首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
综合分析了哥本哈根联合国气候变化大会的主要成果,对近期国际气候变化谈判的焦点问题进行了展望,还分析了我国应对气候变化面临的新形势和新任务。提出我国应进一步加强应对气候变化工作,把应对气候变化工作纳入法制化轨道,大力研发和推广气候友好技术,加强薄弱领域基础建设,提高适应气候变化的综合能力,积极探索符合我国国情的应对气候变化市场体制和机制,加强气候变化的科学研究,提高我国应对气候变化的科技软实力,增强全社会应对气候变化的意识。  相似文献   

2.
中国大气水分气候变化研究   总被引:28,自引:2,他引:28       下载免费PDF全文
该文对我国逐日两次探空资料,经过综合静力学质量控制系统(CHQC)和序列均一性检验后,计算分析了中国大气水分的气候分布特点及近20年来气候变化趋势,讨论了大气水分变化与地面气温、夏季大气水分与我国东部降水异常之间的关系。  相似文献   

3.
"陕西省近四十年气候变化诊断分析"课题是国家气象局1989年安排的"短、平、快"项目.该课题由张向军、李怀川、刘安麟、周薇红、杨观竹等人承担.于1990年7月完成.该课题利用近四十年气候资料,通过计算、分析,给出了近四十年我省气温、降水变化的基本事实.探讨了近四十年气候的异常,分析了气候变化对工农业生产的影响,预测了未来气候变化趋势.对陕西省近四十年气候变化有如下结  相似文献   

4.
三江源地区气候变化及其对生态环境的影响   总被引:30,自引:2,他引:30  
李林  朱西德  周陆生  汪青春 《气象》2004,30(8):18-22
利用EOF等方法通过计算 1 96 2~ 2 0 0 1年 4 0年来三江源地区 1 6个气象台站气温、降水、蒸发资料 ,分析了三江源地区近 4 0年来气候变化的异常特征及其对生态环境的影响 ,结果表明 :三江源地区气候变化表现为气温升高、降水减少和蒸发增大的干旱化气候变化趋势 ,同时 ,在气候干旱化和人为活动的影响下出现了草场退化、湖泊萎缩、河流流量减少、土壤沙化和水土流失等生态环境荒漠化问题。  相似文献   

5.
<正>IPCC历次报告对未来气候变化的预估以及气候影响和对策都是建立在全球气候模式考虑各种人类活动情景的基础上计算得到的,其关键问题是:用全球气候模式计算的未来气候变化的预估可信度有多高?为此,2010年1月IPCC第五次评估报告第一和第二工作组联合主席召开了  相似文献   

6.
印度应对气候变化国家方案简析   总被引:2,自引:0,他引:2       下载免费PDF全文
2008年6月印度政府发布了《气候变化国家行动方案》,阐明了印度应对气候变化的原则立场以及减缓和适应措施。方案中明确指出发展中国家是气候变化的最大受害者,发达国家应该承担温室气体减排的责任和义务;由于近年印度排放不断上升,方案也着重提出了提高能效、大力发展可再生能源等措施。与我国发布的《中国应对气候变化国家方案》进行对比,印度国家行动方案中的一些观点和措施值得我国研究和借鉴,该方案为我国进一步提出应对策略、加强国际合作提供了参考。  相似文献   

7.
创刊词          下载免费PDF全文
经过两年半的内部刊物(《气候变化通讯》)运行和悉心筹备,《气候变化研究进展》创刊号终于和大家见面了。《气候变化研究进展》是受国家气候委员会委托,由中国气象局国家气候中心主办的综合性学术刊物,是我国在气候变化研究领域唯一的由自然科学和社会科学相结合的综合期刊。本刊主要刊登与气候变化相关的跨学科研究进展,介绍国内外有关气候变化的重大活动信息。本刊旨在促进气候变化研究的发展,并推动研究成果在经济社会可持续发展、适应  相似文献   

8.
分析气候变化对动物分布的影响,对气候变化影响下保护生物多样性具有重要的意义。利用CART(classification and regression tree,分类和回归树)生态位模型,采用A1、A2、B1和B2气候变化情景,模拟分析了气候变化对我国滇金丝猴分布范围及空间格局的影响趋势。结果显示:气候变化后,滇金丝猴目前适宜分布范围将减小,新适宜及总适宜范围将扩大,在1991-2020年时段较大,从1991-2020年时段到2081-2100年时段随气候变化时间段延长而逐渐缩小,其中A1情景下变化最大,B1情景下变化最小。气候变化后,滇金丝猴目前适宜分布区东北部及南部适宜范围将缩小,西部和西北及东南部适宜范围将扩大。气候变化后,滇金丝猴目前适宜、新适宜和总适宜分布区范围与我国年均气温和年降水量变化呈负相关。多元回归分析表明,滇金丝猴目前适宜、新适宜和总适宜分布范围均随我国年均气温升高和年降水量增加而减少,其中气温变化影响比降水量变化影响大。因此,气候变化后,近期将使滇金丝猴目前分布适宜分布范围减少,新适宜分布范围将扩大,随气候变化程度增强,新适宜及总适宜分布范围都将减小。  相似文献   

