首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
Attenuation compensation in reverse‐time migration has been shown to improve the resolution of the seismic image. In this paper, three essential aspects of implementing attenuation compensation in reverse‐time migration are studied: the physical justification of attenuation compensation, the choice of imaging condition, and the choice of a low‐pass filter. The physical illustration of attenuation compensation supports the mathematical implementation by reversing the sign of the absorption operator and leaving the sign of the dispersion operator unchanged in the decoupled viscoacoustic wave equation. Further theoretical analysis shows that attenuation compensation in reverse‐time migration using the two imaging conditions (cross‐correlation and source‐normalized cross‐correlation) is able to effectively mitigate attenuation effects. In numerical experiments using a simple‐layered model, the source‐normalized cross‐correlation imaging condition may be preferable based on the criteria of amplitude corrections. The amplitude and phase recovery to some degree depend on the choice of a low‐pass filter. In an application to a realistic Marmousi model with added Q, high‐resolution seismic images with correct amplitude and kinematic phase are obtained by compensating for both absorption and dispersion effects. Compensating for absorption only can amplify the image amplitude but with a shifted phase.  相似文献   

2.
The key objective of an imaging algorithm is to produce accurate and high‐resolution images of the subsurface geology. However, significant wavefield distortions occur due to wave propagation through complex structures and irregular acquisition geometries causing uneven wavefield illumination at the target. Therefore, conventional imaging conditions are unable to correctly compensate for variable illumination effects. We propose a generalised wave‐based imaging condition, which incorporates a weighting function based on energy illumination at each subsurface reflection and azimuth angles. Our proposed imaging kernel, named as the directional‐oriented wavefield imaging, compensates for illumination effects produced by possible surface obstructions during acquisition, sparse geometries employed in the field, and complex velocity models. An integral part of the directional‐oriented wavefield imaging condition is a methodology for applying down‐going/up‐going wavefield decomposition to both source and receiver extrapolated wavefields. This type of wavefield decomposition eliminates low‐frequency artefacts and scattering noise caused by the two‐way wave equation and can facilitate the robust estimation for energy fluxes of wavefields required for the seismic illumination analysis. Then, based on the estimation of the respective wavefield propagation vectors and associated directions, we evaluate the illumination energy for each subsurface location as a function of image depth point and subsurface azimuth and reflection angles. Thus, the final directional‐oriented wavefield imaging kernel is a cross‐correlation of the decomposed source and receiver wavefields weighted by the illuminated energy estimated at each depth location. The application of the directional‐oriented wavefield imaging condition can be employed during the generation of both depth‐stacked images and azimuth–reflection angle‐domain common image gathers. Numerical examples using synthetic and real data demonstrate that the new imaging condition can properly image complex wave paths and produce high‐fidelity depth sections.  相似文献   

3.
To better understand (and correct for) the factors affecting the estimation of attenuation (Q), we simulate subsurface wave propagation with the Weyl/Sommerfeld integral. The complete spherical wavefield emanating from a P‐wave point source surrounded by a homogeneous, isotropic and attenuative medium is thus computed. In a resulting synthetic vertical seismic profile, we observe near‐field and far‐field responses and a 90° phase rotation between them. Depth dependence of the magnitude spectra in these two depth regions is distinctly different. The logarithm of the magnitude spectra shows a linear dependence on frequency in the far‐field but not in those depth regions where the near‐field becomes significant. Near‐field effects are one possible explanation for large positive and even negative Q‐factors in the shallow section that may be estimated from real vertical seismic profile data when applying the spectral ratio method. We outline a near‐field compensation technique that can reduce errors in the resultant Q estimates.  相似文献   

4.
The time‐invariant gain‐limit‐constrained inverse Q‐filter can control the numerical instability of the inverse Q‐filter, but it often suppresses the high frequencies at later times and reduces the seismic resolution. To improve the seismic resolution and obtain high‐quality seismic data, we propose a self‐adaptive approach to optimize the Q value for the inverse Q‐filter amplitude compensation. The optimized Q value is self‐adaptive to the cutoff frequency of the effective frequency band for the seismic data, the gain limit of the inverse Q‐filter amplitude compensation, the inverse Q‐filter amplitude compensation function, and the medium quality factor. In the processing of the inverse Q‐filter amplitude compensation, the optimized Q value, corresponding gain limit, and amplitude compensation function are used simultaneously; then, the energy in the effective frequency band for the seismic data can be recovered, and the seismic resolution can be enhanced at all times. Furthermore, the small gain limit or time‐variant bandpass filter after the inverse Q‐filter amplitude compensation is considered to control the signal‐to‐noise ratio, and the time‐variant bandpass filter is based on the cutoff frequency of the effective frequency band for the seismic data. Synthetic and real data examples demonstrate that the self‐adaptive approach for Q value optimization is efficient, and the inverse Q‐filter amplitude compensation with the optimized Q value produces high‐resolution and low‐noise seismic data.  相似文献   

