首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Jiongxin Xu 《水文研究》2005,19(9):1871-1882
In the past 30 years, the measured annual river flow of the Yellow River has declined significantly. After adding the diverted water back to get the ‘natural’ annual river flow, the tendency of decrease can still be seen. This indicates that the river flow renewability of the Yellow River has changed. The river flow renewability is indexed as the ratio of annual ‘natural’ river flow to annual precipitation over a river drainage basin, where the ‘natural’ river flow is the measured annual river flow plus the annual ‘net’ water diversion from the river. By using this index, based on the data from the drainage area between Hekouzhen and Longmen stations on the middle Yellow River, a study has been made of the river flow renewability of the Yellow River in the changing environment of the past 50 years. The river flow renewability index (Irr) in the drainage area between Hekouzhen and Longmen in the middle Yellow River basin has been found to decline significantly with time. In the meantime, annual precipitation decreased, annual air temperature increased, but the area of water and soil conservation measures has been increased. It has been found that Irr is positively correlated with the areal averaged annual precipitation, but negatively correlated with annual air temperature. There is close, negative correlation between Irr and the area of water and soil conservation measures including land terracing, tree and grass planting and checkdam building, implying that water and soil conservation measures have reduced the river flow renewability. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

An index (Fs) for sediment transfer function is introduced, based on the sediment budget at the channel scale. The purpose of this study is two-fold: to gain a deeper insight into how Fs is influenced by natural and human factors, and to provide some new knowledge for decision making in the management of the Upper Yellow River, China. Since 1960, the Fs of the Lanzhou to Toudaoguai reach of the Upper Yellow River shows a decreasing trend. At the drainage basin level, the decreased Fs can be explained by changes in precipitation and air temperature, as well as by a number of variables describing human activity, such as reservoir regulation, water diversion, and soil and water conservation. The higher temperature reduces the transfer function, while the larger runoff coefficient increases it. At the channel level, the decreased Fs can be explained by a number of variables of flow and sediment input. Three countermeasures for restoration of the Fs are suggested.
Editor Z.W. Kundzewicz  相似文献   

3.
Due to the temporal decoupling of water and sediment sources in a large river basin, a flood from a sediment source area with high suspended sediment concentration (SSC) may be diluted by flow from a major runoff source area with low SSC. In this paper, this dilution effect is considered for 145 flood events from the Yellow River, China. Two indices (β1 and β2) describing the dilution effect are proposed, based on water and sediment from the clear water source area and the coarse sediment producing area. Regression equations between channel sedimentation (Sdep) and β1 and β2 are established based on flood events and annual data, respectively. The results show that dilution reduces channel sedimentation in the lower reaches by 34?1% and that this is related to a reduced frequency of hyperconcentrated flows in the lower reaches. The Longyangxia Reservoir for hydro‐electric generation has stored huge quantities of clear runoff from the upper Yellow River during high‐flow season since 1985, greatly reducing the dilution of the hyperconcentrated floods and therefore enhancing sedimentation in the lower reaches. For the purpose of reducing sedimentation, changing the operational mode of the Longyangxia Reservoir to restore the dilution effect is suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The upper part of the Huanghe (Yellow River) drainage basin supplies 50–60% of the annual water discharge and only 10% of the total river sediment load, while the middle reaches contribute 30–40% of the water flow and 90% of the annual sediment load, because of severe erosion over the Loess Plateau. Large variations in both annual water discharge and sediment load occur in the Huanghe. Heavy sedimentation in the lower reaches of the channel makes the river bed aggrade several centimetres per year. Of the suspended sediment in the river, 90–95% is deposited in the lower part of the river course and in the coastal shallow water area; less than 5–10% escapes from Laizhou Bay and enters the Central Bohai and/or North Huanghai (Yellow Sea). The active delta complex now propagates seawards at a mean rate of 42 km2 year−1.  相似文献   

