首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
对出露马鞍桥金矿床中香沟二长花岗斑岩进行了单颗粒锆石U-Pb定年和岩石地球化学研究.结果表明,锆石的LA-ICPMS U-Pb年龄值为(242.0±0.8)Ma,与前人确定的秦岭造山带的主造山时间((242±21)Ma)一致,显示香沟岩体可能和印支期华北与扬子板块的碰撞事件有关.香沟岩体以高硅富碱为特征,属于高钾钙碱性系列花岗岩类.香沟岩体高Al(Al2O3=14.49~15.61)和Sr(457.10~630.82μg/g)、亏损Y(<16μg/g)和HREE(Yb<0.45μg/g),并具有较高的Sr/Y(76.24~97.34)和(La/Yb)N(29.65~46.10)比值及强分异的稀土元素组成模式,其地球化学特征显示香沟岩体花岗岩类属于C型埃达克质(adakitic)岩石.岩石初始Sr同位素比值ISr=0.70642~0.70668,εNd(t)=-4.5~-4.0,TDM=1152~1220Ma.香沟岩体具有较低的εNd(t),ISr值和较高的TDM值,同时其Na2O/K2O接近1(Na2O/K2O=0.95~1.10),显示香沟花岗岩不是俯冲洋壳部分熔融形成的Ⅰ型埃达岩或底侵玄武质下地壳熔融所产...  相似文献   

2.
湘西南兰蓉岩体为一加里东期小侵入体,由黑云母二长花岗岩和二云母二长花岗岩组成.(443.5±8.1)Ma的锆石SHRIMP U Pb年龄表明花岗岩形成于早志留世早期.主量元素组成表明岩体总体属钙碱性高钾钙碱性系列强过铝质花岗岩类.该侵入体Ba、(Ta+Nb)、Sr、P、Ti强烈亏损,Rb、(Th+U+K)、(La+Ce)、Nd、(Zr+Hf+Sm)、(Y+Yb+Lu)等相对富集;稀土元素含量较高、轻稀土富集明显、Eu显著亏损;Isr值为0.71299,εSr(t)值为120,εNd (t)值为 8.11和-8.89,t2DM为1.82和1.84Ga.C/MF-A/MF图解显示其源岩为泥质岩和砂屑岩.上述地球化学特征表明兰蓉岩体为陆壳碎屑岩石部分熔融形成的S型花岗岩.基于岩石成因、构造环境判别以及区域构造演化过程,推断兰蓉岩体的具体形成机制为:奥陶纪末志留纪初的北流运动(板内造山运动)导致地壳增厚、升温,尔后在挤压减弱、应力松弛的后碰撞减压构造环境下,中、上地壳酸性岩石发生部分熔融并向上侵位而形成兰蓉岩体.  相似文献   

3.
大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据   总被引:36,自引:1,他引:36  
采用颗粒级锆石U-Pb定年和角闪石-黑云母的Ar-Ar定年方法, 测得大别山超高压变质带内刘家洼高Sr/Y花岗岩的结晶锆石年龄为135.4 ± 2.7 Ma, 分流铺高Sr/Y花岗岩的角闪石和黑云母的40Ar-39Ar坪年龄分别为139.0 ± 1.0和125.3 ± 0.2 Ma. 这些岩体侵位之后, 又有与伸展作用有关的铁镁质岩体和具负Sr和Eu异常的花岗岩类侵入, 其同位素年龄在105~130 Ma之间. 两类花岗岩的地球化学对比表明, 从早到晚, 岩石的碱性增强, K2O含量升高, FeO/(FeO + MgO)比值增大, Sr/Y比值降低, 表明从早到晚地壳岩浆房深度变浅. 从早白垩世开始的地壳尺度的流变学分层以及地壳岩石的熔融与流动, 促进了地壳伸展作用和深埋岩石剥露. 形成于135 Ma前的高Sr/Y花岗岩, 是加厚地壳开始减薄以及地壳从挤压向伸展转换过程的产物.  相似文献   