5.
双程波方程逆时深度偏移是复杂介质高精度成像的有效技术,但其结果中通常包含成像方法引起的噪音和假象,一般的滤波方法会破坏成像剖面上的振幅,其中的假象也会给后续地质解释带来困扰.将波场进行方向分解然后实现入射波与反射波的相关成像能够有效地消除这类成像噪音,并提高逆时偏移成像质量.波传播方向的分解通常在频率波数域实现,它会占用大量的存储和计算资源,不便于在沿时间外推的逆时深度偏移中应用.本文提出解析时间波场外推方法,可以在时间外推的每个时间片上实现波传播方向的显式分解,逆时深度偏移中利用分解后的炮检波场进行对应的相关运算,实现成像噪音和成像信号的分离.在模型和实际数据上的测试表明,相比于常规互相关逆时偏移成像结果,本文方法能够有效地消除低频成像噪音和特殊地质构造导致的成像假象.  相似文献   

6.
基于自适应优化有限差分方法的全波VSP逆时偏移   总被引:1,自引:1,他引:0       下载免费PDF全文
与地面地震资料相比,VSP资料具有分辨率高、环境噪声小及能更好地反映井旁信息等优点.常规VSP偏移主要对上行反射波进行成像,存在照明度低、成像范围受限等问题.为了增加照明度、拓宽成像范围、提高成像精度,本文采用直达波除外的所有声波波场数据(全波),包括一次反射波、多次反射波等进行叠前逆时偏移成像.针对逆时偏移中的四个关键问题,即波场延拓、吸收边界条件、成像条件及低频噪声的压制,本文分别采用自适应变空间差分算子长度的优化有限差分方法(自适应优化有限差分方法)求解二维声波波动方程以实现高精度、高效率的波场延拓,采用混合吸收边界条件压制因计算区域有限所引起的人工边界反射,采用震源归一化零延迟互相关成像条件进行成像,采用拉普拉斯滤波方法压制逆时偏移中产生的低频噪声.本文对VSP模型数据的逆时偏移成像进行了分析,结果表明:自适应优化有限差分方法比传统有限差分方法具有更高的模拟精度与计算效率,适用于VSP逆时偏移成像;全波场VSP逆时偏移成像比上行波VSP逆时偏移的成像范围大、成像效果好;相对于反褶积成像条件,震源归一化零延迟互相关成像条件具有稳定性好、计算效率高等优点.将本文方法应用于某实际VSP资料的逆时偏移成像,进一步验证了本文方法的正确性和有效性.  相似文献   

7.
基于地震波传播过程中能量衰减的物理机制理论分析,通过梳理已有研究成果,采用正弦函数分频、最小二乘法高阶e指数曲线拟合等技术研发了可实现时间、频率、炮检距和炮域内地震波4D球面扩散与大地吸收衰减补偿方法,解决了常规振幅补偿无法补偿振幅随频率衰减和剩余补偿的问题。实际地震资料处理结果表明,相较于常规振幅补偿方法,该方法可更准确地对球面扩散和大地吸收造成的地震波衰减进行自适应拟合与补偿,较好的恢复中、高频信号成分,提高主频,拓宽频带,有效提高成像分辨率,并较好地保持了振幅的相对关系。  相似文献   

8.
在实际地球介质中传播的地震波会产生衰减和频散现象,因此其更接近于黏弹性介质,在地震处理中补偿这些黏性影响是十分必要的。基于波动方程的叠前深度偏移中进行吸收衰减补偿更准确,也更有物理意义,直接求解双程波动方程的逆时偏移(RTM)能够成像大倾角复杂构造,具有诸多优势。然而当考虑吸收衰减补偿时通常会产生不稳定现象,大部分研究都是在逆时偏移的波场延拓中进行波数域的低通滤波来解决这个问题。本文采用广义标准线性固体的黏声波动方程进行吸收衰减补偿的Q--RTM方法,通过添加正则化项的方式来稳定延拓过程。添加正则化项本质上是低通滤波,滤波窗口是指数形式,在时空域有明确的形式,可以阻止发生高频不稳定。与直接滤波相比,正则化参数可以是空变的,因此比较适合剧烈变化的区域,我们还发现震源归一化互相关成像条件更适合Q--RTM方法。   相似文献   

