首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
利用C,N稳定同位素分析法鉴别家猪与野猪的初步尝试   总被引:1,自引:0,他引:1  
采用动物考古学和分子生物学的研究方法探索家猪的起源已取得丰硕的成果,但如何科学鉴别驯化初期的家猪,至目前为止一直缺乏有效的研究思路和方法.与野猪的食物主要源自自然环境相比,家猪的食物则更容易受人类饲喂活动的影响,故此,理论上,探索猪群间的食物结构差异,了解人类的饲喂活动对猪食物的影响,可望科学地辨别家猪与野猪.对山东后李文化时期(约8500~7500年前)小荆山遗址的人骨以及月庄遗址的动物骨进行了C,N稳定同位素分析,探索猪群食谱差异,并通过与先民以及其他动物的同位素数值比较,尝试科学地鉴别家猪与野猪.先民的δ^13 C(平均值-17.8‰±0.3‰和δ^15 N(平均值9.0‰±0.6‰)表明,先民虽已开始从事粟作农业,但粟作农业在人类的生活方式中尚不占主导地位(因为粟类植物是一种典型的C4植物),先民还主要以采集、狩猎或驯养家畜为生.牛的δ^13 C值(-16.1‰)和δ^15 N值(6.9‰),表明其食物主要以C3类植物为主,兼具少许C4类植物.与牛相比,鱼的δ^13 C值(-24.9‰)更低而和δ^15 N值(8.8‰)更高,显示出欧亚大陆淡水鱼的同位素特征.依据δ^13 C值和δ^15 N值的不同,猪可分为3组:A组,由两头猪组成,具有低的δ^13 C值(-18.1‰,-20.0‰)和δ^15 N值(4.7‰,6.0‰);B组,仅有一头猪,具有最高的δ^13 C值(-10.6‰)和居中的δ^15 N值(6.4‰);C组,仅有一头猪,其δ^13 C值(-19.0‰)较小而δ^15 N值(9.1‰)最高.现代或古代野猪骨的C,N稳定同位素分析研究已经表明,野猪主要以C3类植物为主,其δ^15 N值更接近于食草类动物而远离食肉类动物.通过与小荆山遗址先民、野猪及河南西坡遗址(仰韶文化,6000—5500年前)和康家遗址(龙山文化,4500~4000年前)家猪同?  相似文献   

2.
黔中碳酸盐岩和非碳酸盐岩上覆土壤CO_2 来源的对比研究   总被引:11,自引:0,他引:11  
利用含量和碳稳定同位素组成相结合的分析方法, 分别对黔中灰岩、白云岩和粘土岩上覆土层中CO2的来源进行对比研究. 结果显示: 不同基岩上覆土壤CO2浓度相比, 灰岩>白云岩>粘土岩; 土层20 cm深度以下, 灰岩上覆土壤CO2的δ13C值介于-12.811‰ ~13.492 ‰ (PDB)、白云岩上覆土壤CO2的δ13C值介于-13.212‰~-14.271‰ (PDB), 粘土岩土壤剖面CO2的δ13C值介于-20.234 ‰ ~-21.485‰ (PDB). 以土壤有机碳和碳酸盐岩的δ13C值为两个同位素端元, 计算CO2来自于碳酸盐岩溶蚀产生的比例, 灰岩上覆土壤为21%~25%, 白云岩上覆土壤为19%~21%, 粘土岩上覆土壤基本上没有碳酸盐岩溶解产生的CO2混入.  相似文献   

