输送路径是西路径,其次是北路径,分别占23.6%和18%。影响兰州市春季大气PM10质量浓度的潜在源区分布在新疆塔里木盆地、吐鲁番盆地、青海柴达木盆地、甘肃河西走廊、内蒙古中部和西部的沙漠戈壁地区。  相似文献   

12.
针对2016年12月29日—2017年1月6日山西省太原市内发生的一次重污染天气过程,通过分析常规天气条件,SO2、PM2.5和PM10的排放清单以及后向轨迹模式,探讨本次重污染事件的成因。结果表明:本次污染事件持续时间长,重度染污持续将近5 d,多种污染物浓度严重超标,细粒子是污染过程的主要贡献;太原市处于冷空气较弱和水汽条件较好的大尺度大气环流形势下,为冷高压持续稳定,近地面风速小、风力弱地面形势下,形成了大范围、长时间的静稳天气;在污染期间太原地区主要受到来自西北和西部共四种气流输送类型的控制,其中来自西北的气流输送轨迹对应的污染物浓度明显小于其他三条轨迹对应的污染物浓度,输送轨迹的输送高度可能是造成轨迹对应污染物浓度之间差异的一个原因,结合污染物排放源分布发现这次污染事件的形成受本地源和长/近距离输送的共同影响,其中本地源的贡献更为显著。  相似文献   

13.
2013年夏季至2014年春季在中国长三角区域的临安大气本底站利用气溶胶质谱仪(AMS)对PM_1中主要化学成分质量浓度以及质量-粒度分布进行观测,发现观测期间PM_1的平均浓度约为53μg/m~3,其中有机物是最主要的成分(约占47%),其次为硫酸盐(23%)、硝酸盐(16%)、铵盐(12%)和氯化物(1.2%)。PM_1平均浓度冬季最高(84μg/m~3),秋季最低(38μg/m~3)。冬季污染时段PM_1浓度较清洁时段高24倍,其中硝酸盐浓度冬季升高最显著,这与冬季燃煤排放增加和低温有利其形成有密切联系。不同化学成分中,有机物粒度分布峰值粒径最小,硫酸盐最大。冬季各化学成分的峰值粒径在4个季节中最大(约600 nm),可能由于污染物积聚时间较长。夏季各成分峰值粒径最小(400~500 nm),且在夏季清洁时段浓度较其他季节高,局地产生的新粒子贡献可能很重要,伴随着光化学烟雾的气溶胶和臭氧污染在这些区域升高值得进一步关注。  相似文献   

14.
利用宝鸡市2017—2019年PM2.5质量浓度小时数据及相对湿度等气象数据,探讨了宝鸡市PM2.5质量浓度、相对湿度和能见度三者的关系,并利用HYSPLIT后向轨迹模式对3 a冬季重度及以上污染过程主导来源气团进行了聚类分析。研究发现:宝鸡冬季重度及以上污染过程多发生在1月,期间主导风向为西北风和东南风;PM2.5质量浓度与能见度在不同相对湿度条件下有不同的拟合幂函数关系,空气相对湿度>80%时,空气中水汽含量是影响能见度的主要因素,空气相对湿度≤60%时,影响能见度的主要因子是PM2.5质量浓度。2017—2019年冬季宝鸡达重度污染及以上的过程后向轨迹聚类结果略有不同,其中2017年污染以偏北及西南气团近距离输送为主,2018年污染以宝鸡本地积累为主,2019年污染以关中临近城市(西安地区)近距离输送为主;西北路气团移速最快,远距离传输能力最强,偏东路气团移速最慢,远距离传输能力最弱。  相似文献   

15.
基于南昌市大气环境监测、地面气象观料和GDAS等资料,主要采用后向轨迹聚类分析、潜在源贡献因子和浓度权重轨迹分析方法,分析了2020年南昌市大气污染特征和污染物潜在源区。结果表明:1)南昌市春、夏、秋季以O_(3)污染为主,冬季以PM_(2.5)污染为主。2)大气污染物质量浓度日变化具有明显的季节性特征,PM_(2.5)和PM_(10)在春、秋、冬季呈双峰形分布,NO_(2)在秋、冬季呈弱双峰形分布,春、夏季呈单峰分布,O_(3)呈单峰形分布。南昌市东部大气污染较西部更严重。3)南昌市气流输送季节差异明显,春、秋、冬季主要受偏北气流影响,夏季主要受偏南气流影响。本地源是南昌市大气污染的主要潜在源,安徽省南部、湖北省东部、上饶市西部和九江市的区域输送也有一定贡献。  相似文献   

16.
兰州春季沙尘过程PM10输送路径及其潜在源区   总被引:4,自引:0,他引:4  
将2001-2008年分为沙尘天气相对多年和相对少年,计算兰州市春季逐日4个时次的4 d气团后向轨迹。通过聚类分析得到春季到达兰州市区的主要气团轨迹组,结合可吸入颗粒物PM10日均质量浓度资料,通过计算潜在源贡献因子PSCF(potential source contribution function)和浓度权重轨迹CWT(concentration-weighted trajectory),得到影响兰州市春季PM10质量浓度的潜在源区以及不同源区对兰州市春季PM10质量浓度贡献的差异。结果表明,在沙尘天气相对多年,西路径和西北路径发生比例最高,分别占总轨迹的33%和19.4%,其中有50%以上为污染轨迹,是造成兰州市春季高质量浓度PM10污染的主要输送路径。沙尘天气相对少年的主要输送路径是西路径,其次是北路径,分别占23.6%和18%。影响兰州市春季大气PM10质量浓度的潜在源区分布在新疆塔里木盆地、吐鲁番盆地、青海柴达木盆地、甘肃河西走廊、内蒙古中部和西部的沙漠戈壁地区。  相似文献   