9.
基于反演的稳定高效衰减补偿方法   总被引:1,自引:1,他引:0       下载免费PDF全文
反Q滤波方法是提高地震数据分辨率的一种有效途径,可以用来补偿振幅和校正相位.常规的反Q滤波方法一般基于波场延拓理论,具有不稳定性或振幅补偿不足的缺点.本文基于波场延拓的正Q滤波方程,借鉴反演的思想以及正则化策略提出了一种新的衰减补偿方法,该方法稳定、精确,利用该方法可最终得到高分辨的地震记录.该方法仅计算有效频带内的频率分量,提高了计算效率.模拟数据以及实际数据处理验证了本文方法的有效性.  相似文献   

10.
Compressional-wave Q estimation from full-waveform sonic data   总被引:1,自引:0,他引:1  
There is significant evidence that the anelastic loss of seismic energy is linked to petrophysical properties such as porosity, permeability and clay content. Thus, reliable estimation of anelastic attenuation from seismic data can lead to improved methods for the prediction of petrophysical properties. This paper is concerned with methods for the estimation of attenuation at sonic frequencies (5–30 KHz) from in situ data. Two independent methods have been developed and tested for estimating compressional‐wave attenuation from full‐waveform sonic data. A well‐established technique, the logarithm spectral ratio (LSR) method, is compared with a new technique, the instantaneous frequency (IF) method. The LSR method uses the whole spectrum of the seismic pulse whilst the IF method uses a carefully estimated value of instantaneous frequency which is representative of the centre frequency of the pulse. In the former case, attenuation estimation is based on the relative variation of amplitudes at different frequencies, whilst in the latter case it is based on the shift of the centre frequency of the pulse to lower values during anelastic wave propagation. The IF method does not assume frequency independence of Q which is a necessary assumption for the LSR method, and it provides a stable frequency log, the peak instantaneous frequency (PIF) log, which may be used as an indicator for attenuation under certain limitations. The development and implementation of the two methods is aimed at minimizing the effect of secondary arrivals, such as leaky modes, and involved a series of parameter tests. Testing of the two methods using full‐waveform sonic data of variable quality, obtained from a gas‐bearing sandstone reservoir, showed that the IF method is in general more stable and suitable for full‐waveform sonic data compared with the LSR method. This was evident especially in data sets with high background noise levels and wave‐interference effects. For good quality data, the two methods gave results that showed good agreement, whilst comparison with other log types further increased confidence in the results obtained. A significant decrease (approximately 5 KHz) in the PIF values was observed in the transition from an evaporite/shale sequence to the gas‐bearing sandstone. Average Q values of 54 and 51 were obtained using good quality data from a test region within the gas‐saturated sandstone reservoir, using the LSR and IF methods, respectively.  相似文献   

11.
Seismic attenuation introduces modifications in the wavelet shape in vertical seismic profiles. These modifications can be quantified by measuring particular signal attributes such as rise-time, period and shape index. Use of signal attributes leads to estimations of a seismic-attenuation log (Q-log). To obtain accurate signal attributes it is important to minimize noise influence and eliminate local interference between upgoing and downgoing waves at each probe location. When tube waves are present it is necessary to eliminate them before performing separation of upgoing and downgoing events. We used a trace-by-trace Wiener filter to minimize the influence of tube waves. The separation of upgoing and downgoing waves was then performed in the frequency domain using a trace-pair filter. We used three possible methods based on signal attribute measurements to obtain g-log from the extracted downgoing wavefield. The first one uses a minimum phasing filter and the arrival time of the first extremum. The two other methods determine the Q-factor from simple relations between the amplitudes of the first extrema and the pseudo-periods of the down-going wavelet. The relations determined between a signal attribute and traveltime over quality factor were then calibrated using field source signature and constant-Q models computed by Ganley's method. Q-logs thus obtained from real data are discussed and compared with geological information, specifically at reservoir level. Analysis of the tube wave arrivals at the level of the reservoir showed a tube wave attenuation that could not be explained by simple transmission effects. There was also a loss of signal coherence. This could be interpreted as tube wave diffusion in the porous reservoir, followed by dispersion. If this interpretation can be verified, tube wave analysis could lead to further characterization of porous permeable zones.  相似文献   