3.
尽管中国有关稻粟混作的研究已有不少报道,但混作区内稻粟农业在先民生产生活中的地位以及在家畜饲养中的作用,其发展与文化演进和传播、古环境变化间的内在联系等关键问题,依然未能很好地解决.为此,本文对位于稻粟混作区内的湖北郧县青龙泉遗址出土的人和猪骨(3000~2600 BC屈家岭文化期和2600~2200 BC石家河文化期)进行了C,N稳定同位素分析,试图在揭示他们食物结构的基础上,探讨稻粟农业在先民和猪食物结构中的地位及其演变过程,并对稻粟的种植与文化交流以及古环境间的相互关系进行初步探索.先民的δ13C值位于-16.7‰~-12.4‰之间,平均值为-14.6‰±1.3‰(n=24),这表明先民的食物中兼具C3和C4类食物.由于遗址中同时发现了稻(C3类植物)粟(C4类植物)遗存,据此我们认为,稻粟农业均对先民的食物有所贡献,且粟作农业在先民的生活方式中占次要地位.先民的δ15N均值为9.0‰±1.2‰(n=24),表明动物类蛋白在先民的食物中占有相当的比例,但其较大的分布范围(6.6‰~10.8‰)则表明,先民的肉食来源存在相当大的差异.猪的δ13C均值(-14.3‰±2.5‰,n=13)与先民类似,而δ15N均值(7.7‰±0.6‰,n=13)稍逊于先民,表明猪的食物来源与人相近,其食物中可能含有较多的人类食物残余.对先民和猪的δ13C值和δ15N值的相关性分析结果显示皆不具有相关性,暗示先民和猪的食物来源中含有较多的植物类食物,这很可能与当时较为发达的稻粟混作农业密切相关.通过不同文化期内先民和猪食物结构的对比分析,发现粟类食物在石家河文化期人和猪食物中所占比例皆上升10%左右,反映了粟作农业明显加强,而这种变化与古环境变迁以及南北文化间的交流密切相关.当气候温暖、降水增加、屈家岭文化北进之时,稻作盛行;而在气候变冷、降水减少、北方文化南传之际,粟作加强.  相似文献   

4.
通过对鱼苗时期鄱阳湖网箱养殖区沉积物、饵料及鱼粪等样品总有机碳(TOC)含量、总氮(TN)含量、碳氮比(C/N)、δ^13 C及δ^15 N的测定,分析探讨了鄱阳湖网箱养殖区沉积物有机质来源,量化了网箱养殖废物对养殖区沉积物有机质的贡献.结果表明,网箱养殖区沉积物的δ^13 C和δ^15 N值分别为-27.67‰~-25.65‰和5.19‰~7.27‰,饵料的δ^13 C和δ^15 N值分别为-24.73‰和10.28‰,鱼粪的δ^13 C和δ^15 N值分别为-26.30‰和15.54‰.网箱养殖区沉积物有机质来源主要有残饵、浮游生物及其他来源,其贡献率分别为48.3%±11.4%、25.6%±11.3%及26.0%±5.8%,而鱼粪的贡献几乎可以忽略不计.在水动力平流引起的扩散及沉积物的再悬浮的影响下,网箱养殖源有机质的扩散距离达1500 m.在鱼苗时期,鱼类网箱养殖的残饵是鄱阳湖网箱养殖区沉积物有机质的主要来源.  相似文献   

5.
通过对贡嘎山东坡C3植物碳同位素组成(δ^13C)的系统研究和对C4植物分布的初步调查,探讨了C3植物δ^13C在湿润环境下随海拔的变化规律,以及环境因素对其的影响.同时还揭示了C4植物在贡嘎山东坡随海拔的分布以及控制C4植物分布主要环境因子.结果显示:贡嘎山东坡C4植物主要分布在2100m以下的低海拔地区,过低的夏季温度是限制C4光合途径很难发生在高海拔的主要原因;在贡嘎山东坡海拔2000m以上的湿润地区C3植物δ^13C随海拔升高显著变重,变化梯度为1.3‰·km^-1.温度可能是影响δ^13C变化的主要环境因子,降水量、大气压、大气中CO2浓度和碳同位素值的影响可能较小.  相似文献   

