首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observed outgoing longwave radiation (OLR) and ERA-Interim reanalysis data were analyzed to reveal the initiation processes associated with a successive and a primary MJO event during 2000-2001. It was found that the initiation of the successive event was caused by anomalous ascending motion induced by low-level horizontal temperature advection. The anomalous ascending motion, together with horizontal moisture advection, moistened lower troposphere and led to an unstable stratification and triggered convection. The initiation of the primary MJO event, on the other hand, was caused by the accumulation of anomalous moisture associated with three low-frequency modes, a convectively coupled Kelvin wave (CCKW), an westward-propagating equatorial Rossby wave (ER) and a weak planetary-scale MJO mode. It is the merging of the low-level specific humidity anomalies of the three modes that led to the rapid setup of large-scale convectively unstable stratification and favored the development of the eastward-propagating planetary-scale MJO mode.  相似文献   

2.
Many previous studies have demonstrated that the boreal winters of super El Nino events are usually accompanied by severely suppressed Madden-Julian oscillation(MJO) activity over the western Pacific due to strong descending motion associated with a weakened Walker Circulation. However, the boreal winter of the 2015/16 super El Nino event is concurrent with enhanced MJO activity over the western Pacific despite its sea surface temperature anomaly(SSTA)magnitude over the Nino 3.4 region being comparable to the SSTA magnitudes of the two former super El Nino events(i.e.,1982/83 and 1997/98). This study suggests that the MJO enhanced over western Pacific during the 2015/16 super El Nino event is mainly related to its distinctive SSTA structure and associated background thermodynamic conditions. In comparison with the previous super El Nino events, the warming SSTA center of the 2015/16 super El Nino is located further westward, and a strong cold SSTA is not detected in the western Pacific. Accordingly, the low-level moisture and air temperature(as well as the moist static energy, MSE) tend to increase in the central-western Pacific. In contrast, the low-level moisture and MSE show negative anomalies over the western Pacific during the previous super El Nino events.As the MJO-related horizontal wind anomalies contribute to the further westward warm SST-induced positive moisture and MSE anomalies over the western tropical Pacific in the boreal winter of 2015/16, stronger moisture convergence and MSE advection are generated over the western Pacific and lead to the enhancement of MJO convection.  相似文献   

3.
The second Madden–Julian Oscillation (MJO) event during the field campaign of the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (DYNAMO/CINDY2011) exhibi ted an unusual double rainband structure. Using a wavenumber-frequency spectral filtering method, we unveil that this double rainband structure arises primarily from the Kelvin wave component. The zonal phase speed of the double rainbands is about 7.9 degree per day in the equatorial Indian Ocean, being in the range of convectively coupled Kelvin wave phase speeds. The convection and circulation anomalies associated with the Kelvin wave component are characterized by two anomalous convective cells, with low-level westerly (easterly) and high (low) pressure anomalies to the west (east) of the convective centers, and opposite wind and pressure anomalies in the upper troposphere. Such a zonal wind–pressure phase relationship is consistent with the equatorial free-wave dynamics. While the free-atmospheric circulation was dominated by the first baroclinic mode vertical structure, moisture and vertical motion in the boundary layer led the convection.The convection and circulation structures derived based on the conventional MJO filter show a different characteristic. For example, the phase speed is slower (about 5.9 degree per day), and there were no double convective branches. This suggests that MJO generally involves multi-scales and it is incomplete to extract its signals by using the conventional filtering technique.  相似文献   

4.
Possible relationships between MJO and the severe rain-snow weather in Eastern China during November of 2009 are analyzed and results show that a strong MJO process is one of the strong impact factors.MJO is very active over the Indian Ocean in November 2009.Especially,it maintains 9 days in MJO phase 3,just corresponding to the two strongest rain-snow processes.Composites of MJO events show that when the MJO convective center is located over the Indian Ocean,the probability of rainfall is significantly increased and the temperature is lower than normal in eastern China,which is consistent with the situation in November of 2009.Atmospheric circulation anomalies of mid-and higher-latitudes can be influenced by the tropical MJO convection forcing and this influence could be realized by teleconnection.When the MJO is over the Indian Ocean,it is favorable for the maintenance of a circulation pattern of two ridges versus one trough at mid-and higher-latitudes.Meanwhile,the western Pacific subtropical high is stronger and more westward than normal,and a significant convective belt appears over eastern East Asia.All these circulation anomalies shown in the composite result also appeared in the observations in November 2009,which indicates the general features of relationships between the MJO and the circulation anomalies over the extratropics.Besides the zonal circulation anomalies,the MJO convection can also lead to meridional circulation anomalies.When the MJO convection is located over the Indian Ocean,the western Pacific is dominated by anomalous descending motion,and the eastern East Asia is controlled by strong convergence and ascending motion.Therefore,an anomalous meridional circulation is formed between the tropics and middle latitudes,enhancing the northward transportation of low-level moisture.It is potentially helpful to understanding and even forecasting such kind of rain-snow weather anomalies as that in November 2009 using MJO.  相似文献   

