首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
非均匀灌溉棉田能量平衡特征研究   总被引:2,自引:2,他引:0       下载免费PDF全文
运用国际能量平衡实验(EBEX-2000)的湍流、净辐射和土壤观测资料,运用涡动相关法分析了非均匀灌溉引起的热内边界层发展条件下近地层感热、潜热通量特征,并对有无灌溉两种条件下的能量闭合度进行了对比分析.在计算感热、潜热通量过程中,分别将Schotanus订正和Webb订正纳入了考虑范围,研究了两种订正方法对计算湍流热通量的影响.研究结果发现,由于非均匀灌溉生成的热内边界层使得近地层感热通量受到抑制,潜热通量出现波动,该现象在8.7 m比2.7 m 更为显著.非均匀灌溉导致的热内边界层的存在使得近地层能量闭合度偏低,能量平衡比率约为0.65;而没有热内边界层存在时,近地层能量平衡比率约为0.70.本实验中,Schotanus订正使得感热通量显著减小,其订正量日平均值约为-8 W/m2,占净辐射的近4%;Webb订正量日平均值约为2 W/m2,对能量平衡的影响较小.  相似文献   

2.
本文对木星极区(1000-6000公里)Io通量管中的等离子体湍流和低频无线电波的激发机制进行了理论分析,并对它们的能量密度作了数值估计。指出:在Io通量管中可能存在着两种主要的不稳定性,一是电流驱导不稳定,这种不稳定可以激发离子声湍流,离子声湍流通过离子的非线性散射可以转化为哨声湍流。这两种湍流的能量密度大致相等,约为10-17-10-16焦耳/厘米3。另外一种不稳定性是由于高能粒子沉降引起的束流不稳定,可以激发朗缪尔湍流和迴旋频率等离子体湍流,能量密度分别为10-17焦耳/厘米3和10-14焦耳/厘米3的量级。这两种湍流可转化为低频无线电波,最大的能通量可达10-22-10-20瓦/厘米2·赫兹。  相似文献   

3.
鄱阳湖夏季水热通量特征及环境要素影响分析   总被引:2,自引:2,他引:0  
气候变化加速了全球水文循环过程,然而,气候变化如何影响水体蒸发及其水热通量交换仍然不清楚.基于涡度相关系统观测鄱阳湖水体水热通量过程,在小时和日尺度分析了水热通量的变化规律及其主要影响因子.研究表明,潜热通量日变化波动剧烈,大部分为正值,变化范围在-50~580 W/m2之间.而感热通量数值较小,变化范围在-50~50 W/m2之间.8月份潜热通量和感热通量均呈波动下降趋势,均值分别为167.4和15.9 W/m2.8月份日平均潜热通量和感热通量之和大于净辐射,这是由于这一时段储存在水体中的热量释放并补充潜热通量和感热通量.小时尺度上潜热通量日变化在相位上与净辐射无显著相关性,而与风速显著相关.在日尺度变化趋势上,8月份日平均潜热通量仍主要受到风速和水温的影响,感热通量则主要受到风速和饱和水汽压差的影响.  相似文献   

4.
利用“延平2号”科学调查船于2005年6月下旬在台湾海峡中部(119.2°E,24.3°N)实施的定点连续观测资料,研究了夏季风期间障碍层的日变化过程及其局地反馈特征.障碍层开始形成时,由于非太阳辐射局限于上混合层,而太阳辐射可以穿透混合层底直至温跃层,导致障碍层内累积了最多热能,形成逆温层.随着障碍层内部热量的不断累积,障碍层与上混合层之间的热交换过程逐渐增强,上混合层显著增暖。此外,障碍层对应浮力频率极小值区,具有较弱的层结稳定性;针对海气通量的分析表明障碍层造成了显著的局地感热、潜热通量异常.进一步分析表明,海表风搅拌产生的湍动能在向下传输过程中,次盐跃层和温跃层构成了两个界面,大部分湍动能被较浅的盐度层结阻挡,限制在混合层以上,部分穿透混合层底的湍动能再次被温跃层阻挡,障碍层对应湍动能的薄弱区.  相似文献   

