首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve the efficiency of model fitting, parameter identification techniques have been actively investigated. Recently, the applications of parameter identification migrated from off‐line model fitting to on‐line model updating. The objective of this study is to develop a gradient‐based method for model updating to advance hybrid simulation also called hybrid test. A novel modification of the proposed method, which can reduce the number of design variables to improve the identification efficiency, is illustrated in detail. To investigate the model updating, simulated hybrid tests were conducted with a 5‐story steel frame equipped with buckling‐restrained braces (BRBs) utilized in the shaking table tests conducted in E‐Defense in Japan in 2009. The calibrated analytical model that was verified with the test results can serve as the reference model. In the simulated hybrid tests, the physical BRB substructure is numerically simulated by utilizing a truss element with the 2‐surface model identical to the part of the reference model. Such numerical verification allows simulation of measurement errors for investigation on the performance of the proposed method. Moreover, the feasibility of sharing the identified parameter values, which were obtained from the physical substructure responses, with the relevant numerical models is also verified with the artificial component responses derived from the physical experiments.  相似文献   

2.
This paper presents a novel nonlinear finite element (FE) model updating framework, in which advanced nonlinear structural FE modeling and analysis techniques are used jointly with the extended Kalman filter (EKF) to estimate time‐invariant parameters associated to the nonlinear material constitutive models used in the FE model of the structural system of interest. The EKF as a parameter estimation tool requires the computation of structural FE response sensitivities (total partial derivatives) with respect to the material parameters to be estimated. Employing the direct differentiation method, which is a well‐established procedure for FE response sensitivity analysis, facilitates the application of the EKF in the parameter estimation problem. To verify the proposed nonlinear FE model updating framework, two proof‐of‐concept examples are presented. For each example, the FE‐simulated response of a realistic prototype structure to a set of earthquake ground motions of varying intensity is polluted with artificial measurement noise and used as structural response measurement to estimate the assumed unknown material parameters using the proposed nonlinear FE model updating framework. The first example consists of a cantilever steel bridge column with three unknown material parameters, while a three‐story three‐bay moment resisting steel frame with six unknown material parameters is used as second example. Both examples demonstrate the excellent performance of the proposed parameter estimation framework even in the presence of high measurement noise. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Hybrid simulation is a powerful and cost‐effective simulation technique to evaluate structural dynamic performance. However, it is sometimes rather difficult to guarantee all the boundaries on the physical substructures, especially when the boundary conditions are very complex, due to limited laboratory resources. Lacking of boundary conditions is bound to change the stress state of the structure and eventually result in an inaccurate evaluation of structural performance. A model updating‐based online numerical simulation method is proposed in this paper to tackle the problem of incomplete boundary conditions. In the proposed method, 2 sets of finite element models with the same constitutive model are set up for the overall analysis of the whole structure and the constitutive model parameter estimation of the physical substructure, respectively. The boundary conditions are naturally satisfied because the response is calculated from the overall structural model, and the accuracy is improved as the material constitutive parameters are updated. The effectiveness of the proposed method is validated via numerical simulations and actual hybrid tests on a RC frame structure, and the results show that the negative effect of incomplete boundary conditions is almost eliminated and the accuracy of hybrid simulation is very much improved.  相似文献   

4.
郭玉荣    叶哲谦 《世界地震工程》2022,38(3):070-77
离线模型更新混合试验对构件拟静力数据进行恢复力模型参数识别,并更新数值子结构中相应构件的模型参数来提高混合试验精度,但该方法尚缺少真实试验的验证。本文基于课题组开展的足尺RC柱拟静力试验,取恢复力模型为集中塑性铰Ibarra-Medina-Krawinkler(IMK)模型,进行框架结构离线模型更新混合试验研究。结果表明,当物理子结构取为RC足尺柱时,离线模型更新混合试验能获得接近于真实试验情况下结构的地震响应,从而对该方法的有效性进行了试验验证。利用IMK经验公式,将真实试验模型参数识别值按轴压比进行对照修正,应用于不同层数的框架结构地震响应模拟,实现了试验数据的重复利用。  相似文献   

