首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
Intensive observations of summertime up- and down-valley winds in a dry valley utilising airsondes, pilot balloons and a monostatic acoustic sounder are described. Both circulations show a distinctive layered vertical wind and temperature structure. Westerly down-valley flow is typically neutral and is characterised by strong surface winds overlain by light variable winds extending to an inversion between 2000 and 4000m in depth. Above this inversion, gradient winds prevail. This structure is similar to that of downslope winds observed elsewhere. The thermally-induced up-valley easterly flow is shown to be extremely well-developed in terms of its strength, depth and persistence. The strong surface easterly may reach 800 m in depth and usually undercuts the warmer westerly. The boundary between the two regimes is marked by an inversion. During easterly flow a surface-based, super-adiabatic layer of 100–200 m in depth is evident and is associated with weak convective activity. An intriguing aspect of the wind regime is the interaction between the easterly and westerly circulations in the valley. These are separated at the surface by a frontal zone which migrates up and down the valley. Further observational and modelling studies are recommended.  相似文献   

2.
利用中尺度数值模式WRF耦合单层城市冠层模块UCM,引入2005年MODIS土地利用类型资料,在对2005年1月25—28日兰州市热岛现象进行高分辨率数值模拟的基础上,设计了去除城市下垫面敏感性试验,探讨了城市下垫面对城市边界层的影响程度。结果表明,城市下垫面能使近地层大气温度升高而风速减小,并且,在夜间表现更明显。由城市热岛强度日变化分析可知,城市下垫面对兰州市热岛强度的贡献率为44%。夜间,城市上空200 m以下的近地层大气保持了白天的混合层特征,热岛环流的上升运动促进了山风环流,使得上升气流到达地面以上600 m左右;白天,由于山峰加热效应,城市上空400—600 m存在一个脱地逆温层,城市热岛环流使得11—15时(北京时)市区近地层出现弱上升气流,抑制了谷风环流的形成及发展。城市下垫面的低反照率特性和建筑物的多次反射作用导致城市下垫面的净辐射通量大于非城市下垫面;城市下垫面由于建筑材料的不透水性,导致潜热通量远小于感热通量,而储热项所占比重明显增大。  相似文献   

3.
Local Winds In A Valley City   总被引:1,自引:0,他引:1  
Local winds were studied around a valley city, by using a high resolution two-dimensional mesoscale model forced by surface temperatures from a measurement campaign around Lanzhou City, China, during stagnant conditions. In the simulations nighttime winds are purely katabatic downslope winds without urban effects, despite the fact that the city is 6–7°C warmer than its surroundings all night. In contrast, daytime near-surface winds result from upslope flow resisted by an opposing simultaneous urban heat-island circulation (UHIC). Hence winds remain weak and variable around a city in a narrow valley during daytime. These conditions may lead to severe air quality problems day and night.The local circulations are sensitive to the widths of the valley and/or city,and also latitude, as is demonstrated by model experiments. Interestingly, in a flat and calm environment an extratropical daytime UHIC cell may turn into a weak `anti-UHIC' by the morning, due to frictional decoupling after sunset and subsequent inertial oscillation during the night, analogously tothe land breeze and nocturnal low-level jet formation.  相似文献   

4.
The results of an observational and modeling study of the nocturnal slope winds in a simple valley are presented. The valley was approximately 225 m deep in the region of the measurements, and featured a uniform slope angle of approximately 23 ° on one of its sidewalls. The wind and temperature structure of the katabatic flows on the valley sidewalls were measured with tower-mounted instruments, and a Doppler sodar and instruments on a tethered balloon and a 61-m tower were used to determine the atmospheric conditions near the center of the valley. The temperature structure of the slope flows was summarized by characteristic scale parameters h and T for the inversion depth and strength, respectively. On the sidewalls 50 m above the valley floor, the inversion depths were generally smaller and the inversion strengths were weaker than they were on the sidewalls 100 m higher. These results differ significantly from those obtained over a simple slope of an isolated mountain or ridge. The down-valley winds are shown to be important in limiting the strength of the sidewall inversions. The formation of an inversion in the valley also has a pronounced effect on the structure of the slope flows. Numerical simulations suggest that the presence of adiabatic layers in the valley atmosphere is associated with decreases in the slope-flow inversion depth with increasing downslope distance. The simulations also indicate that the length scales that characterize the momentum and inversion depths behave similarly in flows down simple slopes but not in flows down the sidewalls of a valley.Work supported by the U.S. Army Research Office under Contract DA-AG29-K-0231 and the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.  相似文献   