4.
柴北缘超高压带东端都兰地区花岗岩锆石SHRIMP U-Pb定年结果表明,野马滩东岩体的年龄为(406.6±3.5)Ma,巴立给哈滩西岩体的年龄分别为(407.3±4.3)和(397±6)Ma,水文站北岩体的年龄分别为(404.5±4.0)和(397.0±3.7)Ma,水文站南岩体的年龄为(380.5±5.0)Ma,察察公麻岩体的年龄分别为(382.5±3.6)和(372.5±2.8)Ma.从年龄上看,这些花岗岩明显地分为两期:早期的为407-397 Ma,晚期的为383-373 Ma.它们主要为准铝质-弱过铝质的石英闪长岩、花岗闪长岩和二长花岗岩.岩石地球化学研究表明,大多数样品为钙碱性系列,少数样品为钙性或碱钙性系列,其中,早期花岗岩的87Sr/86Sr比值(0.7082-0.7110)和模式年龄(T2DM=1.41-1.90 Ga)高于晚期花岗岩(0.7072-0.7091,T2DM=1.07-1.38 Ga),但晚期花岗岩的εNd(t)值(0.6- -3.0)高于早期花岗岩(-3.2- -9.3),表明早期花岗岩可能起源于早中元古代的大陆壳;而晚期花岗岩起源于晚中元古代玄武质地壳.结合区域地质构造特征,可以认为,早期花岗岩的形成与俯冲板块的断离并折返有关,而晚期花岗岩的形成与造山带岩石圈地幔拆沉作用有关.  相似文献   

5.
分布于湖南东北部的石蛤蟆岩体侵位于新元古代地层中。由微细粒斑状黑云母花岗闪长岩和细粒斑状黑云母二长花岗岩等两期侵入体组成。通过锆石SHRIM PU--Pb法测得岩体侵位年龄为157土2Ma(2d),MSWD=0.98,成岩时代为晚侏罗世。SiO2=68.26%~68.53%,K2O/Na2O=1.37~1.59,岩石属镁质、准铝质-微过铝质、高钾钙碱性-钾玄岩系列;岩石明显富集大离子亲石元素,亏损高场强元素,Rb/Sr较低(0.40~0.56);乏REE较高(171.48~183.81),Eu为弱负异常(δEu=0.86~0.93),(La/Yb)N=27.11~45.87;具较高的eNd值(-5.11)和高T2DM(1.63Ga)。综合研究表明,石蛤蟆花岗岩为混合源高钾钙碱性花岗岩类(KCG),其花岗岩浆有大量幔源物质加入。讨论认为岩体形成于构造体制转换下的地球动力学背景,是造山晚期张弛作用下的产物。  相似文献   

6.
滇西保山地块大地构造上位于藏-滇-泰-马中间板块中段,西以怒江-瑞丽断裂为界,东以澜沧江-柯街-南汀河断裂为界.由于缺乏出露的新生代花岗质岩石,传统上认为,在喜马拉雅期该地块花岗质岩浆活动微弱.因此,双脉地晚始新世隐伏花岗岩的发现,改写了该地块无喜马拉雅期花岗质岩浆活动的记录.对取自研究区ZK7-1和ZK0-1钻孔岩芯花岗岩样品锆石U-Pb年代学、地球化学和Sr-Nd-Pb同位素研究表明:(1)双脉地隐伏花岗岩岩石类型为中粗粒二云母正长花岗岩,岩体以高SiO2低CaO为特征,总碱量(K2O+Na2O)为5.22%~8.03%,K2O/Na2O比率0.24~1.79;K,Rb,U,Th和Pb显示清晰正异常,Ba,Sr,Ti和Nb显示清晰负异常;具中等稀土元素含量(85~125μgg-1),中度富集轻稀土元素((La/Yb)=4.77~7.22),以及中度负Eu异常(δEu=0.29~0.39),属于高钾钙碱性-钙碱性强过铝S型花岗岩.(2)利用SHRIMP锆石U-Pb同位素定年获得上述两类岩石的岩浆结晶年龄分别为(36.27±0.48)和(35.78±0.49)Ma,成岩年代为晚始新世.(3)Sr-Nd-Pb同位素组成表明双脉地二云母正长花岗岩源岩来自成熟大陆地壳物质,具有典型S型花岗岩特征.(4)花岗岩样品w(CaO)/w(Na2O)和w(Al2O3)/w(TiO2)比值及其在w(CaO)/w(Na2O)-w(Al2O3)/w(TiO2)图上分布表明,其岩浆来自地壳富粘土质物质的部分熔融,其熔融温度约为900~950℃;依据锆浓度饱和温度计计算岩浆结晶温度775~795℃;在Hf-Rb-Ta微量元素判别图解上,花岗岩样品分布于后碰撞构造环境.(5)在喜马拉雅后碰撞造山阶段,伴随印度大陆向欧亚大陆的持续楔入,印支地块(或保山地块)向南东方向逃逸,作为地块西界的高黎贡断裂带发生大规模走滑剪切作用,并触发加厚地壳减压部分熔融形成过铝花岗质岩浆,然后冷凝结晶形成双脉地二云母正长花岗岩.  相似文献   

