首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
贾鸿瑞  魏东平 《地球物理学报》2021,64(10):3567-3575
智利三联点作为典型的RTT型三联点,伴随智利洋脊俯冲到南美大陆板块下方,通过建立纳兹卡南极南美—太平洋四板块系统,并基于GPS、地震滑移矢量、洋中脊扩展速率及转换断层方位角等观测资料,给出了前三个板块相对于太平洋板块的欧拉矢量,据此进一步得到了各板块两两之间的相对欧拉运动矢量.结果 显示,整个智利海沟处,三联点以北表现为纳兹卡板块相对南美板块的约83.0 mm·a-1的近东向俯冲,快速下降到三联点以南的南极板块相对南美板块的约22.0 mm·a-1的东偏南俯冲,由于洋脊俯冲效应,智利三联点自5.3Ma以来,整体由南向北作迁移运动,同时因为智利洋脊被转换断层切割成多个小段,导致智利三联点的性质在RTT型与FTT型间不断转变,当智利三联点为FTT型时,其运动方向改变为反向自北向南迁移,使得部分地区会经历多段洋脊的重复俯冲,从而导致洋壳玄武岩多次经历800~900℃的温度条件和低压(10~20 km深度)下的部分熔融,使熔体与残留物从第一次相平衡后形成的中性岩石,在经历又一次的部分熔融后形成酸性岩,这也是我们在三联点交替向北向南迁移的位置,多处发现弧前酸性岩存在的重要原因.  相似文献   

2.
"三联点"是全球板块运动系统的重要组成部分.扩张的智利洋脊向南美板块俯冲形成了智利三联点,并造成了智利三联点以南数百千米范围内剧烈的地形变化.智利三联点区域的初始板块俯冲角度、洋脊扩张速率等因素的差异对南美板块岩石层热结构及地形起伏造成了显著影响.本文采用有限差分方法,构建了智利三联点区域洋脊俯冲的二维数值模型,模拟洋...  相似文献   

3.
西太平洋板块向我国东北地区深部俯冲的数值模拟   总被引:6,自引:3,他引:3       下载免费PDF全文
本文采用依赖温度的黏度结构以及考虑海洋板块和大陆板块厚度差异等特征,以太平洋板块向欧亚板块会聚速率作为板块速度的主要约束,通过变化海沟后撤速度模型,数值模拟西太平洋板块向中国东北的俯冲过程.结果表明,要产生类似于中国东北之下低角度的板片俯冲,海沟后撤是重要条件;而上下地幔黏度的较大差异是决定俯冲板片不穿透660 km相变面的决定因素;西太平洋板块向欧亚板块的俯冲应早于70 Ma B.P.,海沟后撤速度可能小于一些地质学家估计的45 mm/a, 而且可能是分阶段变化的;速度场表明运动学模型的反过程:大陆岩石圈之下物质的不断水平向东的流动和推挤可能成为海沟后撤的力源之一,地幔物质的这种东向流动可能与印度板块挤压碰撞欧亚板块有关,沿欧亚板块东缘的扩张构造可能是太平洋-欧亚板块运动和印度-欧亚板块运动的综合效应.  相似文献   

4.
选取太平洋板块南部边界的板块相对运动速度不同的两个洋脊-洋脊-转换断层(RRF)型三联点,即麦夸里(Macquarie)三联点和南太平洋三联点,为研究对象,通过数值模拟的方法,研究该类型三联点走滑断层边界两侧的板块相对运动速度对三联点附近地区地幔流动场和温度结构的影响。模拟结果表明:太平洋南部边界RRF三联点走滑断层边界两侧的板块相对运动速度控制着三联点附近的温度分布和地幔流动;随着走滑断层边界两侧板块相对运动速度的增加,转换断层相对滑动速度增加,温度上升,距洋脊边界100 km范围内的地幔流体速度变大;麦夸里三联点和南太平洋三联点处3个板块的相对运动,使得三联点的转换断层边界浅部产生剪应力集中,导致震源深度集中在15—25 km;同时相对运动产生的地幔流动引起温度结构变化,该变化控制着地形变化。   相似文献   

