首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
本文将夏季气候平均的基本气流分解为正压和斜压分量,使用一个线性斜压模式,研究了不同斜压基本气流对热带西北太平洋地区初始气旋性环流扰动低频发展演变的重要作用.其中,控制试验较好地模拟出初始气旋扰动向西北方向传播、在西北太平洋季风槽附近停滞增强、在东亚地区出现经向波列和在南海到海洋大陆地区形成西北—东南向波列等特征.改变斜压分量的敏感性试验结果表明,正压基流不能为西传的初始扰动供给足够的能量;海陆热力差异引起东亚地区的纬向温度梯度和北风垂直切变,是东亚太平洋型经向波列形成和维持的重要因素;当基本气流中的斜压纬向偏差部分线性增大时,扰动的能量会呈e指数迅速增强,提示在气候变化的背景下,基本气流微小的改变可能带来天气或季节内扰动强度的剧烈响应.  相似文献   

2.
Résumé L'important problème de « l'advection des perturbations » ne peut Être traité d'une manière rationnelle et n'acquiert un sens précis qu'en étudiant d'une part les conséquences purement analytiques des propriétés générales de toute fonction de perturbation, et en utilisant d'autre part les résultats fondamentaux de la théorie des perturbations. On aboutit ainsi à préciser complètement la notion de « vecteur d'advection des perturbations » et l'on montre que les importantes différences qui existent entre le mouvement des perturbations au niveau de la mer (commandé par un champ de température moyenne) et en altitude (où les perturbations se déplacent plutÔt avec le vent moyen, du moins dans la troposphère moyenne) peuvent Être facilement expliquées par le comportement, suivant les verticales,d'une mÊme fonction vectorielle de vitesse d'advection des perturbations, qui intervient d'une manière essentielle dans notre théorie des perturbations.A l'aide du champ moyen de température et de vent entre l'équateur et les pÔles (du sol jusqu'à 20 km d'altitude), nous déduisons le champ moyen du vecteur d'advection des perturbations et le comparons au vent moyen. Cette comparaison donne l'explication de plusieurs faits empiriques importants. De plus, on peut en déduire les limites de la région où il peut y avoir en altitude des « ondes longues » compatibles avec la conservation du tourbillon vertical, ainsi que la longueur d'onde caractéristique de ces perturbations.Dans la deuxième partie du mémoire, nous montrons qu'une transformation simple de l'équation des variations de pression de notre théorie des perturbations conduit à une équation généralisée du tourbillon vertical pouvant Être comparée à l'équation classique du tourbillon que l'on déduit des équations de l'hydrodynamique. Ceci permet de se rendre compte dans quelle mesure on peut admettre en altitude la conservation du tourbillon vertical, propriété qui peut Être considérée comme un cas particulier de l'équation des variations de pression.
Summary The important problem of the « advection of the perturbations » can be treated along rational lines and acquires a precise meaning only when its treatment is based, on the one hand, on the analysis of the general mathematical properties of any perturbation function, and on the main results of the hydrodynamical theory of perturbations, on the other hand. In this way, the notion of the « advection vector of the perturbations » can be completely clarified and it can be shown that the important differences between the motion of the perturbations at sea level (which is determined by a mean temperature field) and in the free atmosphere (where the perturbations move rather with the mean wind, at least in the middle troposphere) are easily explained by the behaviour of thesame vectorial advection function which plays an essential part in our theory of perturbations.By means of the observed fields of temperature and wind between the equator and the poles (from sea level to the 20 Km level) we deduce the mean field of the advection vector of the perturbations and compare it to the mean wind field. This leads to the explanation of many important empirical facts and also gives the limits of the region where « long waves » (compatible with the conservation of vertical vorticity) can exist, and also the characteristic wave length of these perturbations.In the second part of the paper, a simple transformation of the equation for pressure variations of our theory of perturbations leads to a generalised equation for the vertical vorticity, which can be compared with the classical vortieity equation derived from the hydrodynamical equations. The condition of the conservation of the vertical absolute vorticity can then be appreciated as a particular case of our equation of pressure variations.