5.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated earthquake loading. Structural system level response can be obtained by expressing the equation of motion for the combined experimental and numerical substructures, and solved using time‐stepping integration similar to pure numerical simulations. It is often assumed that a reliable model exists for the numerical substructures while the experimental substructures correspond to parts of the structure that are difficult to model. A wealth of data becomes available during the simulation from the measured experiment response that can be used to improve upon the numerical models, particularly if a component with similar structural configuration and material properties is being tested and subjected to a comparable load pattern. To take advantage of experimental measurements, a new hybrid test framework is proposed with an updating scheme to update the initial modeling parameters of the numerical model based on the instantaneously‐measured response of the experimental substructures as the test progresses. Numerical simulations are first conducted to evaluate key algorithms for the selection and calibration of modeling parameters that can be updated. The framework is then expanded to conduct actual hybrid simulations of a structural frame model including a physical substructure in the laboratory and a numerical substructure that is updated during the tests. The effectiveness of the proposed framework is demonstrated for a simple frame structure but is extendable to more complex structural behavior and models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
模型更新混合试验在传统混合试验方法的基础上更新与试验构件具有相同恢复力特性的构件,扩展了混合试验方法的应用范围。本文旨在提高模型更新混合试验的精度,降低试验的成本并简化模型更新混合试验方法的流程。自适应UKF(AUKF)算法在传统UKF的基础上加入方差自适应模块,能够减轻初始参数设定对参数识别结果的影响,本文基于AUKF提出一种模型更新混合试验方法。对以Bouc-Wen为恢复力模型的防屈曲约束支撑(BRB)进行低周反复加载虚拟试验,通过Matlab编制AUKF算法程序进行参数识别,验证了AUKF算法的高效准确性。对一榀8层4跨带BRB的钢框架进行混合试验数值仿真,结果表明离线模型更新试验结果较在线模型更新更接近真实结果,且简化了试验流程。  相似文献   

7.
Combining the advantages of numerical simulation with experimental testing, real-time dynamic substructure (RTDS) testing provides a new experimental method for the investigation of engineered structures. However, not all unmodeled parts can be physically tested, as testing is often limited by the capacity of the test facility. Model updating is a good option to improve the modeling accuracy for numerical substructures in RTDS. In this study, a model updating method is introduced, which has great performance in describing this nonlinearity. In order to determine the optimal parameters in this model, an Unscented Kalman Filter (UKF)-based algorithm was applied to extract the knowledge contained in the sensors data. All the parameters that need to be identified are listed as the extended state variables, and the identification was achieved via the step-by-step state prediction and state update process. Effectiveness of the proposed method was verified through a group of experimental data, and results showed good agreement. Furthermore, the proposed method was compared with the Extended Kalman Filter (EKF)-based method, and better accuracy was easily found. The proposed parameter identification method has great applicability for structural objects with nonlinear behaviors and could be extended to research in other engineering fields.  相似文献   

8.
The effectiveness of equivalent force control (EFC) method has been experimentally validated through hybrid tests with simple specimens. In this paper, the EFC method is applied for the MDOF pseudo‐dynamic substructure tests in which a three‐storey frame‐supported reinforced concrete masonry shear wall with full scale is chosen as physical substructure. The effects of equivalent force controller parameters on the response performance are studied. Analytical expressions for the controller parameter ranges are derived to avoid response overshooting or oscillation and are verified by numerical simulation. The controller parameters are determined based on analytical and numerical studies and used in the actual full‐scale pseudo‐dynamic test. The test results show good tracking performance of EFC, which indicates a successful test. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.  相似文献   