5.
地表能量不平衡问题是近40年一直困扰微气象学界的重要难题.本文利用黄土高原定西干旱气象与生态环境试验站的相关数据,通过将湍流分解为相干结构部分和非相干结构部分,在涡动相关法中引入相干结构(Coherent structure,简称为CS)的贡献,探讨了CS在地表能量平衡中的作用.研究发现:(1)CS出现频次高,间歇性显著,在30 min平均时间中出现的数目为38个,出现时间与未出现时间分别占40%和60%左右;(2)CS对通量影响显著,引入CS贡献后,白天垂直动量通量、感热、潜热和湍流通量(感热与潜热之和)等4个通量计算的准确性均获得显著提高,分别提高达26%(0.01 m2·s-2)、24%(25.33 W·m-2)、31%(6.23 W·m-2)和30%(31.66 W·m-2).而不考虑CS的传统方法对这4个通量低估达19%、22%、21%和23%;(3)CS对4个通量的贡献分别为36%、41%、33%和50%;(4)传统方法得到的地表能量平衡闭合率EBR只有0.76、能...  相似文献   

6.
激光干涉绝对重力仪干涉信号处理算法的动态适应性研究是进行动态绝对重力测量的基本前提。本文基于希尔伯特变换、直接正交法、过零点法三种瞬时相位处理算法,提出了基于背景振动物理量的合理动态约束条件,即反向的振动速度不能超过落体的下落速度。构建的单频振动信号仿真实验表明:在满足约束条件时,采样频率为60 MHz,希尔伯特变换算法的精度优于10-13 m/s2,过零点算法的精度优于10-9 m/s2,直接正交算法的精度为(-7.9±2.0)×10-8 m/s2。基于海浪模拟平台的实测试验表明:满足约束条件时,这三类瞬时相位处理算法均适用于动态环境,并获得了标准差为4.6×10-5 m/s2的绝对重力测量值。更进一步,基于本文动态适应性结论对系泊和海面船载动态环境进行评估,结果表明:测量船在3级以下海况可以进行10-5 m/s2量级绝对重力的测量;在3—4级海况下,需根据振动信号对...  相似文献   

7.
稳定分层的深水水库常在冬季发生“翻库”现象,继而导致水库的整体水质下降,影响饮用水安全问题。为探究南方水库热分层消亡时期水体混合特征,在冬季2019年11月—2020年2月对南宁市天雹水库水体理化指标开展长序列原位监测,并结合水体垂直扩散系数,分时期(热分层期、减弱期、完全混合期、形成期)刻画水库热分层消亡全过程中水温T、溶解氧DO的剖面变化特征,探讨了气象因子(气温、太阳辐射、风速等)与水动力因子(水体垂直扩散系数Kz)对水体理化指标的影响。结果显示:桉树人工林区水库热分层消亡期温度分层与溶解氧分层变化不同步,溶解氧分层的破坏较水温分层的破坏出现滞后,其结构失稳是气温及太阳辐射共同作用的结果;期间水体垂直扩散系数变化范围0.16~380.36 m2/d,均值为30.46 m2/d,表层Kz变化的主要控制因子为气温变化,且较T及DO而言,表层Kz对气温的变化更加敏感(RKz=-0.44,RT=0.25,R  相似文献   