7.
小墨山岩体侵位于中元古代冷家溪群中,由两期侵人体组成,早期为粗中粒-中粒斑状黑云母二长花岗岩;末期为细粒黑(二)云母二长花岗岩。通过锆石SHRIMPU—Pb法测得岩体侵位年龄为122.5±2.1Ma(20),MSWD=1.9,成岩时代为早白垩世。主元素中,SiO2变化于67.20%~75.16%,K20含量高,且K2O〉Na2O,K2O/Na2O为1.16~1.72;ASI值变化于0.96~1.10之间,平均1.02,属准铝质-微过铝质、高钾钙碱性系列。岩石明显富集大离子亲石元素,亏损高场强元素,Rb/Sr=0.27~15.13;Nb/Ta=15.9~17.1,为锶和铌亏损型。EREE总体较高,重稀土含量相对较高,轻重稀土分馏稍弱,∑Ce/∑Y为0.49~6.18,(La/Yb)。为0.66~15.54。有较高的εNd(t),为-6.8~-8.7;T2DM相对较小(1.47~1.62Ga)。综合研究表明,小墨山花岗岩石为壳源型富黑云母过铝花岗岩类(CPG),其成因应为下地壳物质和上地壳物质混合而成,与花岗岩底侵作用或注入地壳中的幔源岩浆有关,形成的构造背景为陆内挤压造山向非造山转换的后造山拉张环境,是在紧随侏罗纪挤压造山运动之后的构造松驰和拉张减薄条件下所形成。  相似文献   

8.
对出露于扬子陆块西北缘碧口块体印支期阳坝岩体(215 Ma)、南一里岩体(224 Ma)和木皮岩体进行了岩石主量元素、微量元素和Pb-Sr-Nd同位素地球化学研究. 上述岩体花岗岩类均以高Al (Al2O3: 14.56~16.48%) 和Sr(352~1047 mg/g)、亏损Y(<16 mg/g)和HREE(eg. Yb<1.61 mg/g)为特征, 并具有较高的Sr/Y(36.3~150)和(La/Yb)N(7.8~36.3)比值及强分异的稀土元素组成模式. 岩石初始Sr 同位素比值ISr=0.70419~0.70752, εNd(t)=-3.1~-8.5,初始Pb同位素比值206Pb/204Pb=17.891~18.250, 207Pb/204Pb=15.494~15.575, 208Pb/204Pb=37.788~38.335. 地球化学特征显示阳坝、南一里和木皮岩体花岗岩类属于埃达克质(adakitic)岩石, 岩浆起源于增厚玄武质下地壳的部分熔融, 但它们具有较高的K含量(K2O: 1.49%~3.84%)、明显演化的Nd同位素组成及较高的Nd同位素模式年龄(TDM=1.06~1.83 Ga)清晰地不同于由俯冲洋壳或底侵玄武质岩石部分熔融形成的埃达克岩类, 而为增厚的并具有较长地壳存留年龄的玄武质下地壳部分熔融形成的埃达克质岩类. 碧口块体印支期埃达克质岩浆的产生反映了在华北板块和华南板块碰撞之后的岩石圈拆沉作用. 另一方面, 碧口块体印支期埃达克质岩石的Pb-Sr-Nd 同位素组成对岩浆源区的示踪揭示了在碧口块体的碧口群火山岩之下存在大陆型地壳基底, 这一结果不支持碧口群火山岩形成于大洋盆地或洋岛环境的认识.  相似文献   