6.
中国北方黄土区C-3草本植物碳同位素组成研究   总被引:22,自引:0,他引:22  
对生长在我国北方黄土区的367个C-3草本植物样品进行了碳同位素分析, 结果表明我国北方黄土区C-3草本植物δ 13C值分布区间为-21.7‰ ~ -30.0‰, 平均值为-26.7‰; 黄土高原中部半湿润区的C-3草本植物δ 13C值分布集中, 在-24.4‰ ~ -28.5‰之间, 平均值为-27.5‰; 而黄土高原西部边缘的半干旱-干旱气候区的C-3植物δ 13C值变化范围在-21.7‰ ~ -30.0‰, 平均值为-26.2‰; C-3植物的δ 13C值在黄土高原中部的半湿润气候区比黄土高原西部边缘半干旱-干旱气候区显著偏轻. 年降雨量是造成这种显著偏轻的主要原因, C-3植物的碳同位素组成随着年降雨量的减少而变重, 在我国北方黄土区年降雨量每增加100 mm, C-3植被 δ 13C平均值将偏负约0.49‰左右.  相似文献   

7.
无机成因和有机成因烷烃气的鉴别   总被引:12,自引:0,他引:12  
在中国有机成因气(煤成气和油型气)及无机成因烷烃气(甲烷)碳同位素系列、R/Ra以及cH4,3He大量分析数据的基础上,结合美国、俄罗斯、德国和澳大利亚等国家相应项次众多的分析数据,经综合对比研究,提出鉴别无机成因和有机成因烷烃气的4个指标:①无机成因甲烷碳同位素组成一般〉-30‰,有机成因甲烷碳同位素组成一般〈-30‰;②无机成因烷烃气具有负碳同位素系列(δ^13C1〉δ^13C2〉δ^13C3〉δ^13C4)和甲烷碳同位素组成一般〉-30‰的特征;③RIRa〉0.5和万δ^13C1-δ^13C2〉0的天然气是无机成因烷烃气;④CH4/^3He≤10^6是无机成因烷烃气(甲烷),CH4/^3He≥10^11是有机成因烷烃气.  相似文献   

8.
华南埃迪卡拉纪陡山沱组的稳定同位素分析显示,从陆架到盆地不同剖面之间的同位素存在明显差异.贵州松林剖面代表了台内盆地沉积,其δ^13C值在整个陡山沱组都明显偏负(-3‰--5‰,VPDB).位于斜坡相的五河剖面也有类似特征(-5‰--10‰,VPDB).而在瓮安和朵丁两个台地相剖面,陡山沱组的δ^13C值大致显示出两个负异常,但叠加了明显的米级变化,而且其δ^13C绝对值与华南三峡地区及全球其他地区同时代地层明显不同.这种不同剖面之间的同位素差异,如果在某种程度上代表了古代海水的地球化学特征,则可能记录了陡山沱盆地氧化界面在空间和时间上的不稳定性.综合华南与全球其他埃迪卡拉系地层δ^13C数据的分析表明,陡山沱盆地的δ^13C变化总体上和埃迪卡拉海洋巨大的溶解有机碳储库的存在和氧化是一致的,但区域环境对新元古代同位素变化也有明显的控制作用.因此,利用δ^13C异常作为时间界面进行地层对比需要更加谨慎.  相似文献   

9.
贵州草海湖泊系统碳循环简单模式   总被引:17,自引:2,他引:15  
本文分析了贵州草海湖泊系统中的主要含碳物质-湖水DIC、表层沉积物有机质、水生植物的稳定碳同位素组成,其δ^13C值分别为:-3.70‰至-10.60‰,-20.90‰至-21.60%,-16.10‰至-17.40,通过质量平衡计算,建立了草海区域碳循环的简单模式,结果表明:对于草海这样一个水生植物茂盛的浅水富氧湖而言,光合一呼吸作用和有机质的降解对整个湖泊体系的稳定碳同位素组成具有决定性的作用。  相似文献   

