首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
为满足应急气象服务需求,2013 2014年在西藏自治区强降雪和雪灾易发及重点积雪区域气象站安装了4套SR-50A超声波雪深观测系统,首次实现了西藏高原雪深自动观测和数据实时传输。利用12:30加密和08:00(北京时)常规人工雪深观测数据对4个站SR-50A雪深观测数据进行了评估和对比分析。结果表明:(1)SR-50A与人工观测的平均雪深偏差范围在±2 cm之内。雪深越大,平均均方根误差越小,观测精度越高。SR-50A传感器更为适合雪深较大地区的积雪监测。(2)SR-50A对西藏高原的雪深具有较好的监测能力,与人工观测雪深具有较好的一致性,4个观测点的线性相关系数在0.81~0.97,呈现极为显著的线性关系。(3)大风、局地太阳光照条件、气温和地表特征等因素通过风吹雪和融雪引起观测场内积雪分布不均匀,加之仪器是固定点观测,人工观测是观测场内3个点的雪深平均值,这些是SR-50A与人工观测雪深差异较大的主要原因。  相似文献   

2.
利用2004年5月以来超声雪深传感器SR-50在青藏高原唐古拉综合监测场获取的实时积雪资料和相关气象数据,评估了SR-50在青藏高原积雪监测中的性能和作用,并对青藏高原腹地多年冻土区积雪变化特征进行初步分析。结果表明:超声雪深传感器SR-50对不同时间尺度的地表积雪过程均有较好的监测能力。监测数据清晰地显示唐古拉地区地表积雪深度在夜间相对稳定、在日间迅速降低的特点。唐古拉地区平均年积雪日数为82 d,各月均有地表积雪出现,但夏季的地表积雪较少且持续时间很短。该地区地表积雪总体上呈厚度较薄、消融较快、持续时间较短的特点。2005—2008年该地区瞬时最大积雪深度为22 cm,日平均积雪深度小于5 cm日数占总积雪日数的71.58%。  相似文献   

3.
青藏高原积雪监测在地球辐射平衡、全球气候变化和生态环境等方面有重要作用,对气候预测、雪灾预测等具有重要意义。FY-4(风云4号)卫星数据具有高时空分辨率的优势,基于FY-4A(风云4号A星)构建积雪监测方法与模型,不仅拓展了静止卫星应用领域,也丰富了积雪监测应用的手段。FY-4的高时间分辨率为积雪监测的研究提供了分钟级数据,对积雪与云的变化掌握的更为细致,但用于积雪监测的波段,因分辨率不高容易导致错判与漏判。本文基于2020年小时级野外地面雪深观测数据、风云3号D星积雪覆盖产品(FY-3D_SNC)数据,构建了基于归一化积雪指数(Normalized Difference Snow Index,NDSI)的FY-4A卫星积雪判识方法,提出了雪深监测模型与等级划分指标。结果表明:NDSI≥0.20是青藏高原地区FY-4A卫星积雪判识的适用阈值,无论有云或无云条件,其漏判率均低于8.0%。地面站点验证结果表明,积雪判识准确率达83.33%以上。空间范围内直接剔除云区后,积雪判识经混淆矩阵验证准确率在82.48%以上。因此,FY-4A卫星在青藏高原地区具有积雪监测的能力。虽然FY-4A卫星对超过10 cm以上雪深不具备区分能力,但可以较好地识别10 cm以下浅雪雪深,相关系数达到0.745,〖JP3〗通过了0.001显著性水平检验。据此建立的FY-4A卫星0~10 cm雪深等级指标,总体分级精度达到87.50%。FY-4A卫星雪深反演方法在青藏高原地区对0~10 cm浅雪雪深有较好的估算能力。  相似文献   