9.
新书架上     
《全国气候变化学术讨论会文集》中央气象局气象科学研究院天气气候研究所编,1981年科学出版社出版,174页。本书是1978年8月“全国气候变化学术讨论会”的论文选集,收入论文共十九篇。内容包括:地质时代第四纪我国气候变迁史;历史时期,特别是近五百年来我国旱涝和冷暖的演变规律;太阳黑子、行星运动、大气环流等因子对我国气候变化的影响;人类  相似文献   

10.
<正>10年时间尺度的气候预测,由于能够提供给政策制定者和有关部门与单位近期的气候变化预测,作为经济规划和社会生活安排等的参考,因此越来越受到重视。10年气候预测是气候科学中一个新的领域,一般预测方法采用:一是统计预测方法,根据前期气候变化特征,利用统计关系,计算预测未来10年的气候变化;二是动力模式预测方法,利用全球或区域气候模式,在一定初边条件和外强迫作用下,预测未来10年的气候变化;三是动力加统计  相似文献   

11.
气候变化对东北地区作物生产潜力影响的研究   总被引:13,自引:2,他引:11       下载免费PDF全文
利用作物生长动态统计方法,计算和分析了5~9月气温和降水变化对东北地区水稻、玉米、大豆3种主要作物生产潜力的影响,建立了各站气温、降水与作物生产潜力的关系式,并用来评估气温和降水变化对当年作物产量的影响,还讨论了未来气候变化对东北地区作物生产潜力的可能影响。  相似文献   

12.
Crop yields are affected by climate change and technological advancement. Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change. In this study, daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010, detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010, and results using an Agro-Ecological Zones (AEZ) model, are used to explore the attribution of maize (Zea mays L.) yield change to climate change and technological advancement. In the AEZ model, the climatic potential productivity is examined through three step-by-step levels: photosynthetic potential productivity, photosynthetic thermal potential productivity, and climatic potential productivity. The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated. Combined with the observations of maize, the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated. The results show that, from 1961 to 2010, climate change had a significant adverse impact on the climatic potential productivity of maize in China. Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity. However, changes in precipitation had only a small effect. The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years, which was opposite to the decreasing trends of climatic potential productivity. This suggests that technological advancement has offset the negative effects of climate change on maize yield. Technological advancement contributed to maize yield increases by 99.6%-141.6%, while climate change contribution was from-41.4% to 0.4%. In particular, the actual maize yields in Shandong, Henan, Jilin, and Inner Mongolia increased by 98.4, 90.4, 98.7, and 121.5 kg hm-2 yr-1 over the past 30 years, respectively. Correspondingly, the maize yields affected by technological advancement increased by 113.7, 97.9, 111.5, and 124.8 kg hm-2 yr-1, respectively. On the contrary, maize yields reduced markedly under climate change, with an average reduction of-9.0 kg hm-2 yr-1. Our findings highlight that agronomic technological advancement has contributed dominantly to maize yield increases in China in the past three decades.  相似文献   

13.
This paper presents the method to develop response surface diagrams (RSD) suitable to evaluate the impacts of climate change on potential crop production and crop area. The diagrams depict the response of different agricultural crops to average long-term changes in ambient temperature and precipitation on a country basis. They take into account the spatial and seasonal variability of climate, and differences in the climate response of important crops. RSDs for Germany and the Democratic Republic of Congo illustrate that countries and crop types differ greatly in their sensitivity to unit changes in long-term average climate. In comparing the area-weighted RSDs for Germany and Democratic Republic of Congo, it was found that the potential production in Germany of a weighted aggregation of crops is mainly sensitive to changes in temperature, whereas the potential crop production in the Democratic Republic of Congo mainly responds to changes in precipitation (over the specified ranges of climate variables). The RSDs can provide a visual overview of these varying sensitivities, and are a convenient and simple-to-understand method to summarize crop responses to climate change in a particular country.  相似文献   