10.
运用稳定性同位素分析技术研究红鳍原鲌δ13C和δ15N值变化规律,进一步探讨贡湖湾、鲤山湾和东太湖3个典型水域的红鳍原鲌食性差异.结果显示,红鳍原鲌的δ13C值与体长、δ15N值与体长呈显著正相关关系,大个体的红鳍原鲌(体长138 mm)δ13C值和营养级显著高于小个体红鳍原鲌(体长138 mm),表明红鳍原鲌在生长过程中随着口裂的增大和捕食能力的加强发生了食性转变现象:食物来源由小型浮游动物向鱼类转变.红鳍原鲌的δ13C在3个水域中具有明显的空间异质性,东太湖(-25.17‰±2.56‰)作为养殖活动影响区均显著低于贡湖湾(-23.11‰±1.05‰)和鲤山湾(-22.73‰±1.31‰),而且个体普遍偏小,说明红鳍原鲌种群分布可能存在一定的区域性,会根据栖息环境选择食物来源.红鳍原鲌在高浓度蓝藻的环境下,偏向摄食较大个体的动物性饵料,减轻对浮游动物的摄食压力,间接控制水体富营养化的发展.另外,还讨论了红鳍原鲌对生态系统的影响,为其资源保护和合理配置利用提供理论依据.  相似文献   

11.
δ13C和δ15N指示不同生态类型湖泊无机氮及有机质来源   总被引:2,自引:0,他引:2  
为了探讨不同生态类型湖泊(天然湖泊、城市湖泊)中无机氮和有机质来源,分别采集湖泊中水体、表层沉积物、水生植物、底栖动物进行碳、氮同位素特征分析.结果表明:蚌湖水体δ15N-NH4均值为-1.8‰±1.0‰,δ15N-NO3-均值为-0.5‰±1.7‰,说明蚌湖水体氮表现为雨水和农业肥料氮污染;象湖δ15 N-NH4+均值为6.8‰±8.6‰,其中养殖废水和管道排污口δ15N-NH4+值分别为13.5‰和25.4‰,表现出污水氮同位素特征,象湖δ15 N-NO3-均值为-2.9‰±4.2‰,是氨的硝化作用引起的氮同位素分馏所致.蚌湖表层沉积物、水生植物δ15N差别不大,分别为6.6‰±0.3‰、7.1‰±0.7‰,水生植物δ13C均值为-27.5‰±0.3‰,比沉积物δ13C偏负3‰.有机C/N为9.4±0.5,比沉积物C/N明显偏高6,反映水生植物是蚌湖有机质的主要来源.象湖表层沉积物δ15N、δ13C及有机C/N分布范围大,δ15N在3.6‰~8.3‰之间,均值为5.9‰±1.6‰,δ13C在-27.1‰~-24.7‰之间,均值为-26.0‰±1.0‰,有机C/N在2.6 ~10.8之间,均值为6.2±2.7,表明城市湖泊沉积有机质来源复杂.2个湖泊蚌类δ15N组成与各自湖泊表层沉积物δ15N组成相对应.  相似文献   

12.
通过对中国北方黄土区C4植物稳定碳同位素(δ 13C)的系统分析, 发现C4植物δ 13C值分布区间为-10.5‰ ~ -14.6‰, 其平均值为-12.6‰ ± 0.82‰; C4植物δ 13C组成有随年降雨量减少, 即从半湿润区到半干旱区, 再到干旱区微微变轻的趋势; C4植物的稳定碳同位素组成雨季比旱季偏重. 以上变化趋势都与C3植物稳定碳同位素变化趋势相反.  相似文献   