5.
The Yellow River transports a large amount of sediment and particulate organic carbon (POC), which is thought to mainly derive from erosion of the Chinese Loess Plateau (CLP). However, the compositions, sources and erosional fluxes of POC in the Yellow River remain poorly constrained. Here we combined measurements of mineralogy, total organic carbon content (OCtotal), stable organic carbon isotopes (δ13Corg), radiocarbon (14C) activity of organic matter in bulk suspended sediments collected seasonally from the upper and middle Yellow River, to quantify the compositions and fluxes of the POC and to assess its sources (biospheric and petrogenic POC, i.e. POCbio and POCpetro, respectively). The results showed that the POC loading of sediments was controlled by mineralogy, grain size and specific surface area of loess particles. The Fmod of POC (0.71 to 0.31) can be explained by mixing of POCpetro with modern and aged POCbio. A binary mixing model based on the hyperbolic relationship of the Fmod and OCtotal revealed a wide range of ages of POCbio from 1300 to 11100 14C years. Relative to the upstream station, the annual POCbio and POCpetro fluxes in the Yellow River are more than doubled after it flows crossing the CLP within 35% drainage area gain, resulting in POCbio and POCpetro yields of the CLP at 3.50 ± 0.59 and 0.48 ± 0.49 tC/km2/yr, respectively. POC flux seasonal variation revealed that monsoon rainfall exerts a first-order control on the export of both POCbio and POCpetro from the CLP to the Yellow River, resulting in more than 90% of the annual POC exported during the monsoon season. Around one third of annual POC erosional flux was transported during a storm event period, highlighting the important role of extreme events in POC export in this large river. © 2020 John Wiley & Sons, Ltd.  相似文献   

6.
Rivers are closely related to climate, and the hydrogeomorphic features and stability of river channels respond sensitively to climatic change. However, the history of instrumental observations of climatic, hydrological and channel changes is short, notably limiting our ability to understand the complex river responses to long-term climate change and human activity. In this study, we show that cave stalagmite records reflected the variations in precipitation and temperature in the Yellow River basin, and the net primary productivity (NPP) of vegetation over the past 1800 years can therefore be reconstructed. We found that the reconstructed annual mean precipitation (Pm) and NPP closely related to the 1800-year variation of the lower Yellow River (LYR) channel instability indexed by the frequency of the LYR levee breaching events (LBEs) (Fb) derived from historical documents. The temporal variations in Pm, NPP and Fb exhibited an anti-phase relationship (negative correlation) and in-phase relationship (positive correlation), referred to as Type I and Type II relationships, respectively. The two types alternately appeared, dividing the studied period into several sub-periods. Type I occurred when the vegetation remained in a quasi-natural condition, and Type II occurred when the vegetation had been altered by humans to some degree. These features reflect complex river behaviours in response to climate change and human activity and may be explained by the interaction between climate, vegetation and human activity on the millennial timescale. © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

Water resources management should cover both blue water and green water. For green-water management at the river drainage basin scale, the green-water coefficient (C gw) is adopted, defined as the ratio of annual green water to annual precipitation. Based on data from the Middle Yellow River basin, China, for the period 1950 to 2007, we studied the temporal variation in C gw in response to some influencing factors. A decreasing trend in C gw was found. The influence of changes in land management on C gw, reflected by an increase in the area (A sw) of soil and water conservation measures, is emphasized. Using multiple regression analysis, the contributions of A sw and the 5-year moving averages of annual precipitation and air temperature were estimated as 51, 37 and 12%, respectively. The results may provide useful information for better management of water resources, including green and blue water flows in the Yellow River basin.

Editor Z.W. Kundzewicz; Associate editor D. Gerten

Citation Xu, J.-X., 2013. Effects of climate and land-use change on green-water variations in the Middle Yellow River, China. Hydrological Sciences Journal, 58 (1), 1–12.  相似文献   

8.
Based on long-term measurements at three gauging stations, Toudaoguai, Fugu and Hequ, and one meteorological station, this article discusses the features of discharge (Q) and sediment concentration (Cs) of a river reach of the Yellow River with a reservoir located in the Loess Plateau. The impacts of the local sub-watershed between Toudaoguai and Fugu gauging stations on sediment budget to the Yellow River have been analyzed. In addition, the deposition processes in the Tianqiao Reservoir have been investigated. Results show over 80% of the precipitation that falls in the local subwatershed is unable to contribute to the Yellow River runoff process. It is found that the annualmaximum sediment concentration is usually less than 30 kg/m^3 during flood seasons at Toudaoguai Gauging Station, but the sediment concentration varies dramatically at Fugu Gauging Station. About 35% of the sediment eroded in the sub-watersheds between Toudaoguai and Fugu gauging stationswas produced from the Huangfuchuan sub-watershed which has a drainage area accounting only for 10% of the drainage area between Toudaoguai and Fugu gauging stations. The Tianqiao Reservoir generally has deposition during the summer flood season, and scouring during the non-flood season.On average, over 85% of deposited sediment in the reservoir occurs in the 12 km long lower reservoir reach. The volume of annual deposition in the reservoir mainly depends on the volume of water from the local region between Hequ and Fugu gauging stations.  相似文献   