4.
利用全球导航卫星系统反射信号研究测站周边地表环境参数是近年来遥感领域的研究热点之一。利用测量型全球导航卫星信号接收机数据,实时获取其周边的积雪深度,是对现有降雪监测方法的有效补充。该文基于GPS信噪比与信号振幅的变化特征,研究了使用GPS信噪比观测值进行雪深探测的算法,并首次使用国家气象观测站的业务观测数据对地基GPS反演雪深算法进行了验证。对比试验使用近两个月的人工积雪深度测量值与GPS信号反演的积雪深度值进行了逐日比较,二者的吻合度较好,标准偏差为2.04cm,相关系数为0.94。该对比试验表明,利用常规测量型地基GPS接收机观测数据进行雪深探测是可行的。应用地基GPS反演雪深技术,气象部门基于现有的地基GPS水汽监测网可进一步开展积雪环境监测研究。  相似文献   

5.
从传感器测量原理、观测方法、数据处理算法等方面介绍了一种利用相位法激光测距原理测量积雪深度的雪深传感器,并参加了中国气象局于2010/2011年在黑龙江通河、新疆阿勒泰等台站开展的积雪深度对比观测试验,与超声波传感器和人工测量积雪深度进行了对比,比较了三者之间测量结果的差异。试验结果表明:这种激光雪深传感器能够适应冬季严寒和暴雪天气条件,可以连续、自动、准确的监测雪面变化过程;与超声波雪深传感器相比,激光雪深传感器测量结果更加稳定,更加接近人工观测结果;激光雪深传感器与人工测量雪深结果之间的平均误差约为,测量精度达到《地面气象观测规范》要求。  相似文献   

6.
冬季雪深再分析资料在欧亚中高纬地区的适用性评价   总被引:1,自引:0,他引:1  
欧亚中高纬地区的积雪是影响气候的重要因子,但是观测台站稀疏且记录只到1996年,导致积雪观测资料严重缺乏。基于目前国际上应用较为广泛的3套再分析资料:美国国家大气海洋局(NOAA)的20世纪再分析资料(NCAR-20th century reanalysis)、欧洲中期天气预报中心(ECMWF)的再分析资料(ERA-Interim)及日本气象厅(JMA)的全球大气再分析资料(JRA-55),利用前苏联站点观测的雪深资料评估雪深再分析资料在欧亚大陆区域的适用性。结果表明:3套再分析资料对积雪的时空变化均具有一定的描述能力;其中,尤以JRA-55再分析资料与观测事实最为接近,能较好揭示欧亚中高纬雪深变化的空间分布特征,反映雪深的长期变化趋势。JRA-55再分析资料揭示的欧亚雪深与169站观测有90%吻合,20世纪再分析资料有76%一致,而ERA-Interim再分析资料只有一半。区域尺度上,JRA-55再分析资料揭示的欧洲、西伯利亚南部雪深在1961~1990年的变化与观测是正相关,相关系数达到0.91、0.87,而20世纪再分析资料仅有0.77、0.32。长时间序列的雪深资料(JRA-55)表明欧亚大陆积雪存在年代际的变化特征:1960年代积雪偏少;1970年代偏多;从1980年代开始呈现减少趋势,持续至20世纪末,并且积雪的减少是高纬度积雪变化造成的。  相似文献   

7.
利用阿尔山地区多年实测雪深数据评估3种微波遥感雪深数据,即星载微波成像仪AMSR-E(Advanced Microwave Scanning Radiometer for EOS)和AMSR-2(Advanced Microwave Scanning Radiometer 2)的积雪产品、国内学者建立的中国雪深数据集,在该地区的适用状况,并建立新的雪深反演算法。1981~2014年的中国雪深数据集和阿尔山站点实测雪深统计的积雪日数和最大积雪深度具有较好的一致性,尤其是在2000年以后。AMSR-E和AMSR2雪深数据年变化与实测雪深变化趋势一致,与实测雪深数据相关系数超过0.60,不过具体雪深数据变化幅度远高于实测数据,致使两者之间的均方根误差高达13.0 cm。中国雪深数据集在阿尔山地区与实测雪深相关系数超过0.65,两者之间均方根误差为6.3 cm。结合星载微波观测亮温与实测雪深建立适合阿尔山地区的雪深反演算法,验证分析显示反演结果与实测雪深相关系数为0.77,两者的均方根误差减小为4.7 cm,优于本文评估的3种微波遥感雪深数据。  相似文献   