5.
Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.  相似文献   

6.
利用1979~2013年实时多要素MJO(Madden-Julian Oscillation)监测(RMM)指数,美国NOAA逐日长波辐射资料和NCEP/NCAR再分析资料等,分析了全球变化背景下北半球冬季MJO传播的年代际变化特征。从全球平均气温快速增暖期(1985~1997)到变暖趋缓期(2000~2012),MJO 2~4位相频次减少,5~7位相频次增多,即MJO对流活跃区在热带印度洋地区停留时间缩短、传播速度加快,而在热带西太平洋停留时间加长、传播明显减缓。进一步分析发现,以上MJO的年代际变化特征与全球变化年代际波动有关。当太平洋年代际涛动(PDO)处于负位相时,全球变暖趋缓,热带东印度洋—西太平洋海温异常偏暖,使其上空对流加强,垂直上升运动加强,对流层低层辐合,大气中的水汽含量增多,该区域的湿静力能(MSE)为正异常。当MJO对流活跃区位于热带印度洋地区时,MJO异常环流对季节平均MSE的输送在强对流中心东侧为正、西侧为负,有利于东侧MSE扰动增加,使得MJO对流扰动东移加快;而当MJO对流活跃区在热带西太平洋地区,MJO异常环流对平均MSE的输送形成东负西正的形势,东侧MSE扰动减小,不利于MJO快速东传。因此,全球变化背景下PDO引起的大气中水汽含量及MSE的变化可能是MJO传播年代际变化的重要原因。  相似文献   

7.
This paper investigates the processes and mechanisms by which the East Asian winter monsoon (EAWM) affects the Madden-Julian oscillation (MJO) over the equatorial western Pacific in boreal winter (November–April). The results show that both the EAWM and MJO over the equatorial western Pacific have prominent interannual and interdecadal variabilities, and they are closely related, especially on the interannual timescales. The EAWM influences MJO via the feedback effect of convective heating, because the strong northerlies of EAWM can enhance the ascending motion and lead the convection to be strengthened over the equatorial western Pacific by reinforcing the convergence in the lower troposphere. Daily composite analysis in the phase 4 of MJO (i.e., strong MJO convection over the Maritime Continent and equatorial western Pacific) shows that the kinetic energy, outgoing longwave radiation (OLR), moisture flux, vertical velocity, zonal wind, moist static energy, and atmospheric stability differ greatly between strong and weak EAWM processes over the western Pacific. The strong EAWM causes the intensity of MJO to increase, and the eastward propagation of MJO to become more persistent. MJO activities over the equatorial western Pacific have different modes. Furthermore, these modes have differing relationships with the EAWM, and other factors can also affect the activities of MJO; consequently, the relationship between the MJO and EAWM shows both interannual and interdecadal variabilities.  相似文献   

8.
In this study, the impacts of the tropical Pacific–Indian Ocean associated mode (PIOAM) on Madden–Julian Oscillation (MJO) activity were investigated using reanalysis data. In the positive (negative) phase of the PIOAM, the amplitudes of MJO zonal wind and outgoing longwave radiation are significantly weakened (enhanced) over the Indian Ocean, while they are enhanced (weakened) over the central and eastern Pacific. The eastward propagation of the MJO can extend to the central Pacific in the positive phase of the PIOAM, whereas it is mainly confined to west of 160°E in the negative phase. The PIOAM impacts MJO activity by modifying the atmospheric circulation and moisture budget. Anomalous ascending (descending) motion and positive (negative) moisture anomalies occur over the western Indian Ocean and central-eastern Pacific (Maritime Continent and western Pacific) during the positive phase of the PIOAM. The anomalous circulation is almost the opposite in the negative phases of the PIOAM. This anomalous circulation and moisture can modulate the activity of the MJO. The stronger moistening over the Indian Ocean induced by zonal and vertical moisture advection leads to the stronger MJO activity over the Indian Ocean in the negative phase of the PIOAM. During the positive phase of the PIOAM, the MJO propagates farther east over the central Pacific owing to the stronger moistening there, which is mainly attributable to the meridional and vertical moisture advection, especially low-frequency background state moisture advection by the MJO’s meridional and vertical velocities.  相似文献   