9.
The Yarlung Tsangpo River, which flows from west to east across the southern part of the Tibetan Plateau, is the longest river on the plateau and an important center for human habitation in Tibet. Suspended sediment in the river can be used as an important proxy for evaluating regional soil erosion and ecological and environmental conditions. However, sediment transport in the river is rarely reported due to data scarcity. Results from this study based on a daily dataset of 3 years from four main stream gauging stations confirmed the existence of great spatiotemporal variability in suspended sediment transport in the Yarlung Tsangpo River, under interactions of monsoon climate and topographical variability. Temporally, sediment transport or deposition mainly occurred during the summer months from July to September, accounting for 79% to 93% of annual gross sediment load. This coincided with the rainy season from June to August that accounted for 51% to 80% of annual gross precipitation and the flood period from July to September that accounted for approximately 60% of annual gross discharge. The highest specific sediment yield of 177.6 t/km2/yr occurred in the upper midstream with the highest erosion intensity. The lower midstream was dominated by deposition, trapping approximately 40% of total sediment input from its upstream area. Sediment load transported to the midstream terminus was 10.43 Mt/yr with a basin average specific sediment yield of 54 t/km2/yr. Comparison with other plateau‐originated rivers like the upper Yellow River, the upper Yangtze River, the upper Indus River, and the Mekong River indicated that sediment contribution from the studied area was very low. The results provided fundamental information for future studies on soil and water conservation and for the river basin management. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

The objectives of this work are: (a) to statistically test and quantify the decreasing trends of streamflow and sediment discharge of the Yellow River in China during 1950–2005, (b) to identify change points or transition years of the decreasing trends, and (c) to diagnose whether the decreasing trends were caused by precipitation changes or human intervention, or both. The results show that significant decreasing trends in annual streamflow and sediment discharge have existed since the late 1950s at three stations located in the upper, middle, and lower reaches of the Yellow River (P?=?0.01). Change-point analyses further revealed that transition years existed and that rapid decline in streamflow and sediment discharge began in 1985 in most parts of the basin (P?=?0.05). Adoption of conservation measures in the 1980s and 1990s corroborates the identified transition years. Double-mass curves of precipitation vs streamflow (sediment) for the periods before and after the transition years show remarkable decreases in proportionality of streamflow (sediment) generation. All percentiles of streamflow and sediment discharge after the transition years showed rapid reduction. In the absence of significantly decreasing precipitation trends, it is concluded that the decreasing trends were very likely caused by human intervention. Relative to the period before the transition, human intervention during 1985–2005 reduced cumulative streamflow by 13.5, 14.3 and 24.6% and cumulative sediment discharge by 29.0, 24.8 and 26.5%, at Toudaoguai, Huayuankou and Lijin, respectively, showing the quantitative conservation effect in the basin.

Citation Gao, P., Zhang, X.-C., Mu, X.-M., Wang, F., Li, R. & Zhang, X. (2010) Trend and change-point analyses of streamflow and sediment discharge in the Yellow River during 1950–2005. Hydrol. Sci. J. 55(2), 275–285.  相似文献   

11.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Based on data from 35 stations on the tributaries of the Yellow River, annual specific sediment yield (Ys) in eight grain size fractions has been related to basin‐averaged annual sand–dust storm days (Dss) and annual precipitation (Pm) to reveal the influence of eolian and fluvial processes on specific sediment yield in different grain size fractions. The results show that Ys in fine grain size fractions has the highest values in the areas dominated by the coupled wind–water process. From these areas to those dominated by the eolian process or to those dominated by the fluvial process, Ys tends to decrease. For relatively coarse grain size fractions, Ys has monotonic variation, i.e. with the increase in Dss or the decrease in Pm, Ys increases. This indicates that the sediment producing behavior for fine sediments is different from that for relatively coarse sediments. The results all show that Ys for relatively coarse sediments depends on the eolian process more than on the fluvial process, and the coarser the sediment fractions the stronger the dependence of the Ys on the eolian process. The YsDss and YsPm curves for fine grain size fractions show some peaks and the fitted straight lines for YsDss and YsPm relationships for relatively coarse grain size fractions show some breaks. Almost all these break points may be regarded as thresholds. These thresholds are all located in the areas dominated by the coupled wind–water process, indicating that these areas are sensitive for erosion and sediment production, to which more attention should be given for the purpose of erosion and sediment control. A number of regression equations were established, based which the effect of rainfall, sand–dust storms and surface material grain size on specific sediment yield can be assessed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Coarse sediment retention by check dams is analyzed for five typical catchments in the Hekou-Longmen section of the midstream of the Yellow River, which is an area of high .coarse sediment concentration. The catchments are the Huangfuchuan, Kuye, Wuding, Sanchuan and Qiushui River Basins. The amount of coarse sediment retained by check clams in these areas for different periods was measured. Sediment reduction due to check clams is compared with other soil conservation measures and the results show that check clams are the most effective to rapidly reduce the amount of coarse sediment entering the Yellow River. If the average percentage of the drainage area with check clams for the five typical catchments reaches 3.0%, the average sediment reduction ratio can reach 60%. Therefore, to rapidly and effectively reduce the amount of sediment, especially coarse sediment, entering the Yellow River, the area percentage of check clams in the Hekou-Longmen section should be kept around 3%. The Kuye and Huangfuchuan River Basins are the preferred main catchments in which such water conservation measures are implemented.  相似文献   

