首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 796 毫秒
1.
膜基-气体吸收耦合分离混合气中CO2性能评价   总被引:1,自引:2,他引:1  
在膜基-气体吸收耦合实验装置上,评价了疏水性PP(聚丙烯)微孔膜,活化MDEA(N-甲基二乙醇胺)溶液分离混合气中CO2传质性能,研究了气液流速、吸收剂和混合气的浓度等因素对总传质系数的影响,采用阻力层关联方程模型预测总传质系数Kov值.结果表明:活化MDEA溶液能提高总传质系数Kov值,模型的计算值和实验值符合较好.  相似文献   

2.
采用基于离子液体[Bmin][BF4]+AMP作为捕集CO2的复合溶液,在膜吸收-热再生循环装置上,研究了该复合溶液捕集CO2的过程和传质性能;通过阻力层传质模型,比较了预测值与实验值.结果表明:在相同条件和较高负载下,复合溶液具有较高的传递推动力和更高的传质系数;模型预测值和实验值符合较好,平均误差为12.8%.实验证明复合溶液的传质性能优于单一溶液.  相似文献   

3.
基于济南S波段双偏振多普勒天气雷达探测数据,结合卫星、探空和地面实况资料,对2020年8月6日发生在山东曲阜一带的强降水风暴合并前后双偏振参量特征和微物理特征进行分析。结果表明:(1)云带之间产生多次合并,合并后风暴加强发展,产生较大的分钟降水量和累计降水量。(2)新生单体最典型的双偏振特征是具有大的ZDRCC,以少许液态粒子为主;新生单体迅速发展过程中上升气流强度明显加强,出现明显的KDP柱和ZDR柱,液态粒子浓度明显增大并出现偏大的液态粒子。(3)合并后发展的主要特征是,风暴顶高、强回波区顶高和KDP柱明显增高,-10℃层高度以下,特别是在风暴底层KDP值明显增大。(4)合并之后风暴发展最典型的微物理特征是,-10℃层高度之下液态雨滴粒子浓度迅速增大,-10℃层高度之上冰晶或霰粒子层的厚度明显增大。发展旺盛的风暴中、低层有丰富的液态水,风暴高层含有丰富的冰相粒子,从而导致风暴产生高强度降水。  相似文献   

4.
北上台风暴雨过程涡散场的能量收支和转换特征   总被引:7,自引:2,他引:5  
于玉斌  姚秀萍 《气象学报》1999,57(4):439-449
利用辐散风和旋转风的动能收支方程,对北方一次北上台风倒槽暴雨过程暴雨区内的涡散场能量收支和转换进行了计算.结果表明:暴雨区内动能的增加是暴雨增幅的一个主要原因.暴雨发展时,就旋转风动能(KR)而言,旋转风动能通量(HFR)辐合是主要能源,而旋转风的动能产生项(GR)是主要能汇;就辐散风动能(KD)而言,辐散风的动能产生项(GD)是主要能源,辐散风动能通量(HFD)辐散是主要能汇;总动能水平通量(HF)提供的辐合主要表现于对流层中、低层,这就使得低层辐合加强,上升运动加强,有利于暴雨的增幅.在暴雨过程中次网格尺度效应由能源转变为能汇,在暴雨发展之时能汇减小;能量的转换项C(KD,KR)总为正值,在转换项中,地转效应项的贡献很大.说明暴雨过程能量均由KDKR转换,也就是说有效位能经KDKR转换,充分说明了在整个暴雨过程中,尽管辐散风动能变化(∂KD/∂t)很小,但是它在其中充当“桥梁”作用,C(KD,KR)在暴雨发展时达到最大,此时能量转换最为旺盛;对流层低层辐散风动能向旋转风动能的转换是暴雨产生和发展的重要条件.此次暴雨过程,在暴雨区内表现为斜压不稳定和正压稳定共存的特征,其发展过程是系统斜压不稳定增长,正压稳定性减弱的过程,暴雨增幅的另一个重要原因就是暴雨区内低层斜压的发展.  相似文献   

5.
用完全的散度风(vD)和旋转风(vR)动能收支方程对8116台风和8407台风以及8116台风与其外围暴雨区的关系作了讨论。结果表明:台风区的有效位能通过散度风动能(KD)转换为旋转风动能(KR).台风向区域外部输出动能,在暴雨区上空通过涡度、散度场相互作用的转换机制由KRKD转换,散度风加大触发对流发展产生暴雨,这可能是台风与其外围暴雨联系的一种能量过程。  相似文献   