5.
孙振添  魏东平  韩鹏  刘鎏 《地震学报》2013,35(6):785-798
利用收集到的各种来源共计7 959组的地震各向异性观测数据和21 750组应力场数据,结合板块绝对运动模型计算给出的各板块的运动规律,分别统计分析了板块运动与地震各向异性及应力场的相关性,并对板块运动对地震各向异性及应力场特征产生的影响进行了分析. 统计结果表明,阿拉伯、 加勒比、 胡安德富卡、 北美、 纳兹卡、 太平洋和南美板块上地震各向异性与板块运动均具有较好的相关性,而非洲、 南极洲、 澳大利亚、 欧亚、 印度和菲律宾板块上二者的相关性则相对较差. 讨论分析发现,板块运动拖动软流圈流动、 橄榄岩晶格优选方位、 化石各向异性和地幔流动或岩石圈流动等因素均在一定程度上控制并影响着地震各向异性与板块运动的一致性. 而板块基底拖曳力、 洋脊推力、 浮力作用和碰撞及俯冲作用等多种因素共同制约了板块运动与应力场的相关性,使得非洲、 可可斯、 欧亚、 胡安德富卡、 北美、 纳兹卡、 菲律宾和南美板块上二者的相关性较好,其它板块上其相关性则较差. 对于俯冲带地区,由于俯冲机制的复杂性和软流圈、 岩石圈地幔流动方向的不确定性,其板块运动与地震各向异性及应力场的相关性图像表现复杂,需要结合具体的俯冲带构造进行近一步研究.   相似文献   

6.
板块俯冲时海沟位置存在不变、前进和后撤 3种情况 ,后撤俯冲可能造成弧后扩张 .层析成像等资料显示 :太平洋板块低角度俯冲到欧亚板块之下后没有穿透 670km相变界面 ,而是平卧于该界面之上 .这种平卧过程可能始于 2 8Ma前 .地球动力学计算表明 :俯冲板片前缘触及上下地幔相变界面而受阻平卧时 ,有利于形成后撤俯冲和弧后扩张 .中国东北火山形成很可能属于这种后撤俯冲、远离海沟陆内弧后引张、地幔热物质上涌、减压熔融的情况 .  相似文献   

7.
板块俯冲时海沟位置存在不变、前进和后撤3种情况, 后撤俯冲可能造成弧后扩张. 层析成像等资料显示:太平洋板块低角度俯冲到欧亚板块之下后没有穿透670 km相变界面, 而是平卧于该界面之上.这种平卧过程可能始于28 Ma前. 地球动力学计算表明:俯冲板片前缘触及上下地幔相变界面而受阻平卧时, 有利于形成后撤俯冲和弧后扩张. 中国东北火山形成很可能属于这种后撤俯冲、远离海沟陆内弧后引张、地幔热物质上涌、减压熔融的情况.   相似文献   

8.
几乎所有大陆岩石层的减薄现象,可能都与海洋板块的俯冲作用相关,但是两者之间的内在联系迄今仍不十分明确,为此,我们设计了一系列包含洋-陆俯冲系统的二维数值模型,来探讨海洋板块的俯冲作用对上覆大陆岩石层变形行为的影响,尤其对大陆岩石层减薄效应的制约.模型结果表明,海洋板块俯冲过程中的地幔楔熔体对大陆岩石层地幔的热侵蚀以及由熔体上升所诱发的地幔局部对流的强烈扰动会导致上覆大陆岩石层的减薄效应.这种效应不仅表现在横向上的向陆内蔓延,还表现在垂向上的向浅部发展.且多类动力学参数都能制约大陆岩石层的减薄效应.具体地,随着汇聚速率和洋壳厚度的增加,上覆大陆岩石层在横向上的减薄范围越大,在垂向上的减薄程度也越深;而随着俯冲海洋板块年龄的增加,上覆大陆岩石层在横向上的减薄范围增大,但在垂向上的减薄程度会减小;随着上覆大陆岩石层厚度的增加,其横向减薄范围会减小,但在垂向上的减薄程度会加深.本文研究成果能为揭示华北克拉通减薄/破坏的动力学过程提供一定的理论参考依据.  相似文献   

9.
上地幔俯冲板块的动力学过程:数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
大洋板块俯冲到地幔转换带,进而可形成不同的形态:板块可以停滞在660km不连续面,抑或穿过地幔转换带进入下地幔.这些不同的俯冲模式可进一步影响到海沟的运动.为更好地理解上地幔中俯冲板片的变形行为以及俯冲过程与海沟运动之间的关系,本文通过建立一系列高精度二维热-力学自由俯冲的数值模型,揭示了俯冲板块在上地幔中的变形方式及其与地幔转换带之间的相互作用过程.模拟结果显示,在俯冲板块与地幔转换带的相互作用过程中,其动力学过程可以分为以海沟后撤主导、海沟前进主导以及稳定型海沟等三种主要动力学类型.对于年龄较老,厚度较大的俯冲板块容易形成海沟后撤型俯冲,俯冲板块停滞在660km不连续面.相反,年龄较小,塑性强度较小的板块容易形成海沟前进型俯冲,俯冲板块穿越660km不连续面.  相似文献   