9.
Evolution of Indian Ocean Dipole (IOD) events in 2003, 2006 and 2007 is investigated using observational and re-analysis data products. Efforts are made to understand various processes involved in three phases of IOD events; activation, maturation and termination. Three different triggers are found to activate the IOD events. In preceding months leading to the IOD evolution, the thermocline in southeastern Indian Ocean shoals by reflection of near equatorial upwelling Rossby waves at the East African coast into anomalous upwelling equatorial Kelvin waves. Strengthening (weakening) of northern (southern) portion of ITCZ in March/April and May/June of IOD years, leads to strengthening of alongshore winds along Sumatra/Java coasts. With the combined shallow thermocline and increased latent heat flux due to enhanced wind speeds, the SST in the southeastern Indian Ocean cools in following months. On intraseasonal time scales convection-suppressing phase of Madden-Julian oscillation (MJO) propagates from west to east in May/June of IOD year, and easterlies associated with this phase of MJO causes further shoaling of thermocline in southeastern Indian Ocean, through anomalous upwelling Kelvin wave. All these three mechanisms appear to be involved in initiating IOD event in 2006. On the other hand, except the strengthening/weakening of ITCZ, all other mechanisms are involved in activation of 2003 IOD event. Activation of 2007 IOD event was due to propagation of convection-suppressing MJO in May/June and strengthening of mean winds along Sumatra/Java coast from March to June through changes in convection. The IOD events matured into full-fledged events in the following months after activation, by surface heat fluxes, vertical and horizontal advection of cool waters supported by local along-shore upwelling favorable winds and remote equatorial easterly wind anomalies through excitation of upwelling Kelvin waves. Propagating MJO signals in the tropical Indian Ocean brings significant changes in evolution of IOD events on MJO time scales. Termination of 2003 and 2007 IOD events is achieved by strong convection-enhancing MJOs propagating from west to east in the tropical Indian Ocean which deepen the thermocline in the southeastern equatorial Indian Ocean. IOD event in 2006 was terminated by seasonal reversal of monsoon winds along Sumatra/Java coasts which stops the local coastal upwelling.  相似文献   

10.
Based on multiple datasets, correlation and composite analyses, and case studies, this paper investigated possible influences of the Indian Ocean dipole (IOD) mode on the eastward propagation of intraseasonal oscillation in the tropical atmosphere. The results showed that (1) the 30-60 day outgoing longwave radiation anomalies in the southeastern Indian Ocean and the 30-60 day 850-hPa zonal wind anomalies over the equatorial central Indian Ocean were significantly correlated with the IOD index; (2) during positive IOD years, the anomalously cold water in the southeastern Indian Ocean and the 850-hPa anomalous easterlies over the equatorial central Indian Ocean might act as barriers to the continuously eastward propagation of the intraseasonal convection, which interrupts the Madden-Julian oscillation (MJO) propagation in the eastern equatorial Indian Ocean and western Pacific; and (3) during negative IOD years, the anomalously warm water in the southeastern Indian Ocean and the low-level westerly anomalies over the equatorial central Indian Ocean favor the eastward movement of MJO.  相似文献   

11.
Madden-Julian Oscillation (MJO)是热带大气在季节内时间尺度上的主要变化特征,MJO对流的活动对全球很多地区的天气和气候系统都有重要的影响,因此MJO是大气科学重要的前沿课题之一.MJO对流的生成过程是MJO研究中公认的最薄弱的环节,文中从MJO的研究背景出发,对MJO对流生成的有关研究工作及其进展进行了回顾与总结,主要包括MJO对流生成的前期信号、MJO对流的数值模拟、MJO对流生成的动力学机制.最后对MJO对流生成研究中还有待解决的问题进行了分析与讨论.  相似文献   