Communication faite le 5 Avril 1956 à la 4ième Assemblée de la « Società Italiana di Geofisica e Meteorologia » (Genova, 5–8 Avril 1956).  相似文献   

3.
Linear Rossby wave dispersion relationships suggest that Jupiter’s Great Red Spot (GRS) is a baroclinic structure embedded in a barotropic shearing zonal flow. Quasi-geostrophic (QG) two-layer simulations support the theory, as long as an infinitely deep zonal flow is assumed. However, once a finite depth of the lower layer is assumed, a self-interaction of the baroclinic eddy component produces a barotropic radiating field, so that the GRS-like eddy can no longer remain compact. Compactness is recovered by explicitly introducing a deep dynamics of the interior for the lower layer, instead of the shallow QG formulation. An implication of the result is a strong coupling of the GRS to a convectively active interior.Paper presented to the NP Symposia of the 1991 Wiesbaden EGS Assembly on “Nonlinear processes in Geophysics”  相似文献   

4.
Abstract

A high vertical resolution model is used to examine the instability of a baroclinic zonal flow and a finite amplitude topographically forced wave. Two families of unstable modes are found, consisting of zonally propagating most unstable modes, and stationary unstable modes. The former have time scale and spatial structure similar to baroclinic synoptic disturbances, but are localized in space due to interaction with the zonally asymmetric forcing. These modes transport heat efficiently in both the zonal and meridional directions. The second family of stationary unstable modes has characteristics of modes of low frequency variability of the atmosphere. They have time scales of 10 days and longer, and are of planetary scale with an equivalent barotropic vertical structure. The horizontal structure resembles blocking flows. They are maintained by available potential energy of the basic wave, and have large zonal heat fluxes. The results for both families of modes are interpreted in terms of an interaction between forcing and baroclinic instability to create favoured regions for eddy development. Applications to baroclinic planetary waves are also considered.  相似文献   

5.
A weakly nonlinear model is used to examine the mean transverse circulation (cross-isobath) driven by tidal-induced buoyancy flux. The mean Eulerian flows driven by both the barotropic and baroclinic tide are presented for a semi-infinite wedge. The mean flow driven by the barotropic tide is significant only near the apex where the thickness of the frictional boundary layer is comparable to the water depth. The mean flow there is characterized by a single-cell circulation with offshore flow near the bottom, and its magnitude can reach a few percentage or a significant fraction of the tidal velocity in oceanic applications. The mean flow driven by the baroclinic tide, on the other hand, is characterized by pairs of half-open (on the seaward side) counter-rotating cells, the number of which equals the vertical mode number. For a baroclinic tide propagating onshore, the mean flow near the top and bottom surfaces is always directed offshore and its magnitude can reach a large fraction of the tidal velocity. Taken together, the model thus predicts a mean offshore flow near the bottom while higher up in the water column the mean flow direction is less definite due to the contribution from different tidal components. The model results are consistent with some current measurements over the Georges Bank.  相似文献   

6.
Abstract

The linear, normal mode instability of barotropic circular vortices with zero circulation is examined in the f-plane quasigeostrophic equations. Equivalents of Rayleigh's and Fjortoft's criteria and the semicircle theorem for parallel shear flow are given, and the energy equation shows the instability to be barotropic. A new result is that the fastest growing perturbation is often an internal instability, having a finite vertical scale, but may also be an external instability, having no vertical structure. For parallel shear flow the fastest growing perturbation is always an external instability; this is Squire's theorem. Whether the fastest growing perturbation is internal or external depends upon the profile: for mean flow streamfunction profiles which monotonically decrease with radius, the instability is internal for less steep profiles with a broad velocity extremum and external for steep profiles with a narrow velocity extremum. Finite amplitude, numerical model calculations show that this linear instability analysis is not valid very far into the finite amplitude range, and that a barotropic vortex, whose fastest growing perturbation is internal, is vertically fragmented by the instability.  相似文献   

7.
Abstract

Analysis of a two-layer, flat-bottom, steady-wind driven, eddy-resolving general circulation model reveals a distinct separation in frequency of baroclinic and barotropic motion in the region distant from the model Gulf Stream. The far-field motions at periods less (greater) than about 100 days are predominantly barotropic (baroclinic), unlike the near-field, eddy-generating, free-jet region which contains barotropic and baroclinic energy throughout the modei frequency range. The far-field barotropic energy produces a peak in the model sea-level spectra between 25 and 50 days with a magnitude comparable to energy levels observed in spectra of sea level from oceanic island tide gauges. The far-field barotropic motion is clearly composed of large-scale, resonant, barotropic normal modes drive by mesoscale activity of the turbulent, free-jet region. Oceanic mesoscale turbulence may therefore provide for planetary normal modes an excitation mechanism distinct from atmospheric forcing. The open-ocean, barotropic, model response is very similar to that of a fluctuating-wind driven model, which suggests that atmospheric and intrinsic forcing of mid-ocean eddies may be of comparable importance.  相似文献   