13.
以江西鄱阳湖国家级自然保护区的2个湖泊——大湖池和沙湖为研究对象,分析不同季节和水位悬浮有机质的碳氮稳定同位素(δ13C和δ15N)及碳氮比值(C/N)的变化特征,甄别悬浮有机质的来源.结果表明:在不同水位条件下,悬浮有机质的δ13C和δ15N均存在差异显著性.沙湖5月水位上涨时,悬浮有机质δ13C最正,均值为-26.4‰±0.9‰,10月退水后,δ13C最负,均值为-31.2‰±1.1‰.悬浮有机质δ15N值在5月和8月较低(范围为3.5‰~5.5‰),10月也相对较低,均值为6.1‰±0.6‰,而12月相对较高(7.3‰~10.8‰).悬浮有机质C/N值在10月最低,均值为6.5±0.6,小于7,与其他各月的C/N有显著差异,而其他各月C/N在7.8~8.7之间,不存在显著差异.大湖池悬浮有机质δ13C、δ15N各月的变化趋势与沙湖类似,并且两个湖泊在相同月份的δ13C、δ15N或C/N均不存在显著差异,但大湖池的δ13C和δ15N比沙湖的δ13C和δ15N均值略偏正0.1‰~0.5‰,C/N比沙湖的C/N略偏低0~0.4.有机δ13C、δ15N结合C/N示踪表明,大湖池和沙湖的悬浮有机质在5月水位上涨和8月丰水期主要来源于河流运输的土壤有机质,表层沉积物对5月悬浮有机质也有一定贡献(16%),水生浮叶植物对8月悬浮有机质有一定贡献(25%);10月秋季退水后悬浮有机质主要来源于藻类(77%),表层沉积物有一定贡献(23%);12、3和4月冬、春季枯水期悬浮有机质主要来源于表层沉积物,候鸟粪便对12月悬浮有机质有较大贡献(40%),湿地植物碎屑对3和4月有较大贡献(47%和51%).  相似文献   

14.
外源溶解性有机碳对抚仙湖甲壳类浮游动物碳源的贡献   总被引:2,自引:1,他引:1  
外源溶解性有机碳(DOC)是湖泊碳库的重要组成部分,关于外源DOC对浮游动物的贡献及途径需要深入研究.本研究在抚仙湖受控实验中添加13C标记的葡萄糖,通过分析样品中浮游植物与浮游动物的种类、数量、磷脂脂肪酸生物标志物及其稳定同位素特征,研究外源DOC对湖泊甲壳类浮游动物碳源的贡献比例及其变化.结果表明:细菌、甲壳类浮游动物(象鼻溞)的δ~(13)C值在加入葡萄糖后分别从-16.28‰和-23.88‰快速增加到5408.25‰和1974.7‰,而藻类磷脂脂肪酸(C18∶2ω6)δ~(13)C值从-27.07‰增加到342.44‰,增长的幅度表明添加的葡萄糖首先被细菌和浮游动物快速利用,而藻类只利用了一小部分.同时细菌、颗粒性有机物(POM)和浮游动物的δ~(13)C值在第1 d急剧增加,细菌的δ~(13)C值远大于浮游动物和POM的δ~(13)C值,之后细菌和POM的δ~(13)C值开始下降,但浮游动物的δ~(13)C值却仍在缓慢增加,进一步表明了DOC进入湖泊后首先被细菌吸收利用,而细菌吸收DOC后通过自身代谢作用形成细胞颗粒,浮游甲壳类动物通过摄食细胞颗粒来获得外源DOC.  相似文献   

15.
库车坳陷天然气地球化学以及成因类型剖析   总被引:1,自引:0,他引:1  
通过对库车坳陷114个天然气样品统计与分析,该坳陷天然气主要以烷烃气为主,干燥系数表现为中间高两端低和北部高南部低;烷烃气碳同位素组成整体偏重,烷烃气δ13C1,δ13C2和δ13C3主频率分别为-32‰~-36‰,-22‰~-24‰和-20‰~-22‰,烷烃气碳同位素随着碳数增大呈逐渐变重趋势;δ13CCO2值普遍轻于-10‰;3He/4He比值为n×10-8,由北向南呈升高趋势.根据以上天然气地球化学指标综合判识,可以确定库车坳陷天然气为典型煤成气.烷烃气碳同位素组成的局部倒转与同型不同源不同期气混合、高温高压条件下烃类气体多期成藏或供给与扩散等因素有关.  相似文献   