8.
为揭示岩溶湿地表层水体二氧化碳分压(pCO2)的时空分布规律及其扩散通量,以我国最大的岩溶湿地贵州威宁草海为研究对象,分别于2019年7月(丰水期)和12月(枯水期)通过网格布点法,系统采集草海表层湿地水体,测定水样理化指标和离子组成,利用PHREEQCI软件计算水体pCO2,并基于Cole提出的气体扩散模型估算水-气界面二氧化碳(CO2)的扩散通量.结果表明:草海湿地表层水体丰水期pCO2的变化范围为0.44~645.65μatm,平均值为(55.94±124.73)μatm;枯水期变化范围为35.48~707.95μatm,平均值为(310.46±173.54)μatm;丰水期水体整体pCO2低于枯水期,空间上两期水体均呈现东部区域及河流入湖口处pCO2较高,而中西部区域pCO2欠饱和的特征.水-气界面CO2的扩散通量在丰水期变化范围为-43.27~27.16 mmol/(m2·d),平均值(-34.49±12.93)mmol/(m2·d),枯水期变化范围为-33.36~28.15 mmol/(m2·d),平均值(-8.02±15.85)mmol/(m2·d),与其他岩溶湖库相比,水生植物丰富的草海在两个极端水文期CO2扩散通量相对较低,总体表现为大气CO2的汇.  相似文献   

9.
在TOGA-COAREIOP期间用涡度相关法对海气热通量进行了船载直接观测.对垂直风速、温度和湿度湍流脉动观测数据的谱分析显示它们在高频区基本满足"-2/3次方律".对船体简谐震荡影响的讨论从理论上证明该影响在热通量计算中可被忽略.根据以此方法得到的通量求出了中性层结条件下感热和潜热的整体输送系数分别为2.25×10-3和1.26×10-3.对海气边界层特性的分析表明该海域的近海层主要呈中性或弱不稳定层结.海气通量的变化与背景环流形势密切相关,潜热通量主要受海面风场强度的影响,而感热通量变化除了风场的影响外,层结变化也是一个重要因素.用整体输送法计算TOGA-COAREIOP期间以及TOGA期间8个航次的通量结果而得到的Bowen比约为0.1,显示潜热通量是暖池大气的主要热源.  相似文献   

10.
基于历史CTD数据和EW0210航次的部分地震测线,在加利福尼亚湾首次发现了盐指型温盐阶梯,并对其尺度和规模有了较为清晰的认识.经分析发现在该区域水深100~600 m范围内主要发育有层厚较大的温盐阶梯,其中均匀混合层厚度可达几十米甚至上百米,水平方向上连续性好,界面处热通量主要集中在-0.1~-0.2 W·m-2,盐通量主要集中在-1×10-7~-2×10-7m·s-1.受地形引起的内潮波或涡旋的影响,阶梯层抖动剧烈,上下起伏较大,部分反射层垂向位移甚至可达80 m,由此推测该阶梯结构可能将会被破坏.  相似文献   

11.
Data collected every 20 minutes for 18 months by a meteorological buoy moored on Lake Sempach in Switzerland (maximum depth 86 m, surface area 14.1 km2) are used to calculate different processes contributing to the net heat flux between water and atmosphere. The processes considered are shortwave and longwave radiation, evaporation/condensation and sensible heat transfer. The temporal resolution of the measurements allows the evaluation of the processes occurring on three different time scales: diurnal variations, weather events of a few days and yearly cycles. The heat content of the lake is calculated from quasi-continuous measurements of water temperature at different depths. The yearly amplitude of the heat content is 1100·106 J/m2. Short-time variations of the heat flux determined from water temperature analysis agree well with the flux variations modeled using meteorological data. However, the latter generally underestimates the measured net heat flux in the long term. Wind measurements, together with the net heat flux, are used to calculate the Flux Richardson Number and the Monin-Obukov Length. Examples are given to show the predominant influence of the wind on the stratification of the upper water column and thus on the surface water temperature.   相似文献   