8.
Summary A review is given of the investigations on variations in the general circulation in middle latitudes made byWillett andPetterssen. According toWillett a «high-index» type of circulation pattern with a strong zonal flow has probably caused the recent climatic improvement in the northern latitudes while the «low-index» type with meridional flow would create a cooling off in the same areas. According toPetterssen an other type of «low-index» pattern with a weak zonal flow and strong meridional exchange of air has been the essential cause of the warming up of the northern latitudes in Europe. This implies that the definition of the «low-index» type is not clear and gives rise to misunderstanding. Making use of our experience on glacier retreat in northern Scandinavia it is concluded that thePetterssen type of circulation more probably than the «high-index» type has caused the warming-up in the North Atlantic area from which the retreat of the glaciers has followed.  相似文献   

9.
Two-layer equatorial primitive equations for the free troposphere in the presence of a thin atmospheric boundary layer and thermal dissipation are developed here. An asymptotic theory for the resonant nonlinear interaction of long equatorial baroclinic and barotropic Rossby waves is derived in the presence of such dissipation. In this model, a self-consistent asymptotic derivation establishes that boundary layer flows are generated by meridional pressure gradients in the lower troposphere and give rise to degenerate equatorial Ekman friction. That is to say, the asymptotic model has the property that the dissipation matrix has one eigenvalue which is nearly zero: therefore the dynamics rapidly dissipates flows with pressure at the base of the troposphere and creates barotropic/baroclinic spin up/spin down. The simplified asymptotic equations for the amplitudes of the dissipative equatorial barotropic and baroclinic waves are studied by linear theory and integrated numerically. The results indicate that although the dissipation slightly weakens the tropics to midlatitude connection, strong localized wave packets are nonetheless able to exchange energy between barotropic and baroclinic waves on intraseasonal timescales in the presence of baroclinic mean shear. Interesting dissipation balanced wave-mean flow states are discovered through numerical simulations. In general, the boundary layer dissipation is very efficient for flows in which the barotropic and baroclinic components are of the same sign at the base of the free troposphere whereas the boundary layer dissipation is less efficient for flows whose barotropic and baroclinic components are of opposite sign at the base of the free troposphere.  相似文献   

10.
Summary A short survey is given of results obtained from «Project Jet Stream» Research Flights. Several features of the atmospheric structure in the vicinity of the jet-stream core seem to be rather characteristic and shall be described in detail. The most prominent among these are: the «Jet-Stream Front»above and below the jet core, stable baroclinic zones on the anticyclonic side of the jet, and an upward bulge of the isentropic surfaces south of the jet stream, the so-called «isentrope hump». Some of theses features seem to have far-reaching implications upon the dynamics of the jet stream.
Zusammenfassung Es wird ein kurzer Überblick über die Ergebnisse einiger «Project-Jet-Stream»-Forschungsflüge gegeben. Einige Merkmale der atmosphärischen Struktur in der Umgebung des Strahlstromkernes scheinen für eine Vielzahl der Fälle charakteristisch zu sein und sollen im folgenden noch näher beschrieben werden. Am deutlichsten treten hervor: Die «Jet-Stream-Front»oberhalb und unterhalb des Strahlstromkernes; stabile und barokline Zonen auf der antizyklonalen Seite des Strahlstromes; eine Aufwölbung der Isentropenflächen südlich der Strahlstromachse, der sogenannte «Isentropenbuckel» («isentrope hump»). Einige dieser Merkmale scheinen weitreichende Einflüsse auf die Dynamik der Strahlströmung zu besitzen.