12.
基于平面波照明的偏移成像补偿   总被引:1,自引:0,他引:1       下载免费PDF全文
受地下复杂构造和地震数据采集系统的影响,地震波对地下目标的照明出现不均匀,在地震数据的偏移成像中出现成像阴影.根据地震数据最小二乘偏移/反演理论,和把地震波场照明结果作为最小二乘偏移/反演中的Hessian矩阵的近似对偏移成像进行补偿的原理,提出一种应用平面波照明结果对平面波偏移成像结果进行补偿以消除偏移成像阴影的方法.这种基于平面波照明的偏移成像补偿方法相对于局部角度域的照明偏移成像补偿方法具有计算效率上的优势.  相似文献   

13.
一种自适应增益限的反Q滤波   总被引:3,自引:0,他引:3       下载免费PDF全文
地层的Q吸收会造成地震波振幅衰减、相位畸变,分辨率和信噪比明显降低.反Q滤波可消除由于地层Q吸收造成的振幅衰减和相位畸变,从而提高地震资料的分辨率;但反Q滤波振幅补偿的数值不稳定性问题会严重降低地震资料的信噪比,并产生很多假象.截止频率法和稳定因子法反Q滤波振幅补偿方法虽可控制数值非稳定性问题,但振幅补偿函数的增益限为一个时不变的常数,且与地震数据动态范围无关,其经常会压制深层地震波的高频成分,反而降低地震资料的分辨率;因此,本文在研究截止频率法和稳定因子法的基础上,结合地震数据的动态范围对地震记录分辨率的影响,提出了一种自适应增益限的反Q滤波振幅补偿方法,其增益限和稳定因子都是时变的,且都自适应于地震数据有效频带的截止频率.合成数据和实际数据试算表明,本文的自适应增益限的反Q滤波方法可恢复地震信号有效频带范围内的能量,且能较好地控制数值非稳定性问题,最终获得高分辨率和高信噪比的地震数据.  相似文献   

14.
Estimation of seismic wave attenuation in the shallow crust in terms of coda wave Q structure previously investigated in the vicinity of Cairo Metropolitan Area was improved using seismograms of local earthquakes recorded by the Egyptian National Seismic Network. The seismic wave attenuation was measured from the time decay of coda wave amplitudes on narrow bandpass filtered seismograms based on the single scattering theory. The frequency bands of interest are from 1.5 to 18 Hz. In general, the values obtained for various events recorded at El-Fayoum and Wadi Hagul stations are very similar for all frequency bands. A regional attenuation law Q c = 85.66 f 0.79 was obtained.  相似文献   

15.
时间域常Q黏声波方程,由于含分数阶时间导数项,数值求解需要大量内存,计算效率低,不利于地震偏移的实施.通过一系列近似,可将该方程简化为介质频散效应和衰减效应解耦的分数阶拉普拉斯算子黏声波方程,数值求解内存需求少,计算效率高.本文采用交错网格有限差分逼近时间导数,改进的伪谱法计算空间导数,PML吸收边界去除边界反射,对该方程进行数值离散和地震正演模拟,开展地震数据的黏声介质逆时偏移,实现波场逆时延拓过程中同时完成频散校正和衰减补偿.改善深层构造的成像精度,数值结果表明,基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移可大幅度提高地震模拟计算效率,偏移剖面明显优于常规声波偏移剖面,极大改善深层构造的成像品质.  相似文献   

16.
It is important to include the viscous effect in seismic numerical modelling and seismic migration due to the ubiquitous viscosity in an actual subsurface medium. Prestack reverse‐time migration (RTM) is currently one of the most accurate methods for seismic imaging. One of the key steps of RTM is wavefield forward and backward extrapolation and how to solve the wave equation fast and accurately is the essence of this process. In this paper, we apply the time‐space domain dispersion‐relation‐based finite‐difference (FD) method for visco‐acoustic wave numerical modelling. Dispersion analysis and numerical modelling results demonstrate that the time‐space domain FD method has great accuracy and can effectively suppress numerical dispersion. Also, we use the time‐space domain FD method to solve the visco‐acoustic wave equation in wavefield extrapolation of RTM and apply the source‐normalized cross‐correlation imaging condition in migration. Improved imaging has been obtained in both synthetic and real data tests. The migration result of the visco‐acoustic wave RTM is clearer and more accurate than that of acoustic wave RTM. In addition, in the process of wavefield forward and backward extrapolation, we adopt adaptive variable‐length spatial operators to compute spatial derivatives to significantly decrease computing costs without reducing the accuracy of the numerical solution.  相似文献   