6.
陈立  张杰  刘振元 《气象科学》2015,35(6):710-719
利用AIRS卫星产品中的气温和水汽资料,计算出K指数(IK)和沙氏指数(IS)这两种大气不稳定指数。对暴雨发生前6 h左右这两种大气不稳定指数进行统计分析。统计结果表明:在暴雨发生前6 h左右,80%左右的暴雨发生在IK >27.5℃或IS <3℃的情况下。由于IK的分布与暴雨发生的频率基本呈现出较为明显的递增变化,因此IKIS相比能更好地反映暴雨天气的发生。为了更好地描述暴雨发生前的大气不稳定特征,将AIRS计算的IKIS做了适当的结合,得到KS指数(IKS)并将其运用到一次暴雨个例进行验证,从验证效果来看:暴雨发生的区域在6 h前基本都处在了IKS较高的情况下,IKS对暴雨具有一定的指示意义。通过对暴雨区域像元中AIRS反演的气温和水汽误差分析中可以得出:AIRS计算的IKIS误差主要由AIRS在有效云量较高时850hPa高度上反演的气温以及700hPa和850hPa高度上反演的水汽的误差导致的。  相似文献   

7.
利用2004年以来东亚地区10个本底观测站大气φ(CO2)观测资料,分析了各站大气φ(CO2)的变化特征及其各站之间的差异,讨论了下垫面特征、源汇作用等对φ(CO2)变化的影响.结果表明:10个本底站大气月均φ(CO2)有明显的季节变化,高值多出现在冬春等寒冷季节,而低值则多出现在6—9月,属于北半球的夏季;大气φ(CO2)日变化趋势较为一致,15时(当地时间)前后达到全天最低,随后φ(CO2)升高,并在日落后继续积累,至清晨7时(当地时间)前后达到全天最高,之后φ(CO2)随着太阳辐射的增强而逐渐降低,且平均φ(CO2)水平与下垫面植被量成反比,φ(CO2)日变化的幅度与下垫面植被量成反比.作为全球基准站之一的瓦里关山站,2004—2008年φ(CO2)年均值逐年增加,年增长率为2.28×10-6/a.  相似文献   

8.
On the basis of the budget equations for KR and KD, this paper presents the horizontal pattern of budget terms for two kinds of low level jets (LLJ) with and without heavy rain. The results show that the mechanisms for generating and maintaining LLJ are different, and especially, the direction of energy conversion is opposite. A positive conversion from KD to KR appears to be a necessary but not sufficient condition in the lower troposphere near the heavy rain area. The intensity and direction of energy conversion depends not only on the relative position of vorticity and divergence field, but also on the vertical profile of the jets directly.  相似文献   

9.
With two cases of local tropical disturbances in both developed and undeveloped phases, contributions to the genesis and development by kinetic formation and transfer from divergent and nondivergent winds are studied using energy budget equations. Computations are done of conversion kinetic energy between the two types of winds. The result indicates that the subgrid scale effect is the principal source of kinetic energy for a tropical cyclone to grow into a typhoon; the cumulus convection plays a dominant role, in company of relatively weaker contributions on vdrious phases of the life cycle by convergence of fluxes of divergent and nondivergent winds as well as the formation of kinetic energy by the former wind. It is also suggested that the conversion of kinetic energy between the divergent and nondivergent winds C(Kx, Kψ)is increasing with the development of disturbance mainly due to the contribution by C1=fΧ▽ψ. The disturbance is shown in the distribution of C(Kx, Kψ) to increase in a favorable anticyclonic outflow corresponding to the upper level where the conversion becomes negative in developing and mature phases while the wind velocity increases with enhanced conversion fr0m Kx to Kψ the lower level in association with the growth of the disturbance. In addition,geopotential energy P converts to kinetic energy of the divergent wind in every stage from formation to mature of the disturbance by means of C(P, Kx), the maximum appearing on the middle and upper layers of the troposphere.The intensity of C(P, Kx) is consistently in phase with variation of C(Kx, Kψ).  相似文献   