9.
在大量野外地质调查和前人资料分析的基础上,选择赣中南四个有代表性的早古生代花岗质岩进行了重点解剖,内容包括岩相学特征、锆石U-Pb定年、原位Hf同位素成分测试、岩石地球化学特征等.野外观察表明,岩体和围岩成分呈渐变关系,两者的片理产状基本一致,岩体边缘可见不规则状砂质板岩残留体,残留体中的片理产状也与岩体和围岩的相近,具有原地花岗岩化的成因特征.显微镜下观测显示,岩体中石英含量高,含有白云母、矽线石等富铝矿物,应属S型花岗岩类;长石和石英矿物被强烈压扁拉长,呈线状定向排列,反映岩体曾经受到过强烈的挤压剪切作用.四个花岗岩体的主量元素成分显示,A/CNK值在1.03~1.37之间(13组平均值为1.16),属于强过铝质花岗岩;硅-碱图解表明,它们都属于偏碱性花岗岩,源岩主要由砂屑质岩石组成.四个岩体均富集Rb,Th和U,亏损Ba,Sr,Nb和Ti,属于低Ba-Sr花岗岩范畴,它们的微量元素蛛网曲线接近重合,反映同源成因特征.其稀土总量较高,轻稀土富集,铕负异常明显,具有陆壳物质部分熔融的特征.锆石U-Pb定年结果表明,赣中南四个花岗岩体的结晶年龄基本一致:(436.1±5.7)Ma(贵溪塘湾,N=22),(440.6±4)Ma(宜黄界口,N=32),(435.9±6.2)Ma(黎川,N=21),(441.9±3.1)Ma(金溪,N=27),相当于志留纪兰多维列世.另有少量捕获锆石,测年值700Ma左右,推测是其基底岩石记录到的华南古陆块裂解信息.锆石Th/U比值大,在0.52~1.54之间,平均值为1.08,具有岩浆结晶锆石的特征.锆石原位Hf同位素成分数据表明,赣中南志留纪花岗岩的εHf(t)值呈现明显负值,表明研究区花岗岩浆基本上来自地壳的部分熔融,没有受到幔源岩浆成分的影响.诸多证据表明,赣中南在早古生代曾经发生过陆块聚合作用.强烈的挤压使地壳缩短变厚,因地温增高以及高产热元素在加厚带的浓聚,遂使地壳逐渐软化并部分熔融,形成铝过饱和花岗岩浆;然后,在后造山伸展-减压背景下上升侵位,形成花岗岩体.  相似文献   

10.
皖南新元古代花岗闪长岩沿祁门-歙县-三阳深断裂呈串珠状出露。本文在对其岩石学、地球化学细致分析的基础上,探讨了岩体的岩石成因和产出环境。皖南新元古代花岗闪长岩主要由石英、钾长石和斜长石组成,普遍含富铝矿物黑云母和堇青石,副矿物包括锆石、磷灰石、钛铁矿、独居石、磷钇矿、极少的磁铁矿等。地球化学分析数据显示,岩石总体具高硅、高钾、高铝和低钠、低镁、低钙的特征;岩石富碱(ALK=6.63%),高K2O/Na2O比值(1.33)。里特曼指数δ为0.8~2.91,碱度率AR为1.56~3.14,属高钾钙碱性系列。岩石铝饱和指数(A/CNK-1.31)大于1.1,具强过铝质S型花岗岩的特征。岩石稀土元素呈轻稀土富集、重稀土亏损的特征,∑LREE/∑HREE比值为5.36~8.36,具较强的负铕异常(δEu=0.39~0.7),配分模式为右倾“V”字形态;微量元素明显富集Rb、Th而亏损Ba、Nb、Ta、Sr等,为低Sr高Yb型花岗岩。地球化学特征显示其岩浆源于围岩-中元古代牛屋组浅变质千枚岩的部分熔融,反映陆-陆碰撞挤压造山环境,为晋宁运动晚期华夏板块向北俯冲与扬子板块碰撞造山的火山弧产物。  相似文献   