12.
13.
Observational evidence suggests a link between the summer Madden Julian Oscillation (MJO) and anomalous convection over West Africa. This link is further studied with the help of the LMDZ atmospheric general circulation model. The approach is based on nudging the model towards the reanalysis in the Asian monsoon region. The simulation successfully captures the convection associated with the summer MJO in the nudging region. Outside this region the model is free to evolve. Over West Africa it simulates convection anomalies that are similar in magnitude, structure, and timing to the observed ones. In accordance with the observations, the simulation shows that 15–20?days after the maximum increase (decrease) of convection in the Indian Ocean there is a significant reduction (increase) in West African convection. The simulation strongly suggests that in addition to the eastward-moving MJO signal, the westward propagation of a convectively coupled equatorial Rossby wave is needed to explain the overall impact of the MJO on convection over West Africa. These results highlight the use of MJO events to potentially predict regional-scale anomalous convection and rainfall spells over West Africa with a time lag of approximately 15–20?days.  相似文献   

14.
This paper investigates the contrasts between strong and weak Madden-Julian Oscillation (MJO) activity over the equatorial western Pacific during winter using the NCEP reanalysis data. It is shown that the MJO over the equatorial western Pacific in winter shows significant interannual and interdecadal variabilities. During the winters with strong MJO activity, an anomalous cyclonic circulation lies east of the Philippines, strong anomalous easterlies control the equatorial eastern Pacific, and anomalous westerlies extend from the Indian Ocean to the western Pacific in the lower troposphere, which strengthens the convergence and convection over the equatorial western Pacific. The moisture convergence in the lower troposphere is also enhanced over the western Pacific, which is favorable to the activity of MJO. Eastward propagation is a significant feature of the MJO, though there is some westward propagation. The space-time spectral power and center period of the MJO are higher during strong MJO activity winters. The anomalous activity of MJO is closely related to the sea surface temperature (SST) and East Asian winter monsoon (EAWM). During strong MJO activity winters, there are positive/negative anomalies at high/low latitudes in both sea level pressure and 500 hPa geopotential height, and the temperature is lower over the central part of the Chinese mainland, which indicates a strong EAWM. China experiences more rainfall between the Yellow and Yangtze Rivers, but less rainfall south of the Yangtze River. The SSTA is negative near the Taiwan Island due to the impact of strong EAWM and shows a La Ni?a pattern anomaly over the eastern Pacific. During the weak MJO activity winters, the situation is reversed.  相似文献   

15.
The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physical processes responsible for MJO eastward phase propagation are discussed. Next, a recent modeling result to address why MJO prefers a planetary zonal scale is presented. The effect of the seasonal mean state on distinctive propagation characteristics between northern winter and summer is discussed in a theoretical framework. Then, the observed precursor signals and the physical mechanism of MJO initiation in the western equatorial Indian Ocean are further discussed. Finally, scale interactions between MJO and higher- frequency eddies are delineated.  相似文献   

16.
The precipitation over eastern China during January–March 2010 exhibited a marked intraseasonal oscillation (ISO) and a dominant period of 10-60 days. There were two active intraseasonal rainfall periods. The physical mechanisms responsible for the onset of the two rainfall events were investigated using ERA-interim data. In the first ISO event, anomalous ascending motion was triggered by vertically integrated (1000–300 hPa) warm temperature advection. In addition to southerly anomalies on the intraseasonal (10–60-day) timescale, synoptic-scale southeasterly winds helped advect warm air from the South China Sea and western Pacific into the rainfall region. In the second ISO event, anomalous convection was triggered by a convectively unstable stratification, which was caused primarily by anomalous moisture advection in the lower troposphere (1000–850 hPa) from the Bay of Bengal and the Indo-China Peninsula. Both the intraseasonal and the synoptic winds contributed to the anomalous moisture advection. Therefore, the winter intraseasonal rainfall events over East Asia in winter could be affected not only by intraseasonal activities but also by higher frequency disturbances.  相似文献   

17.
This study investigates whether and how the Madden–Julian Oscillation (MJO) influences persistent extreme cold events (PECEs), a major type of natural disaster in boreal winter, over Northeast China. Significantly increased occurrence probabilities of PECEs over Northeast China are observed in phases 3 and 5 of the MJO, when MJO-related convection is located over the eastern Indian Ocean and the western Pacific, respectively. Using the temperature tendency equation, it is found that the physical processes resulting in the cooling effects required for the occurrence of PECEs are distinct in the two phases of the MJO when MJO-related convection is consistently located over the warm pool area. The PECEs in phase 3 of the MJO mainly occur as a result of adiabatic cooling associated with ascending motion of the low-pressure anomaly over Northeast Asia. The cooling effect associated with phase 5 is stronger and longer than that in phase 3. The PECEs associated with phase 5 of the MJO are linked with the northwesterly cold advection of a cyclonic anomaly, which is part of the subtropical Rossby wave train induced by MJO-related convection in the tropical western Pacific.摘要 本文利用高分辨率气温数据和热带季节内振荡 (MJO) 实时指数, 研究了1979–2015年冬季MJO活动对中国东北持续性极端低温事件 (PECE) 的影响特征和机理.结果表明:当MJO对流分别位于暖池地区的东印度洋 (位相3) 和西太平洋 (位相5) 时, 中国东北PECE的发生频率显著增加.利用温度方程诊断分析发现MJO两个位相所导致的冷却过程不同: 当 MJO处于位相3时, 中国东北地区为低压异常, 上升运动引起绝热冷却作用; 而位相5所形成的气旋性环流为中国东北地区带来西北风冷平流, 降温过程更强且持续更长时间.  相似文献   