5.
An observational dataset from a wintertime field campaign in the Inn Valley, Austria, is analysed in order to study mechanisms of air pollution transport in an Alpine valley. The results illustrate three types of mechanisms: transport by a density current, back-and-forth transport by valley winds, and transport by slope winds. The first type is associated with an air mass difference along the valley. Cooler air located in the lower part of the valley behaves like a density current and produces the advection of pollutants by upvalley winds. In the second type, strong horizontal gradients in pollution concentrations exist close to ground. Multiple wind reversals result in a back-and-forth transport of pollutants by weak valley winds. In the third type, upslope winds during daytime decrease low-level pollution concentrations and cause the formation of elevated pollution layers.  相似文献   

6.
By analyzing the pollutant concentrations over the urban area and over the rural area of the city of Lanzhou, Gansu Province, China, the relationships between the daytime inversion intensity and the pollutant concentration in the atmospheric boundary layer (ABL) are studied with the consideration of wind speed and direction, potential temperature, specific humidity profiles, pollutant concentration in the ABL, the surface temperature, and global radiation on the ground. It was shown that the daytime inversion is a key factor in controlling air pollution concentration. A clear and positive feedback process between the daytime inversion intensity and the air pollutants over the city was found through the analysis of influences of climatic and environmental factors. The mechanisms by which the terrain and air pollutants affect the formation of the daytime inversion are discussed. The solar radiation as the essential energy source to maintain the inversion is analyzed, as are various out-forcing factors affecting the inversion and air pollutants. At last, a physical frame of relationships of air pollution with daytime inversion and the local and out-forcing factors over Lanzhou is built.  相似文献   

7.
本文利用中尺度数值预报模式(WRF)并采用谱逼近方法,对2021年冬奥测试赛期间的一次冷湖过程进行模拟研究,探究了冷湖发展前后风温场的垂直变化规律,揭示了冷湖形成及消亡的具体原因。研究结果表明,静稳的天气形势是冷湖过程维持及发展的大背景条件。冷湖发展期间,逆温层由上至下迅速建立,谷底出现偏东—东南向的冷径流。受重力下坡风的影响,冷空气不断向谷底堆积,冷湖深度增加。日出后,越山的系统风重新建立,逆温层从底部消蚀,冷湖结构破坏。夜间的强辐射冷却作用是冷湖形成的主要原因之一。辐射冷却强度的差异会引起冷湖降温幅度的差异,后半夜辐射冷却作用的突然加强为冷湖中后期的维持及发展创造有利条件。通过分析冷湖发生前后位温廓线、摩擦速度及边界层高度随时间的演变,均可印证湍流活动的发展是逆温消散、冷湖结构破坏的重要影响因素。  相似文献   

8.
By analyzing the pollutant concentrations over the urban area and over the rural area of the city of Lanzhou, Gansu Province, China, the relationships between the daytime inversion intensity and the pollutant concentration in the atmospheric boundary layer (ABL) are studied with the consideration of wind speed and direction, potential temperature, specific humidity profiles, pollutant concentration in the ABL, the surface temperature, and global radiation on the ground. It was shown that the daytime inversion is a key factor in controlling air pollution concentration. A clear and positive feedback process between the daytime inversion intensity and the air pollutants over the city was found through the analysis of influences of climatic and environmental factors. The mechanisms by which the terrain and air pollutants affect the formation of the daytime inversion are discussed. The solar radiation as the essential energy source to maintain the inversion is analyzed, as are various out-forcing factors affecting the inversion and air pollutants. At last, a physical frame of relationships of air pollution with daytime inversion and the local and out-forcing factors over Lanzhou is built.  相似文献   