14.
Abstract

The runoff and sediment of large rivers usually come from different source areas, which make different contributions to the sediment flux into the sea. This has been studied with the example of the Yellow River in China, whose suspended sediment flux into the Bohai Sea accounts for 19.4% of the world total. The drainage basin of this river can be divided into four major water and sediment source areas. The sediment flux into the sea is found to be closely related to the water and sediment from the different source areas in the drainage basin and, accordingly, an empirical regression model has been established to express this relationship. According to this model, in each tonne (t) of sediment from the fine sediment producing area (FSA), 0.85 t (for yearly series) and 0.72 t (for event series) can be transported into the sea; in each tonne of sediment from the coarse sediment producing area (CSA), only 0.21 t (for yearly series) and 0.34 t (for event series) can be transported into the sea. Since the 1970s, the Yellow River's sediment flux into the sea has declined markedly and this reduction can be attributed to a great degree to the soil control measures in the fine sediment producing area. Coupling the models of this study to the previously established models for estimating the impacts of soil control measures on water and sediment balance in the Yellow River basin, a quantitative prediction may be made for the change of sediment flux into the sea that might result from climate change and human activities in the future.  相似文献   

15.
《水文科学杂志》2013,58(1):90-100
Abstract

In the past 50 years, influenced by global climate change, the East Asian summer monsoon intensity (SMI) changed significantly, leading to a response by the water cycle of the Yellow River basin. The variation in SMI has three stages: (1) 1951–1963, SMI increased; (2) 1963–1965, SMI declined sharply, a feature that may be regarded as an abrupt change; and (3) 1965–2000, SMI remained at low levels and showed a tendency to decline slowly. The decreased SMI led to a reduction in water vapour transfer from the ocean to the Yellow River basin, and thus precipitation decreased and the natural river runoff of the Yellow River also decreased. Due to the increase in population and therefore in irrigated land area, the ratio of net water diversion to natural river runoff increased continuously. Comparison of the ratio of net water diversion to natural river runoff before and after the abrupt change in SMI indicates some discontinuity in the response of the man-induced lateral branch of the water cycle to the abrupt change in SMI. The frequently occurring flow desiccation in the lower Yellow River can be regarded as a response of the water cycle system to the decreasing summer monsoon intensity and increasing population. When the ratio of net water diversion exceeded the ratio of natural runoff of the low-flow season to the annual total natural runoff, flow desiccation in the lower Yellow River would occur. When the ratio of net water diversion is 0.3 larger than the ratio of the natural runoff of the low-flow season to the annual total natural runoff, an abrupt increase in the number of flow desiccation events is likely to occur.  相似文献   

16.
We analyzed long daily runoff series at six hydrological stations located along the mainstem Yellow River basin by using power spectra analysis and multifractal detrended fluctuation analysis (MF-DFA) technique with aim to deeply understand the scaling properties of the hydrological series in the Yellow River basin. Research results indicate that: (1) the runoff fluctuations of the Yellow River basin exhibit self-affine fractal behavior and different memory properties at different time scales. Different crossover frequency (1/f) indicates that lower crossover frequency usually corresponds to larger basin area, and vice versa, showing the influences of river size on higher frequency of runoff variations. This may be due to considerable regulations of river channel on the runoff variations in river basin of larger basin size; (2) the runoff fluctuations in the Yellow River basin exhibit short-term memory properties at smaller time scales. Crossover analysis by MF-DFA indicates unchanged annual cycle within the runoff variations, implying dominant influences of climatic changes on changes of runoff amount at longer time scales, e.g. 1 year. Human activities, such as human withdrawal of freshwater and construction of water reservoirs, in different reaches of the Yellow River basin may be responsible for different scaling properties of runoff variations in the Yellow River basin. The results of this study will be helpful for hydrological modeling in different time scales and also for water resource management in the arid and semi-arid regions of China.  相似文献   