10.
利用常规高空资料、地面加密自动站、双偏振多普勒天气雷达、微波辐射计与ERA5再分析数据等多源资料,分析了2021年2月下旬黄河中下游两次暴雪过程的相态演变及形成机理。结果表明:两次过程的大尺度影响系统基本一致,只是影响系统的强度和位置不同导致两次过程存在些许差异。两次过程均存在相态转换,过程Ⅰ中存在相态逆转(由雨转雪再转雨),而过程Ⅱ中只存在雨转雪的转换。在太行山以西的山区,当地面2 m气温低于0.5 ℃时,降水相态以雪为主,在0.5~1 ℃之间时,多为雪或雨夹雪并存;在平原地区,当2 m气温为1~2 ℃时,降水相态为雨或雨夹雪,在0~1 ℃之间时,则为雪与雨夹雪并存,低于0 ℃时,降水相态为雪。在降雨阶段,双偏振雷达产品相关系数(CC)值约在0.98以下,差分反射率(ZDR)在0.6 dB以上,差分传播相移率(KDP)值约在0.2 (°)·km-1以上;在降雪阶段,CC值在0.98~0.99之间,ZDR值在0.2~0.8 dB之间,KDP 值约在0.2 (°)·km-1以下;但在降水相态由雨转雨夹雪时,ZDRCCKDP 值没有明显变化。  相似文献   

11.
Gas exchange experiments were conducted in the tropical Atlantic Ocean during a ship expedition with FS Meteor using a small rubber raft. The temporal change of the mixing ratios of CO, H2, CH4 and N2O in the headspace of a floating glass box and the concentrations of these gases in the water phase were measured to determine their transfer velocities across the ocean-atmosphere interface. The ocean acted as a sink for these gases when the water was undersaturated with respect to the mixing ratio in the headspace. The transfer velocities were different for the individual gases and showed still large differences even when normalized for diffusivity. Applying the laminar film model, film thicknesses of 20 to 70 m were calculated for the observed flux rates of the different gas species. When the water was supersaturated with respect to atmospheric CO, H2, CH4 and N2O, the transfer velocities of the emission process were smaller than those determined for the deposition process. In case of H2 and CH4, emission was even not calculable although, based on the observed gradient, the laminar film model predicted significant fluxes at the air-sea interface. The results are interpreted by destruction processes active within the surface microlayer.  相似文献   

12.
采用疏水性中空纤维膜组件和去离子水分离混合气中CO2,研究了气液流速、混合气CO2浓度和操作温度以及膜形态等因素对总传质系数的影响。通过传质阻力层方程和质量微分方程的关联,建立了新型数学模型,模拟了各种条件下的传质过程。结果表明,流体力学状态的改变能够加强传质,但加强程度有限;提高气相CO2浓度能够提高总传质系数;具有高孔隙率的膜组件拥有高传质系数;提高操作温度能够促进扩散,提高传质系数,在较高温度下,存在膜孔湿润的现象。模型能够较好地模拟膜接触器—物理吸收过程,模型值能够较准确地反映疏水性中空纤维模组件传质过程。  相似文献   

13.
A box model to simulate mass transfer inside deep street canyons and with atmospheric flow above is introduced and discussed. Two ideal deep street canyons with aspect ratios of 3 and 5 (the aspect ratio being the ratio between building height and street width H/W) are considered. This range of aspect ratios, found in many densely populated historical centres in Mediterranean cities as well as in other cities around the world, potentially creates high air pollutant concentration levels. Our model is based on a combination of analytical solutions and computation fluid dynamics (CFD) simulations using carbon monoxide (CO) as a tracer pollutant. The analytical part of the model is based on mass transfer velocity concepts while CFD simulations are used both for a preliminary validation of the physical hypothesis underlying the model (steady-state simulations) and to evaluate the concentration pattern with time (transient or wash-out simulations). Wash-out simulation curves were fitted by model curves, and mass transfer velocities were evaluated through a best-fitting procedure. Upon introducing into the model the contribution of traffic-produced turbulence, the modelled CO concentration levels became comparable with those obtained in real-world monitoring campaigns. The mass transfer rate between the canyon and the above atmosphere was then expressed in terms of an overall mass transfer velocity, which directly allows the evaluation of the mass transfer rate between the bottom volume of the canyon (pedestrian level) with the above atmosphere. Overall mass transfer velocities are reported as a function of the operating conditions studied (H/W = 3–5 and wind speeds = 2–8 ms−1). Finally, a simple expression is reported for determining pollutant concentrations at the pedestrian level based on the overall mass transfer velocity defined.  相似文献   