10.
A set of algorithms combined with a substructure technique is proposed for an online hybrid test framework, in which the substructures are encapsulated by a standard interface that implements displacements and forces at the common substructure boundaries. A coordinator equipped with the proposed algorithms is designed to achieve boundary compatibility and equilibrium, thereby endowing the substructures the ability to behave as one piece. A model‐based predictor and corrector, and a noniterative procedure, characterize the set of algorithms. The coordinator solves the dynamics of the entire structure and updates the static boundary state simultaneously by a quasi‐Newton procedure, which gradually formulates the condensed stiffness matrix associated with corresponding degrees of freedom. With the condensed stiffness matrix and dynamic information, a condensed equation of motion is derived and then solved by a typical time integration algorithm. Three strategies for updating the condensed stiffness matrix are incorporated into the proposed algorithms. Each adopts different stiffness matrix during the predicting and correcting stage. These algorithms are validated by two numerical substructure simulations and a hybrid test. The effectiveness and feasibility are fully demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In real-time hybrid simulation (RTHS), it is difficult if not impossible to completely erase the error in restoring force due to actuator response delay using existing displacement-based compensation methods. This paper proposes a new force correction method based on online discrete tangent stiffness estimation (online DTSE) to provide accurate online estimation of the instantaneous stiffness of the physical substructure. Following the discrete curve parameter recognition theory, the online DTSE method estimates the instantaneous stiffness mainly through adaptively building a fuzzy segment with the latest measurements, constructing several strict bounding lines of the segment and calculating the slope of the strict bounding lines, which significantly improves the calculation efficiency and accuracy for the instantaneous stiffness estimation. The results of both computational simulation and real-time hybrid simulation show that: (1) the online DTSE method has high calculation efficiency, of which the relatively short computation time will not interrupt RTHS; and (2) the online DTSE method provides better estimation for the instantaneous stiffness, compared with other existing estimation methods. Due to the quick and accurate estimation of instantaneous stiffness, the online DTSE method therefore provides a promising technique to correct restoring forces in RTHS.  相似文献   

12.
Substructure hybrid simulation has been actively investigated and applied to evaluate the seismic performance of structural systems in recent years. The method allows simulation of structures by representing critical components with physically tested specimens and the rest of the structure with numerical models. However, the number of physical specimens is limited by available experimental equipment. Hence, the benefit of the hybrid simulation diminishes when only a few components in a large system can be realistically represented. The objective of the paper is to overcome the limitation through a novel model updating method. The model updating is carried out by applying calibrated weighting factors at each time step to the alternative numerical models, which encompasses the possible variation in the experimental specimen properties. The concept is proposed and implemented in the hybrid simulation framework, UI‐SimCor. Numerical verification is carried out using two‐DOF systems. The method is also applied to an experimental testing, which proves the concept of the proposed model updating method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g., oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater tetrachloroethylene (TCE) plume that underlies the Tooele Army Depot‐North (TEAD‐N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF‐based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well‐calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging‐based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation.  相似文献   

14.
Real‐time substructure testing is a novel method of testing structures under dynamic loading. The complete structure is separated into two substructures, one of which is tested physically at large scale and in real time, so that time‐dependent non‐linear behaviour of the substructure is realistically represented. The second substructure represents the surrounding structure, which is modelled numerically. In the current formulation this numerical substructure is assumed to remain linear. The two substructures interact in real‐time so that the response of the complete structure, incorporating the non‐linear behaviour of the physical substructure, is accurately represented. This paper presents several improvements to the linear numerical modelling of substructures for use in explicit time‐stepping routines for real‐time substructure testing. An extrapolation of a first‐order‐hold discretization is used which increases the accuracy of the numerical model over more direct explicit methods. Additionally, an integral form of the equation of motion is used in order to reduce the effects of noise and to take into account variations of the input over a time‐step. In order to take advantage of this integral form, interpolation of the model output is performed in order to smooth the output. The improvements are demonstrated using a series of substructure tests on a simple portal frame. While the testing approach is suitable for cases in which the physical substructure behaves non‐linearly, the results presented here are for fully linear systems. This enables comparisons to be made with analytical solutions, as well as with the results of tests based on the central difference method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems.  相似文献   