10.
论青藏高原及邻区板片构造的一个新模式   总被引:1,自引:1,他引:0       下载免费PDF全文
本文首先论述了板块学说提出的过程和存在的一些不足与疑问,特别是该学说将Holmes(1948)的地幔热对流说作为驱使岩石圈板块运动的动力机制.而后又以青藏高原及邻区为例,根据区域地质、蛇绿岩和地质构造研究的成果,特别是地震测深研究的成果,详细地论证了本区不存在有大洋中脊扩张成为大洋盆地的新大洋和大洋板块简单的B型俯冲模式,但存在有海底扩张的陆间海和海洋地壳板片(蛇绿岩构造岩片)的仰冲以及大陆岩石圈板片复杂的A型俯冲新模式.新模式不是以地幔对流运动,而是以扩张分离A型俯冲的大陆岩石圈板片与软流圈之间的水平剪切相对运动机制作为它的躯动力.  相似文献   

11.
The Chile Triple Junction is a natural laboratory to study the interactions between magmatism and tectonics during the subduction of an active spreading ridge beneath a continent. The MLBA plateau (Meseta del Lago Buenos Aires) is one of the Neogene alkali basaltic plateaus located in the back-arc region of the Andean Cordillera at the latitude of the current Chile Triple Junction. The genesis of MLBA can be related with successive opening of slabs windows beneath Patagonia: within the subducting Nazca Plate itself and between the Nazca and Antarctic plates. Detailed 40Ar/39Ar dating and geochemical analysis of bimodal magmatism from the western flank of the MLBA show major changes in the back-arc magmatism which occurred between 14.5 Ma and 12.5 Ma with the transition from calc-alkaline lavas (Cerro Plomo) to alkaline lavas (MLBA) in relation with slab window opening. In a second step, at 4–3 Ma, alkaline felsic intrusions were emplaced in the western flank of the MLBA coevally with the MLBA basalts with which they are genetically related. These late OIB-like alkaline to transitional basalts were generated by partial melting of the subslab asthenosphere of the subducting Nazca plate during the opening of the South Chile spreading ridge-related slab window. These basalts differentiated with small amounts of assimilation in shallow magma chambers emplaced along transtensional to extensional zones. The close association of bimodal magmatism with extensional tectonic features in the western MLBA is a strong support to the model of Patagonian collapse event proposed to have taken place between 5 and 3 Ma as a consequence of the presence of the asthenospheric window (SCR-1 segment of South Chile Ridge) below the MLBA area.  相似文献   

12.
The application of the Sr/Ca-Ba/Ca systematics to volcanic rocks of the Andean Southern Volcanic Zone (33°S–46°S) has revealed a good correlation between the estimated degree of partial melting required to generate primary magmas and the projected extensions of the oceanic Nazca plate fracture zones under the continental South American plate. Magmas erupted at volcanic centers situated above these projections are thought to have been derived from primary magmas generated by relatively high degrees of melting, whereas those erupted at other centers are thought to have evolved from magmas produced by comparatively low degree of fusion. We interpret this relationship to reflect the facilitation of heat and mass transfer from the asthenosphere below the subducted oceanic lithosphere to the subarc mantle by the fracture zones. This contribution enhances the degree of melting of the subarc mantle source as well as the fraction of material derived from the subducted oceanic crust. This model predicts the predominance of basalts depleted in incompatible trace elements in centers located above the Nazca plate fracture zone extensions and of basalts enriched in incompatible trace elements in centers situated between boundaries of fracture extensions.  相似文献   