11.
柴北缘西段出露的花岗岩主要有赛什腾山、团鱼山、嗷唠河和三岔沟等岩体,这些岩体的走向为北西向,与区域构造线方向基本一致.岩体的锆石SHRIMP U—Pb定年结果表明,它们的时代从早古生代的奥陶纪到晚古生代的泥盆纪和二叠纪.其中,赛什腾山岩体为(465.4±3.5)Ma,团鱼山岩体两期侵入岩的年龄分别为(469.7±4.6)和(443.5±3.6)Ma;它们均属早古生代奥陶纪;而嗷唠河岩体的石英闪长岩为(372.1±2.6)Ma,属晚古生代泥盆纪;三岔沟岩体也由两期侵入岩组成,其年龄分别为(271.2±1.5)和(260.4±2.3)Ma,属二叠纪.花岗岩的岩石地球化学特征表明,柴北缘早古生代花岗岩具有岛弧或活动大陆边缘花岗岩的属性,原岩可能为中元古代(1.03~1.15Ga)形成的、来源于亏损地幔的拉斑玄武质洋壳,它们的形成与板块的俯冲作用有关;晚古生代花岗岩继承了早古生代花岗岩的特点,其原岩可能为中元古代(1.18—1.29Ga)的岛弧根部下地壳,岩浆物质成分以壳幔混合源为主,它们的形成与造山隆起后不同块体之间的均衡调整有关.  相似文献   

12.
对川西南盐边关刀山岩体进行了系统的SHRIMP锆石U-Pb年龄和元素-Nd同位素地球化学研究,结果表明该岩体是典型的Ⅰ型花岗岩,形成年龄为(857±13)Ma,是由前存年轻(中元古代末-新元古代初)岛弧低钾拉斑玄武质岩石部分熔融形成的板内非造山岩浆活动产物。关刀山岩体很可能是Rodinia超级大陆下860~750 Ma超级地幔柱最早的岩浆活动记录。  相似文献   

13.
对川西南盐边关刀山岩体进行了系统的SHRIMP锆石U-Pb年龄和元素-Nd同位素地球化学研究,结果表明该岩体是典型的Ⅰ型花岗岩,形成年龄为(857±13)Ma是由前存年轻(中元古代末-新元古代初)岛弧低钾拉斑玄武质岩石部分熔融形成的板内非造山岩浆活动产物.关刀山岩体很可能是Rodinia超级大陆下860~750 Ma超级地幔柱最早的岩浆活动记录.  相似文献   

14.
南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩的矿物学和地球化学特征截然不同.含铜铅锌花岗岩主要为准铝质含角闪石的花岗闪长岩,具有较高的CaO/(Na_2O+K_2O)比值、LREE/HREE比值和δEu值,较低的Rb/Sr比值,Ba、Sr、P、Ti轻微亏损,分异演化程度较低.含钨花岗岩为高分异演化的过铝质花岗岩,其CaO/(Na_2O+K_2O)比值、LREE/HREE比值和δEu值较低,Rb/Sr比值较高,Ba、Sr、P、Ti强烈亏损.含铜铅锌花岗岩主要形成于155.2~167.0Ma,峰值为160.6Ma,含钨花岗岩主要形成于151.1~161.8Ma,峰值为155.5Ma,两者存在约5Ma的时差.在湘南铜山岭含铜铅锌和魏家含钨花岗岩系统研究基础上,结合南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩的对比,提出了两类含矿花岗岩的成因模式.古太平洋板块俯冲导致软流圈上涌和玄武质岩浆底侵.底侵玄武质岩浆加热促使下地壳镁铁质角闪岩相基底首先发生部分熔融,形成与铜铅锌矿化有关的花岗闪长质岩浆.随着玄武质岩浆底侵,中-上地壳富白云母变质沉积基底发生部分熔融,形成与钨矿化有关的花岗质岩浆.花岗岩源区成分的差异导致花岗岩成矿专属性不同,源区部分熔融的时间先后导致了含铜铅锌与含钨花岗岩之间存在5Ma左右的时差.  相似文献   