18.
By analyzing observational data, previous studies have indicated that the tropical Madden-Julian Oscillation (MJO) is active during the boreal winter but relatively weak during the boreal summer. However, the factors that control seasonal MJO variation are not clear. To quantitatively understand the relative contributions of the occurrence frequency of enhanced MJO events and their averaged strength and lifespan to seasonal MJO amplitude, we defined the MJO events of 1979–2014 and analyzed their features in different seasons by using the Real-time Multivariate MJO (RMM) index and the newly proposed RMM-r index. The results indicate that the MJO events show a higher frequency of occurrence, a stronger intensity and a longer duration during the boreal winter (Dec.–Feb.) and spring (Mar.–May). However, the frequency, strength and lifespan of MJO events are all reduced during the boreal summer (Jun.–Aug.) and autumn (Sep.–Nov.). The enhanced MJO events in winter–spring also show a large ratio of variance for eastward to westward components. To elucidate how large-scale background fields affect seasonal MJO variation, a series of sensitivity experiments was conducted by using a 2.5-layer model that can simulate MJO-like features. It is found that the variation in low-level moisture (vertical wind shear) is the key large-scale factor affecting the seasonal variation in MJO strength (in propagation). In comparison with the summer–autumn seasons when the MJO is relatively weakened, the relatively abundant low-level moisture near the equator during boreal winter–spring may strengthen the development of MJO convection and circulation, whereas the relatively weak easterly shear (or the westerly shear anomaly) is conducive to the enhancement of an eastward-propagating MJO component.  相似文献   

19.
A latent heating peak in the PBL was detected in a simulation by a global GCM that failed to reproduce Madden-Julian Oscillation(MJO).The latent heating peak in the PBL was generated by very shallow convection,which prevented moisture from being transported to the free troposphere.Large amount of moisture was therefore confined to the PBL,leading to a dry bias in the free atmosphere.Suffering from this dry bias,deep convection became lethargic,and MJO signals failed to occur.When the latent heating peak in the PBL was removed in another simulation,reasonable MJO signals,including the eastward propagation and the structure of its large-scale circulation,appeared.We therefore propose that the excessive latent heating peak in the PBL due to hyperactive shallow convection may be a reason for a lack of MJO signals in some simulations by other GCMs as well.  相似文献   

20.
2010年华南前汛期持续性降水异常与准双周振荡   总被引:3,自引:1,他引:3  
利用中国台站逐日降水资料以及NCEP-DOE逐日再分析资料,分析了2010年华南汛期降水异常的低频特征及大气环流的影响。结果表明,2010年华南汛期降水异常呈显著的低频振荡特征,其中前汛期以10~20天振荡(准双周振荡)为主,后汛期以20~50天振荡(季节内振荡)为主。重点讨论了准双周尺度上前汛期持续性降水异常与中高纬和热带地区大气低频振荡的关系。中高纬地区的低频环流可通过Rossby波能量沿着低频遥相关波列的频散影响华南低频环流的变化。波活动通量分析显示,西西伯利亚作为Rossby波源,其波能量沿着横跨欧亚大陆的低频遥相关波列向我国东部地区频散,引起该地扰动加强,从而引起华南低频环流及垂直运动的变化进而造成华南降水的异常。热带东印度洋的准双周振荡是影响华南前汛期降水的另一低频来源。当赤道东印度洋对流旺盛(抑制),其上空为强上升(下沉)气流,低层辐合(辐散)高层辐散(辐合),而华南上空盛行下沉(上升)运动,不利于(有利于)华南降水。来自中高纬和低纬的低频信号的叠加并配合低频水汽输送共同影响了华南环流异常的低频变化,从而引起华南的低频降水异常,有利于华南持续性降水异常的发生。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号