8.
受自然条件和观测数据的限制,对青藏高原腹地高时间频次积雪融雪动态过程的认识与研究仍不足,利用高原中部沱沱河地区野外观测试验场2013/2014年冬半年积雪深度和气温数据,对发生在11月期间的积雪动态融雪过程及其与气温的关系进行了分析。结果表明,高原中部地区融雪过程表现为先缓后急的总体特征,融雪在雪深较小的后期迅速加快。雪深变化与气温存在紧密联系,融雪过程发生之前3 h之内的气温都显著影响雪深变化,雪深变化与超前30 min及同步气温相关最为显著,线性相关系数分别达到-0.3600和-0.3589,通过了0.01显著性水平检验。考虑温度的滞后效应,沱沱河地区雪深下降在温度-13℃时就可发生,-4~-2℃是主要消融温度区间,这个温度明显低于中国其他山区积雪消融的临界温度。融雪过程主要发生在12:00-18:00期间,且存在12:00-13:30与16:30-18:00两个快速下降时段,值得注意的是,热量状况最好的14:00-16:00雪深下降并不显著。融雪期日照时数与雪深的相关系数为-0.845,融雪前期气温对雪深影响大于日照时数对雪深的影响,融雪后期日照时数对雪深影响大于气温对雪深的影响,均通过0.01显著性检验水平。融雪过程与热量条件及日照时数间的复杂关系表明,青藏高原腹地积雪的消融与日照时数、雪的形态、消融程度、升华过程等均有一定联系。  相似文献   

9.
李延  赵瑞瑜  陈斌 《高原气象》2024,(2):277-292
青藏高原冬春积雪变化具有显著的年际变化特征,其对中国东部夏季降水预测具有一定指示意义。由于特殊的复杂地形,青藏高原气象站点分布稀疏且不均匀,再分析数据和卫星数据提供的高原积雪资料的不确定性是影响和制约积雪变化及其天气气候效应研究中的一个关键问题。本文基于青藏高原台站观测、再分析(ERA5和NOAA-V3)和卫星反演(MODIS雪盖以及IMS雪盖)的多源积雪资料,采用偏差分析、均方根误差以及相关分析等多元统计方法重点检验了多源高原积雪数据在描述积雪年际变化特征方面的不确定性。通过比较不同积雪资料的时空分布和变化特征,以期提升多源高原积雪资料适用性的认知,并为相关研究提供有意义的参考。分析结果表明:(1)就再分析数据给出的积雪资料而言,ERA5雪深资料相较NOAA-V3雪深,对高原站点观测雪深的描述效果更好。除了高原中东部分站点外,ERA5雪深数据的平均偏差和平均均方根误差均较小,而NOAA-V3雪深数据的平均偏差和均方根误差在整个高原范围内均存在一定程度的高估;(2)再分析(ERA5和NOAA-V3)和卫星反演(MODIS雪盖以及IMS雪盖)积雪数据和高原站点雪深均在年际变化特征上具有较...  相似文献   

10.
伊犁地区近35年冬季积雪变化特征分析   总被引:1,自引:0,他引:1  
通过对伊犁地区8个气象地面观测站35a(1971—2005年)11—3月逐旬的冬季最大积雪深度、积雪日数、降水量和平均温度的统计分析,结果表明:伊犁地区冬季降雪的时间、空间分布不均,最大降雪发生在新源;平均雪深最大的是伊宁县,最小的是特克斯县;冬季积雪日数变化相对比较稳定;冬季降雪与平均温度存在着很好的响应关系。在SPSS中对冬季的平均温度与平均降水和平均雪深进行相关分析,发现平均雪深、平均温度和平均降水为显著正相关。  相似文献   

11.
基于MODIS资料的西藏遥感积雪监测业务化方法   总被引:3,自引:1,他引:2  
雪灾是西藏地区藏北一线、南部边缘地区对牧业生产影响最严重的灾害之一,利用卫星遥感资料开展积雪监测,提供监测信息产品具有重要的现实意义.利用拉萨接收站接收的中分辨率成像光谱仪(MODIS)卫星遥感资料对西藏高原积雪的监测方法进行了探讨,找出适合该地区的积雪判别模式,建立MODIS资料为基础的积雪监测系统.基于MODIS数据计算得出的归一化差分积雪指数(NDSI)和归一化植被指数(NDVI)与1、2、4、6通道等相结合,建立积雪监测模型是可行的;得出的积雪判识方法对于西藏地区有较高的适用性,如结合地表土地利用类型数据将有林区和非森林区分开计算,能较好地消除藏东南地区因地势复杂、森林茂密对NDSI的影响.  相似文献   