15.
闽东南长乐南澳构造带沿线出露大面积白垩纪花岗岩岩基,普遍存在岩浆混合现象,肖厝侵入岩是其中的代表性岩体.野外观察和化学分析表明,肖厝侵入岩由二长花岗岩和辉长闪长岩、以及该两种混合端员岩浆混合形成的闪长质-花岗闪长质-花岗质过渡岩类组成;岩石总体富碱、富LREE和LILE、贫HFSE; A/CNK=0.82~1.05,属准铝质微过铝质钙碱性系列,部分受流体交代的岩石A/CNK值可升高至1.69;岩浆混合过程中发生了元素的选择性富集/亏损和同位素组成的均一化,(87Sr/86Sr)为0.7055~0.7061,εNd(t)为-1.9~-3.0.锆石年代学研究表明,肖厝侵入岩的岩浆混合开始于约136Ma,于121Ma时初始侵位于下地壳.结合区域地质特征,分析了肖厝侵入岩的成岩机制,提出岩体侵位早于长乐-南澳构造带的变质变形作用,两者不存在成因上的联系;118~~100Ma时该构造带曾发生过深层次地壳逆冲推覆,使形成于中—下地壳的韧性剪切带和肖厝侵入岩共同快速上升至地表.  相似文献   

16.
皖南许村镇附近发育一套岩墙群,主要由辉长岩和花岗闪长斑岩组成,它们在时空上紧密伴生,成因上密切相关。岩石的SiO2含量集中分布在酸性和基性成分之间,缺乏中性及中酸性成分,构成一套双峰式侵入岩组合。对花岗闪长斑岩进行锆石LA-ICP-MS U-Pb年代学研究,表明双峰式岩墙侵入时间为822.1&#177;6.6Ma。辉长岩具有正εHf (t)值(2.1~4.4)、大离子亲石元素和LREE富集,显示大陆拉斑质玄武岩地球化学和同位素组成特征;花岗闪长斑岩富含Zr、Hf和稀土元素,较高的Ga/A1比值,较低Ba、Sr、P、Ti含量,总体上地球化学特征类似A2-型花岗岩,εHf (t )值范围(1.8~4.6)与辉长岩基本相同。许村双峰式岩墙群的基性端员辉长岩是拉张环境下华南弱亏损岩石圈地幔部分熔融产生玄武质岩浆的产物,而酸性端员花岗闪长斑岩是玄武质岩浆在上升途中受地壳混染,并发生底侵作用和由玄武岩浆提供的热源导致地壳重熔的结果。  相似文献   

17.
通常将西藏冈底斯中北部白垩纪花岗岩类解释为与拉萨-羌塘碰撞有关的增厚地壳重熔的产物.文中报道了西藏冈底斯东部察隅岩体的锆石U-Pb定年、地球化学和Sr-Nd-Hf同位素数据.文中锆石SHRIMPU-Pb年龄数据和文献锆石LA-ICPMSU-Pb年龄数据显示察隅岩体大约侵位于130Ma,与冈底斯东部其他地区(如然乌、八宿等地)和中冈底斯早白垩世岩浆岩基本同期.察隅岩体无角闪石和白云母,具高SiO2(69.9%~76.8%)、高K2O(4.4%~5.7%)和低P2O5(0.05%~0.12%)含量特征,铝饱和指数(A/CNK)为1.00~1.05,富集Rb,Th,U和Pb,明显亏损Ba,Nb,Ta,Sr,P,Ti和Eu等,属准铝质到弱过铝质高分异I型花岗岩类.与冈底斯成熟大陆地壳物质(如宁中早侏罗世强过铝质花岗岩)相比,察隅岩体显示相对高的εNd(t)值(-10.9~-7.6)和相对低的(86Sr/87Sr)i值(0.7120~0.7179),并具不均一的锆石εHf(t)值(-12.8~-2.9)和古老的锆石Hf同位素地壳模式年龄(1.4~2.0Ga).根据本文和最近获得的数据提出,冈底斯东部早白垩世花岗岩类很可能是中冈底斯早白垩世岩浆岩带在西藏境内的东延部分,具有古老基底物质的拉萨微陆块东西延伸可达2000km.锆石Hf同位素数据和全岩锆石饱和温度(789~821℃)表明幔源物质很可能在察隅岩体的形成过程中发挥了作用.察隅岩体很可能是在班公湖-怒江海洋岩石圈南向俯冲的地球动力学背景下,由俯冲带之上的幔源岩浆既提供热量诱发拉萨微陆块自身的古老地壳物质重熔,又与该壳源熔体混合形成母岩浆,再经历高程度分离结晶作用形成,地壳增厚不一定是必须的.  相似文献   