Paper presented at the I.U.G.G. Meeting in Helsinki, 1960.  相似文献   

11.
Zusammenfassung So wie für das Himmelsbild in einer einheitlichen Luftmasse der vertikale Temperaturgradient die wichtigste Rolle spielt, so erweist sich für den Wetterablauf beim Kaltfrontdurchgang die vertikale Temperaturschichtung im Frontbereich von entscheidender Bedeutung. In den Registrierungen der meteorologischen Elemente zeigt sich meist deutlich der Unterschied zwischen «stabilen» und «labilen» Kaltfronten.
Summary As significant the part, played by the vertical lapse rate of temperature in the appearance of the sky in uniform airmasses, as determinant for weather conditions during the passage of a cold front is the vertical lapse rate of temperature in the frontal area. Generally, the recordings of meteorological instruments show a pronounced difference between «stable» and «unstable» coldfronts.
  相似文献   

12.
Summary The theory of Part I is extended to take account of vertical motion and frictional drag. Surface friction is found not to affect appreciably the propagation speed of troughs and wedges. It is found, further, that the speed of a disturbance at the surface is not appreciably affected by the pattern of vertical motion. However, if the upper part of the perturbation moves at the same speed as the surface wave, a certain pattern of vertical motion is necessary, depending on the morphology of the perturbation, and of the mean flow.  相似文献   

13.
Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring–neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring–neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.  相似文献   

14.
Abstract

A study is made to determine the stability properties of a baroclinic zonal current on which small amplitude three‐dimensional non‐geostrophic disturbances are superimposed. The flow is assumed to be bounded to the north and south by rigid vertical walls and the Rossby number Ro is taken to be small compared to unity. It is then shown that if the perturbation quantities are expanded in power series in Ro the leading or zero order terms in the series correspond to the quasi‐geostrophic solution obtained by Eady (1949) and that the higher order terms represent the “non‐geostrophic” effects neglected by the latter.

It is shown that to the second order in Ro the non‐geostrophic effects decrease the growth rates of those disturbances which are found to be unstable according to Eady's analysis but do not alter their speed of propagation. The results indicate, on the other hand, that to the same order of approximation the stable waves travel at a speed which is different from that given by Eady's solution. The modification of the perturbation wave structure by the non‐geostrophic effects is also investigated. It is found in particular that to the first order in Ro the latter produce a northward tilt with height in the ridge (or trough) lines of the meridional and vertical particle velocity fields away from the lateral boundaries.  相似文献   

15.
The response of tidal and residual currents to small-scale morphological differences over abrupt deep-sea topography (Seine Seamount) was estimated for bathymetry grids of different spatial resolution. Local barotropic tidal model solutions were obtained for three popular and publicly available bathymetry grids (Smith and Sandwell TOPO8.2, ETOPO1, and GEBCO08) to calculate residual currents from vessel-mounted acoustic Doppler current profiler (VM-ADCP) measurements. Currents from each tidal solution were interpolated to match the VM-ADCP ensemble times and locations. Root mean square (RMS) differences of tidal and residual current speeds largely follow topographic deviations and were largest for TOPO8.2-based solutions (up to 2.8 cm?s?1) in seamount areas shallower than 1,000 m. Maximum RMS differences of currents obtained from higher resolution bathymetry did not exceed 1.7 cm?s?1. Single depth-dependent maximum residual flow speed differences were up to 8 cm?s?1 in all cases. Seine Seamount is located within a strong mean flow environment, and RMS residual current speed differences varied between 5 % and 20 % of observed peak velocities of the ambient flow. Residual flow estimates from shipboard ADCP data might be even more sensitive to the choice of bathymetry grids if barotropic tidal models are used to remove tides over deep oceanic topographic features where the mean flow is weak compared to the magnitude of barotropic tidal, or baroclinic currents. Realistic topography and associated flow complexity are also important factors for understanding sedimentary and ecological processes driven and maintained by flow–topography interaction.  相似文献   

16.
Abstract

Merilees and Warn's (1975) nonlinear interaction analysis of two-dimensional nondivergent flow is extended to examine the quasi-geostrophic two-layer model. Two sets of triads exist in this model (Salmon, 1978). The purely barotropic triads are the same as the triads examined by Merilees and Warn. Baroclinic-barotropic triads are found to exchange more energy or potential enstrophy with smaller or larger scales depending on the scale of motion as compared with the internal Rossby deformation radius and the relative wavenumber position of baroclinic and barotropic components.  相似文献   