17.
起伏的地表条件限制了采集孔径范围并造成深层地震照明不足,为改善该类地区的成像质量,本文提出了一种起伏地表条件下的照明补偿方法.首先,基于小波束波场延拓算子和逐步累加的外推方法在波场延拓过程中解决起伏地表面的影响,并引入空间滤波函数压制虚拟层内的偏移噪音;其次,利用局部指数标架对上、下行波场分解,得到局部角度域成像和照明补偿因子.再次,利用计算出的成像值和照明补偿因子,在局部倾角域完成照明补偿.SEG起伏地表模型测试证明了本方法的有效性,深层构造照明度明显加强,不同角度成像振幅更加均衡,该技术为提高起伏地表地区的成像品质提供了新的手段.  相似文献   

18.
Extracting true amplitude versus angle common image gathers is one of the key objectives in seismic processing and imaging. This is achievable to different degrees using different migration techniques (e.g., Kirchhoff, wavefield extrapolation, and reverse time migration techniques) and is a common tool in exploration, but the costs can vary depending on the selected migration algorithm and the desired accuracy. Here, we investigate the possibility of combining the local‐shift imaging condition, specifically the time‐shift extended imaging condition, for angle gathers with a Kirchhoff migration. The aims are not to replace the more accurate full‐wavefield migration but to offer a cheaper alternative where ray‐based methods are applicable and to use Kirchhoff time‐lag common image gathers to help bridge the gap between the traditional offset common image gathers and reverse time migration angle gathers; finally, given the higher level of summation inside the extended imaging migration, we wish to understand the impact on the amplitude versus angle response. The implementation of the time‐shift imaging condition along with the computational cost is discussed, and results of four different datasets are presented. The four example datasets, two synthetic, one land acquisition, and a marine dataset, have been migrated using a Kirchhoff offset method, a Kirchhoff time‐shift method, and, for comparison, a reverse time migration algorithm. The results show that the time‐shift imaging condition at zero time lag is equivalent to the full offset stack as expected. The output gathers are cleaner and more consistent in the time‐lag‐derived angle gathers, but the conversion from time lag to angle can be considered a post‐processing step. The main difference arises in the amplitude versus offset/angle distribution where the responses are different and dramatically so for the land data. The results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers. The same disadvantages with a ray‐based approach will apply using the extended imaging condition relative to a wave equation angle gather solution. Nevertheless, using this approach allows one to explore the relationship between the velocity model and focusing of the reflected energy, to use the Radon transformation to remove noise and multiples, and to generate consistent products from a ray‐based migration and a full‐wave equation migration, which can then be interchanged depending on the process under study.  相似文献   

19.
Prestack wave‐equation migration has proved to be a very accurate shot‐by‐shot imaging tool. However, 3D imaging with this technique of a large field acquisition, especially one with hundreds of thousands of shots, is prohibitively costly. Simply adapting the technique to migrate many superposed shot‐gathers simultaneously would render 3D wavefield prestack migration cost‐effective but it introduces uncontrolled non‐physical interference among the shot‐gathers, making the final image useless. However, it has been observed that multishot signal interference can be kept under some control by averaging over many such images, if each multishot migration is modified by a random phase encoding of the frequency spectra of the seismic traces. In this article, we analyse this technique, giving a theoretical basis for its observed behaviour: that the error of the image produced by averaging over M phase encoded migrations decreases as M?1 . Furthermore, we expand the technique and define a general class of Monte‐Carlo encoding methods for which the noise variance of the average imaging condition decreases as M?1 ; these methods thus all converge asymptotically to the correct reflectivity map, without generating prohibitive costs. The theoretical asymptotic behaviour is illustrated for three such methods on a 2D test case. Numerical verification in 3D is then presented for one such method implemented with a 3D PSPI extrapolation kernel for two test cases: the SEG–EAGE salt model and a real test constructed from field data.  相似文献   

20.
傅里叶有限差分法保幅叠前深度偏移方法   总被引:23,自引:5,他引:23       下载免费PDF全文
地震数据中饱含有丰富的走时信息和振幅信息. 为解决传统偏移方法中几何扩散和入射角变化引起的振幅误差问题,本文提出了一种实用的波动方程保幅地震偏移方法. 该方法从全声波方程出发进行单程波保幅分解,得到直观、高效率的直接面对地震波传播波场的压力分量进行延拓的保幅偏移单程波方程,进而推导出一个含有6项的傅里叶有限差分法保幅偏移的算子方程;修改边界条件和成像条件,使修改后的边界条件和成像方程中考虑振幅补偿,从而从三方面补偿几何扩散损失和入射角变化对振幅的影响. 脉冲响应测试、单炮记录的数值试验以及SEG/EAGE盐丘模型的叠前偏移结果表明,该方法不但可以使散射能量聚焦、归位,提高成像精度;而且可以输出正确反映地下反射系数的振幅信息,为后续的地震属性分析(如AVO/AVA)提供更真实的地震信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号