18.
对位于雅鲁藏布江结合带中段的夏如花岗岩体进行了LA-ICP-MS锆石U-Pb同位素定年和岩石地球化学的研究.结果表明,2件样品的锆石206Pb/238U年龄加权平均值分别为(474.9±2.3)和(478.3±1.7)Ma,代表了花岗岩的形成年龄,是雅鲁藏布江结合带内首次发现的早奥陶世岩浆活动记录.该花岗岩无角闪石,含电气石,为高钾钙碱性系列,铝饱和指数A/CNK1.1(1.10~1.20),富集Rb,Th和U,相对亏损Ba,Nb,Sr,Zr,Ti和Eu等,属强过铝质的S型花岗岩,是同碰撞背景下地壳中泥岩质成分部分熔融的产物.结合前人研究资料和本文数据提出,夏如岩体的形成很可能与原特提斯洋向冈瓦纳大陆北缘俯冲过程中的安第斯型造山作用有关,是大洋消减作用进行到一定阶段后,冈瓦纳大陆北缘的地块或微地块之间发生碰撞而使地壳加厚、上地壳重熔形成的强过铝质花岗岩.夏如早奥陶世花岗岩的厘定也指示了其围岩可能形成于寒武或前寒武纪,夏如地区可能存在地壳基底.  相似文献   

19.
湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示   总被引:46,自引:4,他引:46  
湘东南中生代花岗闪长质小岩体与铜多金属成矿带在时空上密切共生, 主要岩性为花岗闪长(斑)岩. 4个花岗闪长质岩体的单颗粒锆石U-Pb同位素定年结果精确限定了带内花岗闪长质岩体的形成年龄在172~181 Ma之间, 这一年龄也代表了带内铜多金属成矿作用发生的上限年龄. 部分颗粒锆石属残留锆石, 给出了中元古代(1753 Ma左右)年龄信息, 暗示带内花岗闪长质岩浆受到了古老地壳物质的混染作用或前寒武纪岩石是其熔融源区的重要组成之一.  相似文献   

20.
蚌埠荆山“混合花岗岩”SHRIMP锆石U-Pb定年及其地质意义   总被引:11,自引:1,他引:10  
蚌埠荆山“混合花岗岩”的岩相学特征和岩浆锆石的存在表明该“混合花岗岩”为岩浆成因. 花岗岩中锆石均具有继承锆石核和岩浆锆石振荡环带边. 锆石SHRIMP U-Pb定年结果表明, 岩浆锆石的SHRIMP U-Pb年龄显示该花岗岩形成于160.2±1.3 Ma, 并且其形成可能与三叠纪超高压碰撞后岩石圈地幔和/或下地壳的拆沉有关; 大多数继承锆石形成于217.1±6.6 Ma, 这与大别-苏鲁造山带中超高压变质的峰期年龄相吻合; 部分继承锆石(年龄介于433~722 Ma之间)构成了上交点为850+85/-68 Ma, 下交点为260+100/ -140 Ma的不一致年龄线. 这意味着荆山花岗岩起源于经历超高压变质作用改造的华南地块地壳物质的部分熔融. 220 Ma±的超高压变质作用是引起继承锆石Pb丢失的重要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号