9.
Summary The Austrian city of Graz at the south-eastern edge of the Alps frequently experiences wintertime stagnations during anticyclonic flow conditions, leading to high local concentrations of primary pollutants. This paper investigates the dominant three-dimensional local flow structures in the Graz region during a representative January stagnation period in 1998 using data obtained from a field experiment that supplemented the routine meteorological network with an array of sodars and tethersondes and a meteorological tower. Important modifications to the temperature and wind fields over Graz and its surroundings are attributed to both topographical and urban effects. The main modifications to the along-valley wind system in the Mur valley that runs through Graz from north to south are caused by near-surface temperature field differences between a warmer north and a cooler south part of the city and the regular development of a nighttime down-valley low-level jet and its upward lifting when crossing the city centre. Received October 8, 1998 Revised December 2, 1998  相似文献   

10.
Summary Features of the mean flow structure in a small valley system in the Rosalian mountain range are discussed using data from a wind measurement network. Tethered balloon measurements during periods of clear sky form the basic dataset for the analysis of drainage winds and temperature inversions. During periods of weak ambient winds the existence of a pure thermally driven nocturnal valley wind system is shown. With strong ambient winds opposing the drainage flow, a reduced drainage height but the same jet maximum as with weak ambient winds is found. On the other hand with aiding flow the drainage winds are suppressed and flow reversal can occur. This strong valley flow interaction with the ambient wind indicates considerable dynamic influence on the evolution of drainage winds and on the breakup of temperature inversion structure for small valleys.With 15 Figures  相似文献   

11.
冬季城市边界层风场和温度场结构分析   总被引:15,自引:1,他引:15  
桑建国  刘万军 《气象学报》1990,48(4):459-468
本文根据沈阳地区大气环境容量研究中1984年12月所进行的观测,对沈阳城市边界层的流场和温度场结构做了分析。得出了冬季城市边界层的一些特征。当地面风速微弱时,热岛效应显著。边界层低层辐合抬升,在城市下风边缘可能出现反向气流。当风速较强时,城市的摩擦效应占优势,城市上风部分辐合抬升,下风部分辐散下沉。观测分析还表明,城市建筑对气流的阻滞作用可伸展到几百米的高度。夜间微风时,接地逆温层厚度可达200m,城市内边界层从上风边缘起开始发展,厚度可达100m。白天风力微弱时,重烟尘污染可导致城市冷岛,并推迟对流边界层的发展。  相似文献   

12.
Large-scale and local weather conditions during severe wintertime air pollution episodes in the Moscow megalopolis are analyzed. Concentrations of CO, NO, and NO2 obtained from the automated network of the atmosphere pollution control are used as tracers for atmospheric processes in the urban atmospheric boundary layer. It is shown that a high surface air pollution level in the city is formed at a weak wind in the lower atmosphere and only in the presence of a surface or low elevated temperature inversion. Temperature contrasts in the urban heat island generate the circulation that promotes air pollution in megapolis regions remote from large emission sources. It is supposed that in case of severe frosts the amount of anthropogenic heat in the megapolis sharply increases, promoting active turbulent mixing, thus preventing pollution accumulation in the surface air.  相似文献   