12.
藏南羊卓雍错湖面大气湍流特征观测分析   总被引:2,自引:1,他引:1  
沈鹏珂  张雪芹 《湖泊科学》2019,31(1):243-255
湍流运动是大气边界层的本质特征,是地表与大气之间能量和物质交换的主要方式.本文利用2016和2017年4-10月藏南羊卓雍错湖泊涡动观测资料,分析了湖面大气湍流方差和湍流特征量的统计和变化特征.结果表明:(1)不稳定层结下,三维风速分量和超声虚温、水汽密度、CO2密度的无量纲标准差随稳定度变化符合Monin-Obukhov相似理论的"1/3"或"-1/3"次幂律,垂直风速的拟合效果最好;稳定层结下,除CO2密度无量纲标准差与稳定度无明显关系外,其他量基本上满足相似性规律;中性条件下,以上物理量的无量纲标准差分别趋近常数:3.57、3.93、0.77、20.91、6.35和11.96.(2)水平方向平均湍流强度(0.60和0.58)大于垂直方向(0.13),三维方向湍流强度与平均风速的变化呈显著负相关,相关系数分别为-0.39、-0.42和-0.34.(3)湖面湍流动能随风速呈线性增长,增长率达0.45 m/s;近中性层结时湍流动能最大,层结越稳定或不稳定湍流动能均减小.(4)湖泊下午到傍晚动量输送较强,13:00-22:30时间段平均动量通量达0.091 kg/(m·s2);热量输送以潜热为主,潜热通量日平均值(77.3 W/m2)是感热通量(14.6 W/m2)的5.3倍,感热和潜热通量日变化峰值分别出现在5:30(22.4 W/m2)和16:00(106.6 W/m2).  相似文献   

13.
14.
Observations are presented of currents, hydrography and turbulence in a jet-type tidally forced fjord in Svalbard. The fjord was ice covered at the time of the experiment in early spring 2004. Turbulence measurements were conducted by both moored instruments within the uppermost 5 m below the ice and a microstructure profiler covering 3–60 m at 75 m depth. Tidal choking at the mouth of the fjord induces a tidal jet advecting relatively warmer water past the measurement site and dominating the variability in hydrography. While there was no strong correlation with the observed hydrography or mixing and the phase of the semidiurnal tidal cycle, the mean structure in dissipation of turbulent kinetic energy, work done under the ice and the mixing in the water column correlated with the current when conditionally sampled for tidal jet events. Observed levels of dissipation of turbulent kinetic energy per unit mass, 1.1×10−7 W kg−1, and eddy diffusivity, 7.3×10−4 m2 s−1, were comparable to direct measurements at other coastal sites and shelves with rough topography and strong forcing. During spring tides, an average upward heat flux of 5 W m−2 in the under-ice boundary layer was observed. Instantaneous (1 h averaged) large heat flux events were correlated with periods of large inflow, hence elevated heat fluxes were associated with the tidal jet and its heat content. Vertical heat fluxes are derived from shear-probe measurements by employing a novel model for eddy diffusivity [Shih et al., 2005. Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. Journal of Fluid Mechanics 525, 193–214]. When compared to the direct heat flux measurements using the eddy correlation method at 5 m below the ice, the upper 4–6 m averaged heat flux estimates from the microstructure profiler agreed with the direct measurements to within 10%. During the experiment water column was stably, but weakly, stratified. Destabilizing buoyancy fluxes recorded close to the ice were absent at 5 m below the ice, and overall, turbulence production was dominated by shear. A scaling for dissipation employing production by both stress and buoyancy [Lombardo and Gregg, 1989. Similarity scaling of viscous and thermal dissipation in a convecting boundary layer. Journal of Geophysical Research 94, 6273–6284] was found to be appropriate for the under-ice boundary layer.  相似文献   