16.
Hydraulic actuators are typically used in a real‐time hybrid simulation to impose displacements to a test structure (also known as the experimental substructure). It is imperative that good actuator control is achieved in the real‐time hybrid simulation to minimize actuator delay that leads to incorrect simulation results. The inherent nonlinearity of an actuator as well as any nonlinear response of the experimental substructure can result in an amplitude‐dependent behavior of the servo‐hydraulic system, making it challenging to accurately control the actuator. To achieve improved control of a servo‐hydraulic system with nonlinearities, an adaptive actuator compensation scheme called the adaptive time series (ATS) compensator is developed. The ATS compensator continuously updates the coefficients of the system transfer function during a real‐time hybrid simulation using online real‐time linear regression analysis. Unlike most existing adaptive methods, the system identification procedure of the ATS compensator does not involve user‐defined adaptive gains. Through the online updating of the coefficients of the system transfer function, the ATS compensator can effectively account for the nonlinearity of the combined system, resulting in improved accuracy in actuator control. A comparison of the performance of the ATS compensator with existing linearized compensation methods shows superior results for the ATS compensator for cases involving actuator motions with predefined actuator displacement histories as well as real‐time hybrid simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents two methods to perform system identification at the substructural level, taking advantage of reduction in the number of unknowns and degrees of freedom (DOFs) involved, for damage assessment of fairly large structures. The first method is based on first‐order state space formulation of the substructure where the eigensystem realization algorithm (ERA) and the observer/Kalman filter identification (OKID) are used. Identification at the global level is then performed to obtain the second‐order model parameters. In the second method, identification is performed at the substructural level in both the first‐ and second‐order model identification. Both methods are illustrated using numerical simulation studies where results indicate their significantly better performance than identification using the global structure, in terms of efficiency and accuracy. A 12‐DOF system and a fairly large structural system with 50 DOFs are used where the effects of noisy data are considered. In addition to numerical simulation studies, laboratory experiments involving an eight‐storey frame model are carried out to illustrate the performance of the proposed method. The identification results presented in terms of the stiffness integrity index show that the proposed methodology is able to locate and quantify damage fairly accurately. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper a parameter estimation algorithm is developed to estimate uncertain parameters in two dimensional shallow water flow models. Since in practice the open boundary conditions of these models are usually not known accurately, the uncertainty of these boundary conditions has to be taken into account to prevent that boundary errors are interpreted by the estimation procedure as parameter fluctuations. Therefore the open boundary conditions are embedded into a stochastic environment and a constant gain extended Kalman filter is employed to identify the state of the system. Defining a error functional that measures the differences between the filtered state of the system and the measurements, a quasi Newton method is employed to determine the minimum of this functional. To reduce the computational burden, the gradient of the criterium that is required using the quasi Newton method is determined by solving the adjoint system.  相似文献   

19.
Real‐time hybrid simulation combines experimental testing of physical substructure(s) and numerical simulation of analytical substructure(s), and thus enables the complete structural system to be considered during an experiment. Servo‐hydraulic actuators are typically used to apply the command displacements to the physical substructure(s). Inaccuracy and instability can occur during a real‐time hybrid simulation if the actuator delay due to servo‐hydraulic dynamics is not properly compensated. Inverse compensation is a means to negate actuator delay due to inherent servo‐hydraulic actuator dynamics during a real‐time hybrid simulation. The success of inverse compensation requires the use of a known accurate value for the actuator delay. The actual actuator delay however may not be known before the simulation. An estimation based on previous experience has to be used, possibly leading to inaccurate experimental results. This paper presents a dual compensation scheme to improve the performance of the inverse compensation method when an inaccurately estimated actuator delay is used in the method. The dual compensation scheme modifies the predicted displacement from the inverse compensation procedure using the actuator tracking error. Frequency response analysis shows that the dual compensation scheme enables the inverse compensation method to compensate for actuator delay over a range of frequencies when an inaccurately estimated actuator delay is utilized. Real‐time hybrid simulations of a single‐degree‐of‐freedom system with an elastomeric damper are conducted to experimentally demonstrate the effectiveness of the dual compensation scheme. Exceptional experimental results are shown to be achieved using the dual compensation scheme without the knowledge of the actual actuator delay a priori. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper a parameter estimation algorithm is developed to estimate uncertain parameters in two dimensional shallow water flow models. Since in practice the open boundary conditions of these models are usually not known accurately, the uncertainty of these boundary conditions has to be taken into account to prevent that boundary errors are interpreted by the estimation procedure as parameter fluctuations. Therefore the open boundary conditions are embedded into a stochastic environment and a constant gain extended Kalman filter is employed to identify the state of the system. Defining a error functional that measures the differences between the filtered state of the system and the measurements, a quasi Newton method is employed to determine the minimum of this functional. To reduce the computational burden, the gradient of the criterium that is required using the quasi Newton method is determined by solving the adjoint system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号