13.
Southern Central America is a Late Mesozoic/Cenozoic island arc that evolved in response to the subduction of the Farallón Plate beneath the Caribbean Plate in the Late Cretaceous and, from the Oligocene, the Cocos and Nazca Plates. Southern Central America is one of the best studied convergent margins in the world. The aim of this paper is to review the sedimentary and structural evolution of arc‐related sedimentary basins in southern Central America, and to show how the arc developed from a pre‐extensional intra‐oceanic island arc into a doubly‐vergent, subduction orogen. The Cenozoic sedimentary history of southern Central America is placed into the plate tectonic context of existing Caribbean Plate models. From regional basin analysis, the evolution of the southern Central American island arc is subdivided into three phases: (i) non‐extensional stage during the Campanian; (ii) extensional phase during the Maastrichtian‐Oligocene with rapid basin subsidence and deposition of arc‐related, clastic sediments; and (iii) doubly‐vergent, compressional arc phase along the 280 km long southern Costa Rican arc segment related to either oblique subduction of the Nazca plate, west‐to‐east passage of the Nazca–Cocos–Caribbean triple junction, or the subduction of rough oceanic crust of the Cocos Plate. The Pleistocene subduction of the Cocos Ridge contributed to the contraction but was not the primary driver. The architecture of the arc‐related sedimentary basin‐fills has been controlled by four factors: (i) subsidence caused by tectonic mechanisms, linked to the angle and morphology of the incoming plate, as shown by the fact that subduction of aseismic ridges and slab segments with rough crust were important drivers for subduction erosion, controlling the shape of forearc and trench‐slope basins, the lifespan of sedimentary basins, and the subsidence and uplift patterns; (ii) subsidence caused by slab rollback and resulting trench retreat; (iii) eustatic sea‐level changes; and (iv) sediment dispersal systems.  相似文献   

14.
A recently established relation between the penetration depth of oceanic lithosphere and the lithospheric age appears to be of special interest to the understanding of the South American subduction zone. The main characteristics of this complicated zone, such as the absence of deep-focus earthquakes south of 30°S, the variations in the dip angle of the descending Nazca plate and the gap in seismic activity between depths of approximately 300 and 525 km, can be understood if the spatial and temporal variations in the age of the descending oceanic lithosphere are taken into account. In view of the significance of local aspects of the subduction process the South American-Nazca plate interaction cannot simply be considered as a type-example of the interaction between a continental and an oceanic plate.  相似文献   

15.
The collision zone of the 200 km wide and 1.5 km high Nazca Ridge and the Peruvian segment of the convergent South American margin between 14°S and 17°S is characterized by deformation of the upper plate and several hundred meters of uplift of the forearc. This is evident by a narrowing of the shelf, a westward shift of the coastline and the presence of marine terraces. As the Nazca Ridge is oblique with respect to both trench and convergence direction of the Nazca Plate, it migrates southward along the active plate boundary. For reconstructing the migration history of the Nazca Ridge, this study uses updated plate motion data, resulting from a revision of the geomagnetic time scale. The new model suggests that the ridge crest moved laterally parallel to the margin at a decreasing velocity of ∼75 mm/a (before 10.8 Ma), ∼61 mm/a (10.8-4.9 Ma), and ∼43 mm/a (4.9 Ma to present). Intra-plate deformation associated with mountain building in the Peruvian Andes since the Miocene reduces the relative convergence rate between Nazca Plate and Peruvian forearc. Taking an intra-plate deformation at a rate of ∼10 mm/a, estimated from space-geodetic and geological data, into account, does not significantly reduce these lateral migration velocities. Constraining the length of the original Nazca Ridge by its conjugate feature on the Pacific Plate yields a length of 900 km for the subducted portion of the ridge. Using this constraint, ridge subduction began ∼11.2 Ma ago at 11°S. Therefore, the Nazca Ridge did not affect the northern sites of Ocean Drilling Program (ODP) Leg 112 located at 9°S. This is supported by benthic foraminiferal assemblages in ODP Leg 112 cores, indicating more than 1000 m of subsidence since at least Middle Miocene time, and by continuous shale deposition on the shelf from 18 to 7 Ma, recorded in the Ballena industrial well. At 11.5°S, the model predicts the passage of the ridge crest ∼9.5 Ma ago. This agrees with the sedimentary facies and benthic foraminiferal stratigraphy of ODP Leg 112 cores, which argue for deposition on the shelf in the Middle and Late Miocene with subsequent subsidence of a minimum of several hundred meters. Onshore at 12°S, the sedimentary record shows at least 500 m uplift prior to the end of the Miocene, also in agreement with the model.  相似文献   