17.
In this paper, the changes in sediment transport over 51 years from 1955 to 2006 in the Kuye River in the Loess Plateau in China are assessed. Key factors affecting sediment yield and sediment transport, such as precipitation depth, discharge, and human activities are studied. To investigate the changes in sediment yield in this watershed, a trend analysis on sediment concentration, precipitation depth, and discharge is conducted. Precipitation depths at 2 Climate Stations (CSs), as well as discharge and sediment transport at 3 Gauging Stations (GSs) are used to assess the features of sediment transport in the Kuye River. The rtmoff modulus (defined as the annual average discharge per unit area, L/(s·km^2)) and the sediment transport modulus (defined as the annual suspended sediment transport per unit area, t/(yr km^2)) are introduced in this study to assess the changes in runoff and sediment yield for this watershed. The results show that the highest average monthly discharge during the study period in the Kuye River is 66.23 m^3/s in August with an average monthly sediment concentration of 88.9 kg/m^3. However, the highest average monthly sediment concentration during the study period in the Kuye River is 125.34 kg/m^3 and occurs in July, which has an average discharge of 42.6 m^3/s that is much less than the average monthly discharge in August. It is found that both the runoff modulus and sediment transport modulus at Wenjiachuan GS on the Kuye River has a clear downward trend. During the summer season from July to August, the sediment transport modulus at Wenjiachuan GS is much higher than those at Toudaoguai and Longmen GSs on the Yellow River. The easily erodible loess in the Kuye River watershed and the sparse vegetation are responsible for the extremely high sediment yield from the Kuye River watershed. The analyses of the grain size distribution of suspended load in the Kuye River are presented. The average monthly median grain size of suspended load in the Kuye River is largest in February and then decreases until June. In July, the average monthly median grain size of suspended load approaches another peak and decreases until September. Then, the median grain size of suspended load starts to increase until February of the following year. However, the average monthly median grain size of suspended load in the Yellow River at Toudaoguai and Longmen GSs is the smallest between early summer and late fall The median grain size in the Yellow River starts to increase in November and approaches the largest size in January.  相似文献   

18.
Based on data from 148 hydrometric stations in the Yellow River Basin, an analysis of regional scale relationship, or the relationship between specific sediment yield and drainage basin area, has been undertaken in the study area of the Loess Plateau. For different regions, scale relationship in log-log ordinate can be fitted by two types of lines: straight and parabola, and for each line, a function was fitted using regression analysis. The different scale relationships have been explained in terms of the difference in surface material distribution and landforms. To offset the scale-induced influence, calcu-lation has been done based on the fitted functions, in order to adjust the data of specific sediment yield to a common standard area. Based on the scaled data, a map of specific sediment yield was con-structed using Kriging interpolation. For comparison, a map based on the un-scaled data of specific sediment yield was also constructed using the same method. The two maps show that the basic pattern of specific sediment yield was basically the same. The severely eroded areas (Ys >10000 t km-2a-1) were at the same locations from Hekouzhen to Longmen in the middle Yellow River Basin. However, after the adjustment to a common standard area, the very severely eroded area (Ys >20000 t km-2a-1) became much enlarged because after the adjustment, all the values of Ys in the lower river basin in those regions became much larger than before.  相似文献   

19.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Previous “fraction of young water” (Fyw) estimates based on relative annual isotopic amplitudes in precipitation (Ap) and streamflow (As) produced low Fyw values in mountain catchments, which is contrary to extensive research that reports rapid water transmission in mountains. This study investigated this discrepancy by testing the effect of snow accumulation on the model that underpins the Fyw method. A Monte-Carlo analysis of simulations for 20,000 randomly-generated catchment model configurations used 10 years of precipitation inputs for the Upper Elbow River catchment in the Rocky Mountains (Alberta, Canada) to model discharge with and without snowpack storage of winter precipitation. Neither direct nor modified precipitation input produced a 1:1 relationship between As/Ap and Fyw, undermining the applicability of the original Fyw method in mountain watersheds with large seasonal snow accumulation. With snowpack-modified input a given As/Ap ratio corresponds to a range of Fyw values, which can still provide semi-quantitative information. In the small (435 km2) Elbow River catchment a Fyw range of 7–23% supports previous findings of rapid transmission in mountain catchments. Further analysis showed that the improved discharge prediction (Nash–Sutcliffe efficiency > 0.9) correlates with higher Fyw values and demonstrated that the interannual shifts in δ18O can be used to estimate of new water (<1 year) fraction in winter streamflow, and the estimate of 20% for the Elbow River further supports rapid transmission in mountain catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号