13.
利用RAMS模式对山谷城市冬季局地风场的数值模拟   总被引:4,自引:1,他引:3       下载免费PDF全文
利用美国科罗拉多州立大学和MRC/ASTER发展的中尺度数值模式RAMS, 采用三重嵌套的方法, 模拟研究了兰州山谷地区局地环流特征。结果表明: (1)兰州市近地面流场以偏东风为主, 在城市东西部之间的狭窄地带, 风速相对较大些, 在东西部山谷城市中心区域有大片的静风区; 冬季兰州市山谷夜间是辐合流场, 白天是辐散流场。受城市热岛环流的影响, 白天热岛环流抑制谷风环流, 夜间增大山风环流, 夜间的山风风速大于白天的谷风风速。(2)白天, 兰州市区山顶和山谷之间上空气柱以下沉气流为主, 这主要是由于地形作用使得白天盛行谷风环流和山峰加热作用的共同影响。夜间, 兰州市区山顶和山谷之间上空以上升气流为主, 这主要是由于地形作用使得市区和山谷在夜间盛行山风环流, 但是冬天夜间兰州市区和山谷上空有较厚的逆温层存在, 抑制了气流的上升运动。(3)在午后13:00左右, 兰州市区山谷从近地面到400 m高度, 辐散场在逐渐减弱, 在510 m左右的高度转变为辐合场; 皋兰山顶上空从近地面到400 m高度, 辐合场在逐渐减弱, 在510 m左右的高度转变为辐散场。在凌晨01:00左右, 兰州市区山谷从近地面到400 m高度, 辐合场在逐渐增强, 到400 m高度达到最强, 从400 m到510 m高度又逐渐减弱; 皋兰山顶上空从近地面到220 m左右的高度, 辐散场在逐渐减弱, 在400 m左右的高度辐散场转变为辐合场, 从400 m到510 m左右的高度, 皋兰山顶的辐合场逐渐增强。  相似文献   

14.
海陀山作为北京冬(残)奥会的主要室外赛场之一,其复杂的地形对风场的精细化预报提出了严峻的挑战,亟需开展加密的风场观测提高对复杂地形下局地环流特征及其影响机理的认识,并为提升赛区精细化预报与服务提供数据支撑.基于2019年度海陀山观测试验,利用加密自动气象站、激光测风雷达、涡动相关仪、云高仪等多源数据,对海陀山风场的水平...  相似文献   

15.
延庆-张家口地区复杂地形冬季山谷风特征分析   总被引:8,自引:4,他引:4  
基于2016年12月—2017年2月和2017年12月—2018年2月两年冬季的近地面自动气象站逐时观测数据以及张家口探空数据分析延庆-张家口一带(包括张家口崇礼、赤城、海坨、小五台山区,延怀、怀涿、洋河、蔚县盆地以及北京延庆、昌平、怀柔部分平原地区)复杂地形的风场精细化时、空分布特征,揭示不同复杂地形下局地风场的时、空变化规律,加深对复杂地形动力、热力作用对近地面风场影响的认识,为冬季山区风场预报以及复杂地形数值模式改进提供参考。结果表明:晴朗小风天风持续性作为矢量平均风速和标量平均风速的比值,可以作为研究风场变化规律的重要参数。根据风持续性的日变化特征,可以将研究区域内所有站点分为10种类型,分别代表不同局地地形特征的影响,风持续与风向变化的相关也很强。研究区域主要有3种类型的地形风:斜坡风、峡谷风以及较大尺度的山区平原风。不同地形特征下的风场、风持续性存在明显不同的日变化特征,山风和谷风相互转化的时间也不同,山区最早,盆地次之,平原区最晚;山风时段持续时间较谷风时段长,风速小;晴朗小风天实测风反映了实际风场的特征,而排除环境背景风场,弱化地形动力作用后整个冬季的局地风作为理论山谷风,更能反映热力作用下的山谷风特征。   相似文献   