16.
Abstract   The development of voluminous granitic magmatism and widespread high-grade metamorphism in Mid-Cretaceous southwest Japan have been explained by the subduction of a spreading ridge (Kula–Pacific or Farallon–Izanagi plate boundaries) beneath the Eurasian continent and the formation of a slab window. In the present study, the thermal consequences of the formation of a slab window beneath a continental margin are evaluated through a 2-D numerical simulation. The model results are evaluated by comparison with the Mid-Cretaceous geology of southwest Japan. Of particular interest are the absence of an amphibolite- to granulite-facies metamorphic belt near the Wadati–Benioff plane, and significant melting of the lower crustal-mafic rocks sufficient to form a large amount of granitic magma. Because none of the model results simultaneously satisfied these two geological interpretations, it is suggested that subduction of plate boundaries in Mid-Cretaceous southwest Japan was not associated with the opening of a slab window. According to previous studies, and the results of the present study, two different tectonic scenarios could reasonably explain the geological interpretations for Mid-Cretaceous southwest Japan: (i) The spreading ridge did not subduct beneath the Eurasian continent, but was located off the continental margin, implying the continuous subduction of very young oceanic lithosphere; (ii) ridge subduction beneath the continental margin occurred after active spreading had ceased. Consequently, in both tectonic scenarios, the subduction of plate boundaries at the Mid-Cretaceous southwest Japan was not associated with a slab window, but very young (hot) oceanic lithosphere.  相似文献   

17.
Miocene to Quaternary large basaltic plateaus occur in the back-arc domain of the Andean chain in Patagonia. They are thought to result from the ascent of subslab asthenospheric magmas through slab windows generated from subducted segments of the South Chile Ridge (SCR). We have investigated three volcanic centres from the Lago General Carrera–Buenos Aires area (46–47°S) located above the inferred position of the slab window corresponding to a segment subducted 6 Ma ago. (1) The Quaternary Río Murta transitional basalts display major, trace elements, and Sr and Nd isotopic features similar to those of oceanic basalts from the SCR and from the Chile Triple Junction near Taitao Peninsula (e.g., (87Sr/86Sr)o = 0.70396–0.70346 and εNd = + 5.5  + 3.0). We consider them as derived from the melting of a Chile Ridge asthenospheric mantle source containing a weak subduction component. (2) The Plio-Quaternary (< 3.3 Ma) post-plateau basanites from Meseta del Lago Buenos Aires (MLBA), Argentina, likely derive from small degrees of melting of OIB-type mantle sources involving the subslab asthenosphere and the enriched subcontinental lithospheric mantle. (3) The main plateau basaltic volcanism in this region is represented by the 12.4–3.3-Ma-old MLBA basalts and the 8.2–4.4-Ma-old basalts from Meseta Chile Chico (MCC), Chile. Two groups can be distinguished among these main plateau basalts. The first group includes alkali basalts and trachybasalts displaying typical OIB signatures and thought to derive from predominantly asthenospheric mantle sources similar to those of the post-plateau MLBA basalts, but through slightly larger degrees of melting. The second one, although still dominantly alkalic, displays incompatible element signatures intermediate between those of OIB and arc magmas (e.g., La/Nb > 1 and TiO2 < 2 wt.%). These intermediate basalts differ from their strictly alkalic equivalents by having lower High Field Strength Element (HFSE) and higher εNd (up to + 5.4). These features are consistent with their derivation from an enriched mantle source contaminated by ca. 10% rutile-bearing restite of altered oceanic crust. The petrogenesis of the studied Mio-Pliocene basalts from MLBA and MCC is consistent with contributions of the subslab asthenosphere, the South American subcontinental lithospheric mantle and the subducted Pacific oceanic crust to their sources. However, their chronology of emplacement is not consistent with an ascent through an asthenospheric window opened as a consequence of the subduction of segment SCR-1, which entered the trench at 6 Ma. Indeed, magmatic activity was already important between 12 and 8 Ma in MLBA and MCC as well as in southernmost plateaus, i.e., 6 Ma before the subduction of the SCR-1 segment. We propose a geodynamic model in which OIB and intermediate magmas derived from deep subslab asthenospheric mantle did uprise through a tear-in-the-slab, which formed when the southernmost segments of the SCR collided with the Chile Trench around 15 Ma. During their ascent, they interacted with the Patagonian supraslab mantle and, locally, with slivers of subducted Pacific oceanic crust that contributed to the geochemical signature of the intermediate basalts.  相似文献   