14.
The semi-analytical model outlined in previous studies (Massman, 1987a, b) to describe momentum and heat exchange between the atmosphere and vegetated surfaces is extended to include water vapor exchange. The methods employed are based on one-dimensional turbulent diffusivities and use numerical solutions to the steady-state diffusion equation. The model formulates stomatal response as a function of vapor pressure deficit and the within-canopy profile of mean photosynthetically-active radiation (PAR). It is then used to assess the influence that foliage structure, density, and sheltering can have upon the bulk transfer coefficient, kB v -1, and the canopy resistance. A general analytical formulation of the canopy resistance based on the mean within-canopy profile of PAR is proposed and found to agree with the model's solutions for canopy resistance to within a few percent.  相似文献   

15.
Uptake coefficient of I2 on aqueous surfaces was measured by using an impinging flow method. Dependence of the uptake coefficient on the gas-liquid contact time and pH was investigated. The uptake coefficient was (3.7± 2.0)×10–4 at 120 ms, 293 K and pH = 5.6. In the alkaline region, the uptake coefficient was larger by one order of magnitude than that in the neutral and acidic region. The I2 uptake on KI solutions and synthetic sea water solutions was also measured. According to the analysis by the reactive uptake model, the uptake of I2 was shown to be mainly determined by liquid phase reactions and the accommodation coefficient of I2 on aqueous surfaces was estimated to be 0.01.  相似文献   

16.
A 1-D model of the formation and seasonal evolution of Polar Stratospheric Clouds (PSCs) is described. The model considers PSCs of types 1 and 2 in the vertical range from 8 to 30 km and utilizes real temperature data. The micro-physical processes included in the model are the heterogeneous nucleation and condensation (or evaporation), while sedimentation, gas diffusion and vertical wind velocity are the processes responsible for transport. Model simulations have been compared with PSC data obtained by lidar at the South Pole: results for the winter 1990 are discussed. The different contribution of type 1 and type 2 PSCs to the measured backscattering coefficient has been evidenced. In the simulations, layers of NAT particles form when low values of the backscattering coefficient are measured; similarly, ice particles form when sharper and rapidly changeable structures with higher values of the backscattering coefficient are observed. Significant results on the condensation and depletion of HNO3 and H2O are presented. Water vapor profiles measured during winter 1990 are reproduced quite well.  相似文献   

17.
采用漂浮通量箱法和扩散模型法同步地观测了模拟内陆水体在不同条件下的CH4和N2O的水-气交换通量,旨在比较两类方法取得结果的异同。结果显示:这两类方法所测得的绝大多数CH4排放通量都与水中溶解氧呈显著线性负相关(显著性系数P0.001)。同时N2O排放通量与表层水温及水中铵态氮、硝态氮、溶解碳和溶解氧的关系可用包含所有上述水环境因素的Arrhenius动力学方程来表达,这些因素可以共同解释86%~90%的N2O通量变化(P0.0001),且不同方法测定的N2O通量的表观活化能和对表层水温的敏感系数分别介于47~59 kJ mol-1和1.92~2.27之间;扩散模型法所获得的CH4和N2O通量分别是箱法测定值的13%~175%和15%~240%,差异程度因模型而异;不同模型取得通量间相差20%~1200%,平均相差2.3倍。上述结果表明:仅用一种模型方法来取得CH4或N2O排放通量易形成较大偏差;不同扩散模型法和箱法测定的通量在反映CH4和N2O排放的内在规律方面具有一致性,但它们对真实气体通量的测量是否都存在不同程度的系统误差,尚需进一步研究。  相似文献   

18.
The pK 1 * and pK 2 * of H2SO3 have been determined in NaCl solutions as a function of ionic strength (0.1 to 6 m) and temperature (5 and 25 °C). The extrapolated values in water were found to be in good agreement with literature data. The experimental results have been used to determine the Pitzer interaction parameters for SO2, HSO 3 - and SO 3 - in NaCl solutions. The resultant parameters for NaHSO3 and Na2SO3 were found to be in reasonable agreement with the values for NaHSO4 and Na2SO4. It, thus, seems reasonable to assume that the interactions of Mg2+ and Ca2+ with HSO 3 - and SO 3 - can be estimated from the values with HSO 4 - and SO 4 - until experimental values are available. Measurements of pK 1 * and pK 2 * in artificial seawater were found to be in good agreement with the calculated values using the derived Pitzer parameters. It is, thus, possible to make reasonable estimates of the activity coefficients of HSO 3 - and SO 3 - ions and pK 1 * and pK 2 * for the ionization of H2SO3 in marine aerosols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号