12.
近30年青藏高原雪深时空变化特征分析   总被引:3,自引:2,他引:1  
除多  洛桑曲珍  林志强  杨勇 《气象》2018,44(2):233-243
利用1981—2010年地面雪深观测资料较系统地分析了近30年青藏高原(以下简称高原)积雪深度的时空变化特点。主要结论如下:(1)高原雪深大值区主要在喜马拉雅山脉南麓,小值区则在高原南部干暖河谷和北部柴达木盆地,30年间高原平均最大雪深出现了显著减少趋势,减幅达0.55cm·(10a)-1,1997年前后高原雪深出现了由大到小的气候突变。(2)春季是高原平均积雪深度最大的季节,30年里平均最大雪深下降趋势非常显著,下降幅度为0.47cm·(10a)-1,且在1998年出现了由大到小的气候突变。(3)秋、冬季,高原平均最大雪深减少趋势不明显,但在不同区域雪深增减趋势不尽相同。秋季56%的台站呈减少趋势,而31%的台站有不同程度的增加;冬季61%的台站出现了减少趋势,而且减幅较大的台站基本分布在高原西南,而31%的台站则出现了增加趋势,多数分布在高原东部。(4)夏季高原积雪分布极为有限,仅在海拔和纬度较高的高寒地区有积雪,近30年雪深减少趋势同样显著。  相似文献   

13.
浙江省自动雪深观测数据质量分析   总被引:1,自引:0,他引:1  
吴书成  邱杰  吴静  孔万林 《气象科技》2017,45(4):616-621
近年浙江省陆续建设部署了200多套自动雪深观测仪,为了使其观测数据有效应用于防灾减灾工作,本文分析了自动雪深仪在实际业务中的运行情况,查找了仪器结构、测雪板材质、安装方式、土壤霜冻等方面存在的问题,分析了问题产生的原因,提出了以小时数据变化为主的雪深数据质控方法,并在实际降雪过程中进行了检验,对雪深观测的有关技术规范提出了改进建议。结果表明,自动雪深观测仪可以全面连续的反映积雪的变化过程,获取丰富的实时观测数据,相比人工测量雪深在时效、精度等方面具有显著的优势。  相似文献   

14.
对2011年3-7月28次DZN3型土壤水分自动站与人工土壤相对湿度观测资料进行质量对比分析,结果显示:自动站观测数据与人工观测数据相比普遍偏小,30 cm土层数据偏差最小,20、40、50 cm土层次之,10、60、80、100 cm土层偏差较大;10、20、80、100 cm 4个土层自动站相对湿度演变趋势与人工测值较为接近,相关性较好;自动站土壤水分传感器对土壤水分变化敏感程度较低,其相同土层土壤相对湿度波动振幅小.分析结果可为评估DZN3型土壤水分自动站的监测能力及监测数据订正与应用服务提供客观依据.  相似文献   

15.
遥感-测站相结合的动态雪深反演方法初探   总被引:2,自引:1,他引:1       下载免费PDF全文
该文结合2000年专用传感器微波成像仪(SSM/I)的亮温数据和我国观测站雪深资料,提出了一种遥感-测站相结合的动态雪深反演方法,试图用统计关系的时空动态化方案克服理论上亮温与不同类型积雪之间物理关系的复杂性,从而提高测站稀疏区和雪盖边缘区的雪深反演精度。其最大特点在于反演系数并不固定,而随时间和空间变化,较好地改善了单一系数反演方法中积雪物理性质的区域性差异和时间(季节)性差异带来的反演误差。初步分析表明:这种遥感-测站相结合的反演方法所得的积雪空间分布连续性好,在雪盖边缘区和站点稀疏区也能得到较合理的雪深数据;与静态遥感反演法和可见光雪盖面积相比,这种方法克服了它们在华北和华中低估雪盖面积的缺点,积雪面积分布更接近真实场,对西部积雪分布的反演也有一定改善。  相似文献   