15.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
We measured the fluxes of sensible and latent heat between a low‐land dipterocarp forest in Peninsular Malaysia and the atmosphere. No clear seasonal or interannual changes in latent heat flux were found from 2003 to 2005, while sensible heat flux sometimes fluctuated depending on the fluctuation of incoming radiation between wet and dry seasons. The evapotranspiration rates averaged for the period between 2003 and 2005 were 2·77 and 3·61 mm day?1 using eddy covariance data without and with an energy balance correction, respectively. Average precipitation was 4·74 mm day?1. Midday surface conductance decreased with an increasing atmospheric water vapour pressure deficit and thus restricted the excess water loss on sunny days in the dry season. However, the relationship between the surface conductance and vapour pressure deficit did not significantly decline with an increase in volumetric soil water content even during a period of extremely low rainfall. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The effects of small water bodies or lakes on the surface sensible and latent heat fluxes and the transport of heat and water vapour in the atmospheric boundary layer (ABL) over the Mackenzie River Basin (MRB) are studied from two cases, which occurred on 2 and 8 June 1999 during the warm season. The synoptic condition for the cases is representative of about 33% of the synoptic situation over the MRB. The two events are simulated using the Canadian mesoscale compressible community (MC2) model. A one‐way nesting grid approach is employed with the highest resolution of 100 m over a domain of 100 km2. Experiments were conducted with (LAKE) and without (NOLAKE) the presence of small water bodies, whose size distribution is obtained through an inversion algorithm using information of their linear dimension determined from aircraft measurement of surface temperature during MAGS (the Mackenzie GEWEX (Global Energy and Water Cycle Experiment) Study) in 1999. The water bodies are assumed to be distributed randomly in space with a fractional area coverage of 10% over the MRB. The results show that, in the presence of lakes, the domain‐averaged surface sensible heat flux on 2 June 1999 (8 June 1999) decreases by 9·3% (6·6%). The surface latent heat flux is enhanced by 18·2% (81·5%). Low‐level temperature advection and the lake surface temperature affect the air–land/lake temperature contrast, which in turn controls the sensible heat flux. In the absence of lakes the surface wind speed impacts the latent heat flux, but in the presence of lakes the moisture availability and the atmospheric surface layer stability control the latent heat flux. The enhancement is smaller on 2 June 1999 as a result of a stable surface layer caused by the presence of colder lake temperatures. The domain‐averaged apparent heat source and moisture sink due to turbulent transports were also computed. The results show that, when lakes are present, heating and drying occur in the lowest 100 m from the surface. Above 100 m and within the ABL, there was apparent cooling. However, the apparent moistening profiles reveal that lakes tend to moisten the ABL through transfer of moisture from the lowest 50–100 m layer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
This study was motivated by an interest in understanding the potential effects of climate change and glacier retreat on late summer water temperatures in alpine areas. Fieldwork was carried out between July and September 2007 at Place Lake, located below Place Glacier in the southern Coast Mountains of British Columbia. Place Lake has an area of 72 000 m2, a single inlet and outlet channel, and an approximate residence time of 4 days. Warming between the inlet and outlet of the lake ranged up to 3 °C and averaged 1.8 °C, which exceeds the amount of warming that occurred over the 1 km reach of Place Creek between the lake outlet and tree line. Over a 23‐day period, net radiation totalled about 210 MJ·m–2, with sensible heat flux adding another 56 MJ m‐2. The latent heat flux consumed about 8% of the surface heat input. The dominant heat sink was the net horizontal advection associated with lake inflow and outflow. Early in the study period, temperatures between the surface and 6‐m depth were dominantly at or above 4 °C and were generally neutral to thermally stable, whereas temperatures decreased with depth below 6 m and exhibited irregular sub‐diurnal variations. The maximum outflow temperature of almost 7 °C occurred in this period. We hypothesize that turbidity currents associated with cold, sediment‐laden glacier discharge formed an underflow and influenced temperatures in the deeper portion of the lake but did not mix with the upper layers. Later in the study period, the lake was dominantly well mixed with some near‐surface stability associated with nocturnal cooling. Further research is required to examine the combined effects of sediment concentrations and thermal processes on mixing in small proglacial lakes to make projections of the consequences of glacier retreat on alpine lake and stream temperatures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号