16.
北京地区夏季边界层结构日变化的高分辨模拟对比   总被引:14,自引:4,他引:14       下载免费PDF全文
使用WRF中尺度数值模式, 分别选用两种不同的边界层参数化方案 (MYJ, YSU) 和3种陆面参数化方案 (SLAB, Noah, RUC), 对2004年7月1日08:00—7月4日20:00 (北京时) 北京地区夏季边界层结构进行1 km的高分辨模拟。对比分析了近地面层风场、温度场以及边界层的日变化特征, 结果发现:WRF模式基本模拟出了北京夏季边界层的日变化特征; 在边界层方案中, MYJ方案描述的边界层结构较YSU方案合理; Noah陆面模式较好地反映了城市的热岛效应; 无降水时, 风速及边界层高度对于陆面过程不敏感, 而降水发生后, 陆面过程对于边界层结构的影响增大; 各方案模拟的城区风速明显偏大, 这是因为没有充分考虑城市建筑物的阻力作用。  相似文献   

17.
Summary In this study observations of the vertical structure of the Atmospheric Boundary Layer (ABL), recorded at a broad mountainous valley are presented. The vertical profiles of temperature, wind speed and direction up to a height of about 800 meters over the valley bottom have been measured and the temporal evolution of ABL structure of the area has been studied. Specifically, the mechanism of nocturnal inversion destruction during morning hours has been studied, which is of major importance in the study of the dispersion of air pollutants over the area. These observations suggest that the break up of nocturnal inversion during morning hours is mainly caused by a combined mechanism, the build up of the Convective Boundary Layer (CBL) and the presence of upslope winds, resulting to a continuous descent of the top of the nocturnal inversion.With 5 Figures  相似文献   

18.
19.
The structure of atmospheric boundary layer determines the ability of atmospheric dispersion and has an essential impact on airborne aerosols. In this paper, the data of a radio sounding experiment held in Dongguan National Meteorological Observation Station, which is in a coastal city in Pearl River Delta, as well as the data of atmospheric aerosols, were utilized in order to analyze the characteristics of atmospheric boundary layer and its effects on surface aerosol concentrations. The results are showed at follows: the local circulations, associated with dominant winds, made complex structures of atmospheric layers, as the cold air and systematic winds weakened in the end of a cold air event. Weakened wind shears and inversion layers, especially a strong near-surface inversion layer, remarkably diminished the atmospheric diffusion abilities and facilitated an especially high concentration of surface aerosols. The convergence line or weak shear line of sea breeze in the ground level helps weaken the atmospheric diffusion abilities and results in atmospheric aerosols accumulation.  相似文献   

20.
应用基于多层城市冠层方案BEP(Building Environment Parameterization)增加室内空调系统影响的建筑物能量模式BEM(Building Energy Model)方案的WRF模式,模拟研究重庆热岛的特征、成因以及局地环流对热岛形成的影响。文中共有两个算例,一为重庆真实下垫面算例,称之为URBAN算例,二为将城市下垫面替换为耕地下垫面的对比算例,称之为NOURBAN算例。结果表明:1)WRF方案模拟结果与观测2 m气温的对比吻合较好,误差主要出现在正午温度峰值和凌晨温度谷值处,由城市下垫面特性及城市内建筑分布误差引起。2)BEP+BEM方案较好地模拟出了重庆地区的热岛分布的空间和时间特征。重庆市温度的分布受地形和城市下垫面的双重影响,越靠近城区,温度的分布受城市化影响就越大,在海拔低处,温度就越高。3)城区立体三维表面对辐射的陷阱作用导致城市表面总体反射率小,向上短波辐射小于郊区约20 W/m~2。城市表面以感热排放为主,而郊区则表现为潜热的作用占主导。夜间城市地表储热以及空调废热向大气释放,是城市热岛形成的重要原因。4)模拟区域背景风场主要为东南风,局地环流呈现出越靠近山区风速越大、城市区域风速较小的特性,体现了城市密集的建筑群对低层大气流场的空气动力学效应,以及复杂山谷地形的山谷风环流特性。在市区的西侧和东南侧均有高大山脉阻挡,山脉对城市出流的阻碍作用、气流越山与绕流运动对城市热岛的形成有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号