16.
利用位于三江源腹地的玉树州隆宝自然保护区野外雪深自动观测站2013/2014年冬季每30 min积雪深度与同步气温数据,对发生在2014年2月的较大降雪过程的动态融雪过程及其同步气温进行了研究分析。结果表明,玉树隆宝地区融雪过程总体表现为"先慢后快"的变化特征,积雪在10 cm以上时融雪过程相对缓慢,在10 cm以下时,积雪加速消融,积雪越薄,融雪越快;在融雪期内,雪深快速下降分别发生在10:00(北京时,下同)11:00与14:00 15:30;气温与雪深变化关系紧密,09:00以前,雪深的下降与气温的关系不明显,09:00以后气温开始对雪深的变化产生比较明显地影响,这种相关性在10:00后明显增强,热量条件对积雪消融的影响自10:30一直持续到18:00;相对而言,13:00 14:00气温对日积雪消融的贡献最大。超前滞后关系分析表明,融雪期之前240 min之内的气温都将显著影响到积雪雪深的变化;玉树隆宝地区积雪在气温-12℃时仍有积雪深度下降的现象发生,正变温对积雪消融更有利。  相似文献   

17.
以新疆塔城基准站自动气象站2006年11月—2010年3月积雪深度≥0cm的451天为样本,对0cm地面温度、雪面(草面)温度、气温及云量、日照时数、雪深进行统计分析,找出不同积雪深度下地面温度、雪(草)面温度与气温的关系,结果显示:雪(草)面温度在积雪期,变化趋势与气温一致,受云量及日照时数影响明显,平均雪温低于平均气温;地温随雪深变化有20cm和50cm两个分界点,雪深≤20cm时,地温受雪深、气温影响较大,变化趋势与气温基本一致,地温高于气温,雪层较薄时,受云量和日照影响较明显。雪深超过20cm时,地温变幅趋向定值,地温变化仅受长时间温度变化影响,且不低于-5℃;雪深超过50cm时,地温趋于定值(-1℃)。  相似文献   

18.
人工雪深和自动雪深观测数据差异的原因分析   总被引:1,自引:0,他引:1  
<正>1引言根据中国气象局《综合气象观测系统发展规划(2010-2015)》,实现各种气象要素的自动化观测已是我国气象部门近阶段观测自动化发展的主要方向。雪深自动观测设备通过了中国气象局的考核,现已定型,黑龙江省有5个台站试点运行,采用人工观测雪深和自动雪深探测仪观测雪深对比观测。本文根据观测地段、测量工具和观测方法的不同,就两种观测方式取得的观测数据存在的差异原因进行了分  相似文献   

19.
下列情况应测量雪压 :①每月逢 5、1 0、1 5、2 0、2 5和月末最后一天 0 8时雪深≥ 5cm时 ,应在雪深观测后测雪压 ;②在规定的日子里 0 8时无积雪 ,而在 0 8时以后形成雪深≥ 5cm的积雪 ,在 1 4时或 2 0时补测雪深后测雪压 ;③在规定的日子里未达到测雪压标准 ,而在随后的其它日子 (指两次规定日子之间的日子 ) ,0 8时测得的雪深≥ 5cm时 ,应在雪深观测后补测雪压 ;④在规定的日子里未达到测雪压标准 ,在随后的日子里 0 8时也无积雪 ,而在该日 0 8时以后降雪 ,且雪深≥ 5cm ,应在该日 1 4时或 2 0时补测雪深后补测雪压 ;⑤在前一天…  相似文献   

20.
本文主要探讨了目前新一代环境监测系统-EOS/MODIS卫星数据在青海省积雪业务监测中的应用及其优势;重点讨论了基于EOS/MODIS资料的积雪卫星遥感监测方法与雪深监测模式,并初步建立了适于青海省本地应用的NDSI雪深分级模式。以此为基础,讨论利用该卫星资料进行本省积雪业务化监测服务的内容与范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号