14.
Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.  相似文献   

15.
We investigate the effect of climate change on crop productivity in Africa using satellite derived data on land use and net primary productivity (NPP) at a small river basin scale, distinguishing between the impact of local and upper-catchment weather. Regression results show that both of these are determining factors of local cropland productivity. These estimates are then combined with climate change predictions obtained from two general circulation models (GCMs) under two greenhouse gas emissions (GHG) assumptions to evaluate the impact of climate change by 2100. For some scenarios significant decreases are predicted over the northern and southern parts of Africa.  相似文献   

16.
Climate changes observed in recent decades are analyzed, and the respective climate-related tendencies of changes in heat supply, moistening, and productivity of the agrosphere that determine the natural resourse of potential Russia are determined. The grain crop yield trends are used additionally as climate change indicators. It is shown that climate changes observed in the last 30 years promote the increase in potential agriculture productivity in most of the Russian Federation, where not less than 85% of agricultural products are produced. At the same time, the increase in climate aridity is observed in several regions of Siberia and Chernozem Center, which results in a reduced productivity of agriculture.  相似文献   

17.
未来气候变化对东北玉米品种布局的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
为探求未来气候变化对我国东北玉米品种布局的影响,基于玉米生产潜力和气候资源利用率,结合区域气候模式输出的2011—2099年RCP_4.5,RCP_8.5两种气候背景气象资料和1961—2010年我国东北地区91个气象站的观测数据,分析了未来气候变化情况下,东北玉米品种布局、生产潜力、气候资源利用率的时空变化。结果表明:未来东北地区玉米可种植边界北移东扩,南部为晚熟品种,新扩展区域以早熟品种为主,不能种植区域减少。未来玉米生产潜力为南高北低,增加速率均高于历史情景,水分适宜度最低,而历史情景下温度是胁迫玉米生产的关键因子。未来东北玉米对气候资源利用率整体下降,其中RCP8.5情景利用率最低。  相似文献   

18.
Future climate projections and impact analyses are pivotal to evaluate the potential change in crop yield under climate change. Impact assessment of climate change is also essential to prepare and implement adaptation measures for farmers and policymakers. However, there are uncertainties associated with climate change impact assessment when combining crop models and climate models under different emission scenarios. This study quantifies the various sources of uncertainty associated with future climate change effects on wheat productivity at six representative sites covering dry and wet environments in Australia based on 12 soil types and 12 nitrogen application rates using one crop model driven by 28 global climate models (GCMs) under two representative concentration pathways (RCPs) at near future period 2021–2060 and far future period 2061–2100. We used the analysis of variance (ANOVA) to quantify the sources of uncertainty in wheat yield change. Our results indicated that GCM uncertainty largely dominated over RCPs, nitrogen rates, and soils for the projections of wheat yield at drier locations. However, at wetter sites, the largest share of uncertainty was nitrogen, followed by GCMs, soils, and RCPs. In addition, the soil types at two northern sites in the study area had greater effects on yield change uncertainty probably due to the interaction effect of seasonal rainfall and soil water storage capacity. We concluded that the relative contributions of different uncertainty sources are dependent on climatic location. Understanding the share of uncertainty in climate impact assessment is important for model choice and will provide a basis for producing more reliable impact assessment.  相似文献   

19.
Recent studies on the nature of global warming indicate the likelihood of an asymmetric change in temperature, where night-time minimum temperature increases more rapidly than the day-time maximum temperature. We used a physically based scenario of asymmetric warming combined with climate change scenarios from General Circulation Models (GCMs) outputs and the EPIC (Erosion Productivity Impact Calculator) plant process model to examine the effects of asymmetric temperature change on crop productivity. Our results indicated that the potential effects of global change on crop productivity may be less severe with asymmetric day-night warming than with equal day-night warming.  相似文献   

20.
Using recent advances in statistical crop yield modelling and a unique dataset consisting of yield time series for Russian regions over the period from 1955 to 2012, the study investigates the potential impact of climate change (CC) on the productivity of the three most important grains. Holding current grain growing areas fixed, the aggregate productivity of the three grains is predicted to decrease by 6.7% in 2046–2065 and increase by 2.6% in 2081–2100 compared to 1971–2000 under the most optimistic representative emission concentration pathway (RCP). Based on the projections for the three other RCPs, the aggregate productivity of the three studied crops is assessed to decrease by 18.0, 7.9 and 26.0% in the medium term and by 31.2, 25.9 and 55.4% by the end of the century. Our results indicate that CC might have a positive effect on winter wheat, spring wheat and spring barley productivity in a number of regions in the Northern and Siberian parts of Russia. However, due to the highly damaging CC impact on grain production in the most productive regions located in the South of the country, the overall impact tends to be negative. Therefore, a shift of agricultural production to the Northern regions of the country could reduce the negative impact of CC on grain production only to a limited extent. More vigorous adaptation measures are required to maintain current grain production volumes in Russia under CC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号