16.
尽管已经有塔里木盆地塔北地区海相原油沥青质中以及原油中1,2,3,4-四甲基苯与1-烷基-2,3,6.三甲基苯系列化合物检出的报道,但其来源仍然未得到证实.分别利用瞬间热解-气相色谱-质谱(PY—GC-MS)与气相色谱.同位素比值质谱联用技术(GC-C-IRMS)研究了塔里木盆地塔北与塔中地区典型海相原油沥青质的热解产物组成与热解产物中单个化合物的碳同位素组成.结果表明,原油沥青质的热解产物中普遍检出了高含量的1,2,3,4-四甲基苯.热解产物中1,2,3,4-四甲基苯的δ^13C值在-19.6‰—~24.0‰之间,正构烷烃的δ^13C范围在-33.2‰—35.1‰之间.1,2,3,4一四甲基苯相对于正构烷烃以及原油沥青质显著富集^13C(分别达10.8‰~15.2‰与8.4‰~13.4‰,证明塔里木盆地海相原油沥青质热解产物中检出的丰富的1,2,3,4-四甲基苯来源于营光合作用的绿硫细菌(Chlorobiaceae).由此可推测塔里木盆地多数海相原油沥青质的母源应形成于静水条件下H2s充溢的强还原环境.  相似文献   

17.
碳氮稳定同位素示踪鄱阳湖流域蚌湖丰水期的氮污染   总被引:2,自引:1,他引:1  
鄱阳湖边缘深水区是鄱阳湖水位上涨时扩散而成的低洼湖区,通过对其一典型边缘湖泊——蚌湖丰水期的氮浓度和同位素特征值的检测,分析这类洪泛湖泊在水位最高时期水体颗粒有机质及无机氮的氮同位素变化特征,并识别氮污染来源及转化途径.结果表明:6月悬浮颗粒有机质碳氮同位素值(δ~(13)C:-26.7‰~-23.7‰,δ~(15)N:2.6‰~6.2‰)介于土壤有机质(δ~(13)C:-25.21‰±0.52‰,δ~(15)N:3.79‰±0.37‰)和水生植物的碳氮同位素值(δ~(13)C:-28.8‰~-24.9‰,δ~(15)N:5.3‰~8.2‰)之间.7月相比于6月,降低的δ~(13)C(-27.6‰~-23.2‰)和升高的δ~(15)N(4.3‰~7.7‰)表明暴雨冲刷带来更多的周边陆地碎屑输入.无机氮在6月以铵态氮(NH_4~+-N)为主要形态,7月以硝态氮(NO_3~--N)为主要形态.6月δ~(15)NH_4~+较负的特征值(-18.6‰±5.2‰)表明铵态氮主要来源于雨水,硝态氮(δ~(15)NO_3~-:1.4‰±3.0‰)主要来源于农业化肥和雨水.7月相比于6月,铵态氮和硝态氮的浓度和同位素值都大幅升高(分别升高了0.3和2倍,6‰和3‰),是暴雨冲刷陆地使农业化肥、城镇生活废水和畜禽养殖废水输入的结果.水生植物的δ~(15)N在7月(8.8‰±1.1‰)相比于6月(6.6‰±1.1‰)也升高了较多,是由于水生植物吸收了更高δ~(15)N废水无机氮的结果.通过颗粒有机质和无机氮的δ~(15)N分析可知,湖区水体氮的矿化作用和硝化作用较强,藻类对湖泊的内源氮贡献较弱,沿河湖的畜禽养殖在暴雨时对水域污染的威胁较大.本研究提供了洪泛湖泊氮污染治理的科学依据.  相似文献   