18.
When combined with the Miocene-Recent volcanic record of Baja California, a parallel drawn between the Chile and Mexico triple junction areas substantiates slab window development beneath northwestern Mexico during the past 12-10 Myr. The slab-free zone manifestations challenge the notion that ridge subduction has not occurred beneath the southern Baja California peninsula. The geochemically distinctive rocks from the Santa Clara volcanic field of west-central Baja California, including coeval adakites and niobium-enriched basalt, are commonly inferred to signal partial melting of the subducting plate at shallow depths and relatively high temperatures, before slab dehydration occurs. Such PT conditions for slab melting have only been observed in association with spreading-ridge subduction. We propose that slab window development beneath southern Baja California and mainland Mexico (30° to 18°N) resulted from subduction of the East Pacific rise.  相似文献   

19.
日本俯冲带与IBM俯冲带位于太平洋板块、菲律宾海板块和欧亚板块三者的交汇地带,是典型的"俯冲工厂"地区,具有重要的研究意义.本文利用震源分布资料与卫星重力数据对日本俯冲带与IBM俯冲带进行了研究.通过空间重力异常反映了俯冲带地区的区域构造形态,在此基础上基于艾利模式计算了均衡异常以反映地壳均衡特征.利用震源分布资料,分别从垂直俯冲带走向与沿俯冲带走向划定了横截剖面(cross-sections)进行了地震提取,讨论了俯冲带地区的Wadati-Benioff带形态特征,并借助于俯冲带地震等深线图直观描述了俯冲带的俯冲形态.在日本俯冲带与伊豆—小笠原俯冲带各选取了一条典型剖面进行了重力2.5D反演,研究了俯冲带地区的壳幔结构特征.研究结果表明,九州—帕劳海脊与IBM岛弧在均衡异常上存在差异,前者已逐渐趋向于地壳均衡.IBM的Wadati-Benioff带存在明显的南北差异,反映出伊豆—小笠原俯冲板片停留在了660km转换带中,而马里亚纳俯冲板片很可能垂直穿过了这一转换带,造成这种南北差异的原因与板块相对运动、岩石圈黏性和年龄差异以及俯冲板片的重力效应等因素有关.在IBM的中部和南部存在板片撕裂现象.日本俯冲带的俯冲洋壳密度随俯冲深度变化较小,洋幔存在一定程度的蛇纹岩化,地幔楔蛇纹岩化作用不典型,海沟处有一范围较小的含水畸变带;伊豆—小笠原俯冲带俯冲洋壳密度随深度增大而明显增大,洋幔蛇纹岩化程度较日本俯冲带低,地幔楔蛇纹岩化作用强烈,板块交汇处存在明显的蛇纹岩底辟.日本俯冲带与IBM俯冲带一线自北向南板片俯冲变陡,两侧板块耦合度降低,与俯冲带两侧的板块运动速率差异有关.  相似文献   

20.
The subduction channel is defined as a planar to wedge-like area of variable size,internal structure and composition,which forms between the upper and lower plates during slab subduction into the mantle.The materials in the channel may experience complex pressure,temperature,stress and strain evolution,as well as strong fluid and melt activity.A certain amount of these materials may subduct to and later exhume from100 km depth,forming high to ultra-high pressure rocks on the surface as widely discovered in nature.Rock deformation in the channel is strongly assisted by metamorphic fluids activities,which change composition and mechanical properties of rocks and thus affect their subduction and exhumation histories.In this study,we investigate the detailed structure and dynamics of both oceanic and continental subduction channels,by conducting highresolution petrological-thermomechanical numerical simulations taking into account fluid and melt activities.The numerical results demonstrate that subduction channels are composed of a tectonic rock melange formed by crustal rocks detached from the subducting slab and the hydrated mantle rocks scratched from the overriding plate.These rocks may either extrude sub-vertically upward through the mantle wedge to the crust of the upper plate,or exhume along the subduction channel to the surface near the suture zone.Based on our numerical results,we first analyze similarities and differences between oceanic and continental subduction channels.We further compare numerical models with and without fluid and melt activity and demonstrate that this activity results in strong weakening and deformation of overriding lithosphere.Finally,we show that fast convergence of orogens subjected to fluid and melt activity leads to strong deformation of the overriding lithosphere and the topography builds up mainly on the overriding plate.In contrast,slow convergence of such orogens leads to very limited deformation of the overriding lithosphere and the mountain building mainly occurs on the subducting plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号