17.
针对2015年12月17—27日出现的区域性重污染天气过程,根据布设在污染中心邢台市的脉冲偏振激光雷达和地基多通道微波辐射计数据,分析了污染过程中气溶胶消光系数、逆温层、水汽含量等的变化,利用Hysplit模式分析了气团后向轨迹。结果表明:此次重污染天气过程主要受局地气象扩散条件变化所致,稳定的高空大气环流和地面均压场是出现环境重污染事件的背景场,100 m高度上的气团对污染物累积和区域输送起到了主要作用;消光系数与细颗粒物PM2.5质量浓度和水汽压的相关系数分别为0.8622和0.7421,随PM2.5质量浓度和水汽压的升高,消光系数增加明显,由PM2.5质量浓度和水汽压建立的消光系数回归方程(R2=0.8811)可以很好的表征消光系数的实际变化;逆温强度在污染发展阶段达到最大,水汽含量在污染加重阶段达到最大,污染缓解阶段的逆温强度和水汽含量则出现明显的下降。  相似文献   

18.
对2015年3月至2018年2月共36个月荆门市PM2.5浓度值按月和季节作特征分析,利用HYSPLIT轨迹模型对污染最为严重的冬季进行后向48h气团轨迹模拟。结果表明:PM2.5月均浓度表现为1月最高,达到107μg/m3,7月最低,为30μg/m3,冬季平均值为92μg/m3,显著高于其它季节,并且冬季高浓度PM2.5主要与本地地面5—11m/s的偏北(N、NNE)大风伴随出现;气团轨迹分为西南、东北、西北三个路径,近地面传输的东北路径和高空传输的西南路径气团均引起PM2.5浓度升高,而西北路径气团整体上对污染物具有一定清除作用;东北路径方向的河南以及靠近荆门市的西北、西南向地区为48h的潜在源贡献大值区。在通过气象条件定性判断荆门未来的PM2.5浓度变化时,因东北路径近地面传输的特性,应关注上游潜在源区内地面站点PM2.5的浓度值;对于高空传输的西南路径,应关注高空水汽的输送情况,以及轨迹高度下降地区即水汽的沉降区是否在潜在源区;西北路径为干冷空气的高空传输,在较接近荆门时轨迹高度才开始明显下降,应关注西北方向近距离潜在源区的地面站点PM2.5的浓度值。  相似文献   

19.
基于肇庆市2014—2018年PM_(2.5)质量浓度数据,使用HYSPLIT模式计算肇庆市干季的后向气流轨迹,并应用聚类分析法、潜在源贡献因子分析和质量浓度权重轨迹分析方法评估PM_(2.5)污染物的外来输送特征和潜在源区。结果表明:(1)2015—2018年肇庆市PM_(2.5)污染维持在较高水平,2017—2018年PM_(2.5)污染略有加重趋势;(2)污染较重的月份主要在1—4和10—12月,1月PM_(2.5)污染最严重,而6月PM_(2.5)质量浓度最低,5、7和8月无PM_(2.5)污染超标;(3)全年PM_(2.5)日平均质量浓度与风速相关性最高,干季与风速的相关系数有所提高;(4)干季影响肇庆的气流有5条,其中超过1/2源自东北和偏北方向的气流,来自东北方向的气流轨迹对PM_(2.5)污染贡献最高,其次来自偏西方向绕过珠三角北部进入肇庆的轨迹和广东省内短距离输送的轨迹;(5)肇庆市干季PM_(2.5)外来输送潜在源区主要位于肇庆辖区内和珠三角中南部城市以及粤东、粤东北部分地区,其中佛山、珠海、中山、东莞、惠州、广州南部对肇庆PM_(2.5)质量浓度贡献均超过60μg/m;。  相似文献   

20.
通过分析成都平原城市群8个城市2015-2019年夏季地面臭氧污染特征表明,近5年夏季平原O3污染区域呈扩大趋势,成都市O3_8 h第90百分位浓度和超标日数均为最大,雅安、绵阳浓度较低但上升趋势显著。利用PCT客观天气分型方法,对近5年夏季成都平原及周边的位势高度场进行分型研究,结果表明:(1)700 hPa臭氧污染天气形势为高压型,500 hPa为西风槽后和平直纬向型,100 hPa为南亚高压中部和东部型;(2)近5年夏季典型O3污染过程的高低空天气形势为西风槽后部、高压发展和高压控制型,污染过程期间成都平原多受到西风槽后西北气流或副热带高压脊线附近下沉气流的影响;(3)污染天气型具有高温低湿,小风强辐射,白天混合层高的特征。气流下沉增温和局地环流的作用抑制了污染物向高层扩散,促使边界层上部O3下传并堆积于成都平原地区。采用HYSPLIT后向轨迹模式和潜在源贡献法(PSCF),探讨了不同天气型影响下成都平原O3浓度输送的轨迹聚类和潜在源区。结果表明,本地和盆地城市之间的输送...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号