18.
东海盆地丽水凹陷天然气类型及其成因探讨   总被引:1,自引:0,他引:1  
丽水凹陷目前发现的天然气成分差异很大,烃类气体的含量占2%~94%,非烃类气体主要为CO2气体.在烃类气体的组成中,甲烷含量均低于90%,C2 以上重烃气体含量均大于10%,属于湿气.烃类气体碳同位素分析表明,甲烷的碳同位素组成δ13C值小于-44‰、乙烷的δ13C值基本上小于-29‰、丙烷的δ13C值小于-26‰,甲烷与乙烷碳同位素组成差值大,属于有机成因的油型气,是混合型有机质在成熟阶段生成的产物.非烃CO2气体的碳同位素δ13C值均大于-10‰,属于典型无机成因气.黄金管封闭体系下有机质的生烃模拟表明,灵峰组海相陆源有机质生成的天然气甲烷的比例明显高于月桂峰组湖相水生和陆生混合有机质生成的天然气,而重烃的比例明显低于月桂峰组混合有机质生成的天然气.灵峰组海相陆源有机质生成的天然气甲烷碳同位素δ13C值比月桂峰组混合有机质生成的甲烷的碳同位素δ13C值大5‰左右,乙烷和丙烷的碳同位素δ13C值大9‰以上.LS36-1油气藏是丽水凹陷目前唯一的商业性油气藏,烃类天然气各组分的碳同位素组成与灵峰组有机质生成的天然气各组分碳同位素组成差异大,而与月桂峰组有机质生成的天然气各组分碳同位素却很相近,表明其主要源岩是月桂峰组湖相烃源岩,而非灵峰组海相烃源岩和明月峰组煤系烃源岩.  相似文献   

19.
溶解态有机质(DOM)是湖泊沉积物的重要组分,解析DOM的组成和来源对于深入理解湖泊有机质生物地球化学循环及控制水体富营养化具有重要意义。 本研究于2021年5月和8月采集了大庆市库里泡表层及柱状沉积物、泡内水生物(浮游藻类、挺水植物和沉水植物)、岸边土壤、陆生C3和C4植物、禽畜粪便以及城镇污水等样品,分析了样品DOM的稳定同位素(δ13C 和 δ15N)组成及三维荧光光谱特征,并利用IsoSource软件计算了不同来源样品对沉积物DOM的贡献率。结果显示:(1)库里泡内表层沉积物DOM的δ13C和δ15N组成存在季节性差异,5月δ13C和δ15N均值分别为-25.54‰和9.02‰,8月分别为-26.81‰和8.40‰。(2)库里泡内柱状沉积物DOM的δ13C和δ15N组成在垂直方向存在差异,表层(0~3 cm)δ13C和δ15N均值分别为-26.58‰和9.04‰,深层(3~30 cm)均值分别为-25.40‰和10.61‰。(3)表层沉积物DOM的三维荧光组分存在季节性差异。5月以类腐殖质荧光组分为主,占比为87.89%,HIX和BIX分别为6.27和0.67;8月蛋白类荧光组分占比为49.58%,HIX和BIX指数均值分别为1.72和0.87。(4)5月表层沉积物DOM外源输入占比为61%,以土壤(21.40%)和城镇污水(18.08%)为主;而8月内源贡献占比稍高(55.10%),且以挺水植物为主(48.68%)。(5)柱状沉积物(0~30 cm)不同深度DOM来源组成相近,主要为城镇污水、沉水植物/藻和挺水植物,贡献率均值分别为42.13%、25.07%和18.53%。整体上,库里泡沉积物DOM来源主要受到流域内人类活动及气候特征的影响,本文研究结果有利于加深对我国东北地区湖泊沉积物有机质迁移转化及累积规律的认识。  相似文献   

20.
蓟县元古界碳酸盐岩的碳同位素变化   总被引:7,自引:0,他引:7  
天津蓟县元古界剖面长城系碳酸盐岩的δ~(13)C值基本为负值,蓟县系大体在(0±1)‰的范围内,进入青白口系井儿峪组一般在(2±2)‰的正值.从串岭沟组到大红峪组(约1700~1600 Ma)碳酸盐岩的δ~(13)C值大约由-3‰变化到0‰,但大红峪组δ~(13)C值大幅度振荡.蓟县系地层碳同位素组成发生两次较大的变化,分别在杨庄组和雾迷山第三亚组之后.相当完整和连续的碳同位素记录反映了约 1700~800 Ma全球海水的δ~(13)C值长期变化趋势.发生在约1700~1600 Ma和<约 1300 Ma海水的δ~(13)C值升高及大幅度振荡可能是两次全球性构造事件的响应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号