17.
Résumé Nous appliquons dans ce mémoire la théorie des perturbations, développée antérieuremet par l'un de nous, à la déduction des principales caractéristiques normales des perturbations compatibles avec un champ moyen donné de pression et de température. Cette deduction comprend la détermination: 1) de la configuration moyenne des perturbations dans les différentes régions étudiées; 2) des zones de creusement et de comblement et en particulier des foyers de formation et de disparition des perturbations; 3) des trajectoires, vitesses, fréquences et amplitudes moyennes des perturbations. C'est à l'ensemble de ces propriétés moyennes que nous donnons le nom de «climatologie dynamique» d'une période donnée.Après une première partie théorique, nous donnons des exemples d'application des résultats généraux à la climatologie dynamique des mois de Janvier et de Juillet pour l'Amérique du Nord, l'Atlantique Nord et l'Europe.
Summary In this paper we apply the theory of perturbations, previously developed by one of us, to the deduction of the main normal characteristics of the perturbations that are compatible with a given mean field of pressure and temperature. This deduction comprises the determination: 1) of the mean configuration of the perturbations for the different regions under examination; 2) of the normal deepening and filling regions of the perturbations, and particularly their formation and vanishing focuses; 3) of the mean paths, speeds, frequencies and amplitudes of the perturbations. The «dynamical climatology» we are contemplating here is concerned with all these mean properties of the perturbations for a given period.After a first theoretical part, we give some examples of the application of the general results to the dynamical climatology of January and July for North America, North Atlantic and Europe.


à ce mémoire a été assigné le Prix 1956 de la « Società Italiana di Geofisica e Meteorologia ».  相似文献   

18.
A three-dimensional numerical model, for simulating velocity and temperature variations in a basin under various forcing mechanisms, is presented. Vertical structure is analyzed using a Galerkin Method with modified Chebyshev polynomials as expansion functions. With the proper choice of these functions, the barotropic and baroclinic parts of the motion are separated naturally in the model. A time-splitting procedure is then implemented; this makes time integration very efficient.Internal seiching due to windstress is simulated in the first experiment. Results are compared with those obtained using two-layered and 3D models. The geostrophic adjustment of a river flowing into a basin is then simulated. When friction and entrainment is neglected, flow adjusts to geostrophic balance over a distance about one third of the width of the basin. Weak turbulence has a large effect on the flow. For example, with a vertical eddy coefficient of 0.001 m2 s−1, isothermals are distorted so that their angle of intersection with the basin axis is large. Geostrophic adjustment still takes place over one third of the width but, due to frictional effects the flow is now quite large all over the lake.  相似文献   

19.
Wind is the main energy source for the generation of the internal waves and the ocean mixing. Wunsch[1] estimated that about 1 TW (1 TW = 1012 W) energy was transported into the ocean from the winds by us-ing the altimeter data. Watanabe et al.[2] numerically calculated that the mixing processes obtained 0.7 TW energy from the global wind, which afforded most of the energy needed by the maintenance of the Merid-ional Overturning Circulation (MOC). During the past 50 years, in the Norther…  相似文献   

20.
Zusammenfassung Eineabsolute «kritische Windgeschwindigkeit» für Prozesse an der Grenzfläche Wasser-Luft scheint nicht zu existieren. Unsere Beobachtungen liefern jedoch Anzeichen für das Vorhandenseinrelativer «kritischer Windgeschwindigkeiten, die vom Ueberströmungsweg, bzw. von der Wellenlaufstrecke abzuhängen scheinen. Diese relativen «kritischen Windgeschwindigkeiten» sind durch folgende-Merkmale gekennzeichnet: Aenderung der Struktur der Meeresoberfläche (glatt-rauh); Umschlag der laminaren Wassergrenzschicht zur Turbulenz; Ueberbrechen der Schwerewellen; Minimum des Widerstandskoeffizienten der Meeresoberfläche.
Summary It seems that there is no absolute «critical wind speed» for air-sea boundary processes. From our observations it may, however, be referred that there are relative values of the «critical wind speed» which seem to depend on the fetch. These relative values of the «critical wind speed» are characterized by the following marks: The sea surface pattern is changed (smooth-rough);, the boundary layer in water turns from laminar to turbulent flow; the gravity waves break; the resistance coefficient of the sea surface has a minimum.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号