首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 545 毫秒
1.
王龙  陈国兴  冯健雪  黄安平  徐美娟 《地震工程学报》2022,44(6):1309-1316,1421
地震是诱发边坡失稳的主要因素之一,重力式挡土墙作为一种广泛采用的岩土支挡结构,有必要对其地震稳定性问题进行深入的研究.为有效评估地震作用下非饱和填土的主动土压力,基于极限分析上限原理和拟动力法,提出一种半解析水平片分法,计算具有非线性分布特征的非饱和土重力和地震惯性力所做外功率,并构建功能平衡方程,得到非饱和填土主动土压力显示半解析解.通过与解析解对比,验证该方法的合理性,并通过算例分析,揭示吸力效应的强化机制和非饱和填土主动土压力的地震响应规律.结果表明:忽略吸力效应会高估填土的主动土压力,吸力的强化作用不仅取决于填土类型,还与地震动特性密切相关;水平和竖向地震动对土压力有较大影响, 土压力系数峰值随土剪切模量的增加略有增加并向负方向移动,随地震周期的增加略有增加并向正方向移动;填土倾角较大时,坡顶附加荷载的影响更加显著;对于倾角大于100°的填土,墙G土界面摩擦角较大时,土压力相对较高.  相似文献   

2.
地震作用下模块式加筋土挡墙极易发生墙面模块脱落破坏,针对模块面板与筋材的连接稳定问题开展理论分析,用于模块式加筋土挡墙面板连接抗震安全设计。基于极限平衡法,通过考虑筋材与面板间的连接强度和连接抵抗力,提出了地震条件下面板连接稳定性分析方法。运用本文提出的方法进行了一系列参数分析,研究了水平地震力、竖向地震力、加筋间距以及墙趾阻力等因素对面板连接稳定性的影响。研究结果表明:水平和竖向联合地震作用极易导致加筋挡墙面板连接破坏,减小墙趾阻力和增加加筋间距使加筋挡墙面板净连接力减小,且对挡墙下部筋材更加显著。因此,加筋土挡墙抗震安全设计需要注意近断层场地中竖向地震作用,同时加筋间距不宜过大。  相似文献   

3.
针对山西省境内长期承受非对称交通荷载的公路拓宽路堤,采用FLAC~(3D)建立数值模型,土工格栅采用FLAC~(3D)内置土工格栅单元(geogrid)模拟,其余部分均采用实体单元,屈服准则采用Mohr-Coulomb准则。将交通荷载简化为半正弦波荷载,分析非对称交通荷载作用下不加筋和加筋两种工况下拓宽路堤的变形特性及稳定性,进而改变拓宽路堤部分填土参数、交通荷载幅值、频率和行车间隔等参数,分析其对加筋工况下拓宽路堤变形的影响。结果表明:非对称交通荷载作用下,设置土工格栅加筋对新、旧路堤变形的约束作用有限,但能提高路堤的整体稳定性;增大拓宽路堤填土的压缩模量和黏聚力,可减小新、旧路堤沉降差;增大交通荷载一侧幅值会引起新、旧路堤过大差异沉降;增大交通荷载频率和时间间隔,路堤沉降均逐渐减小,但沉降差保持不变。上述结论对受非对称交通荷载拓宽路堤的施工提供了一定的理论依据。  相似文献   

4.
挡土墙地震被动土压力的拟动力分析   总被引:5,自引:0,他引:5  
杨剑 《地震学刊》2012,(3):365-371
对地震土压力的研究是地震区挡土墙安全设计的一项重要课题。地震条件下,目前的研究主要是给出了土压力的近似拟静力解析解。本文采用可考虑动力荷载下的周期和纵波及横波效应的拟动力方法,对挡土墙后的地震被动土压力进行分析。在挡土墙后平面滑裂面假设的基础上,考虑了水平和垂直向地震加速度、纵波速度、横波速度、挡土墙摩擦角、填土内摩擦角、填土坡角对地震被动土压力的影响。与Mononobe-Okabe理论的拟静力法不同的是,用本方法得出了沿墙身地震被动土压力是非线性变化的结果,这更符合地震条件下土压力的变化规律。  相似文献   

5.
针对黄土地区现有的地震荷载作用下挡土墙土压力计算方法中的不足,进行了4个含水量和3个围压的平面应变试验,首次建立了平面应变强度参数与结构性的关系,扩展了被动状态下考虑应力主轴偏转的粘性土侧土压力系数计算公式,采用水平微分层分析方法,提出了一种地震作用下同时考虑黄土结构性和主应力轴偏转的挡土墙被动土压力计算方法。参数分析结果表明平面应变条件下地震被动土压力均大于三轴条件下,结构性土地震被动土压力大于无结构性土,墙土面有摩擦时地震被动土压力大于墙土面光滑时;地震被动土压力随水平和竖向地震加速度系数的增大而减小、随摩擦角、均布荷载、墙土摩擦角、粘聚力、构度指标的增大而增大。黄土地区地震被动土压力计算应综合考虑平面应变强度参数、结构性和墙土摩擦效应的影响。  相似文献   

6.
土工格栅加筋垫层复合地基近年来在处理软土路基中得到了广泛应用,但土工格栅在复合地基中对桩与土的作用机制,尚无系统研究。基于弹塑性摩尔库仑模型,采用PLAXIS有限元软件,详细分析了无土工格栅和有土工格栅在不同抗拉强度下对路基沉降、侧向位移,桩的轴力和剪力以及基础的应力扩散等影响,得到土工格栅能有效减少路基沉降及侧向位移等结论,对于路基工程中土工格栅强度的选取及其它应用具有一定的指导作用。  相似文献   

7.
针对西北黄土高原地区高填方减载明洞工程,明洞顶部铺设EPS板可以有效减小明洞周围土压力,保证结构安全。然而,由于填土的动力高敏感性,地震作用将会对已经稳定的回填土体产生扰动,导致明洞结构周围土压力发生较大变动,对明洞结构造成不利影响。因此,采用数值模拟方式,对地震作用下的高填减载明洞周围土压力变化特性及土拱效应进行研究。研究结果表明:地震作用下,由于减载作用产生的土拱效应始终存在,使得土拱高度降低和效应减弱;明洞顶部竖向动土压力时程曲线在距明洞中央0~5 m范围内变化趋势一致,在距中央5~7 m范围内变化趋势相反,当明洞顶竖向动土压力达到峰值时,平均竖向动土压力为平均竖向静土压力的1.14倍;明洞两侧水平动土压力时程曲线变化趋势呈“此消彼长”状态,当水平动土压力达到峰值时,平均水平动土压力为平均水平静土压力的2.89倍。  相似文献   

8.
以刚/柔组合墙面加筋土挡墙的振动台试验结果为基准,建立刚/柔组合式、模块加返包式、模块式和格宾式面板型式加筋土挡墙的FLAC3D数值模型,研究面板型式对挡墙水平位移、加速度响应及地震土压力分布的影响。结果表明:在静力作用下不同面板型式挡墙的变形模式略有不同;振动作用下,变形大小为组合式<模块加返包式<格宾式<模块式;加筋区内加速度放大系数为组合式>模块加返包式>格宾式>模块式;面板处加速度放大系数均大于加筋区,且面板型式不同,放大规律亦不同;面板型式不同,地震主动土压力非线性分布规律不同;合力作用点位置大多高于M-O方法的H/3,且受加速度幅值影响较小。  相似文献   

9.
岩石场地重力式挡土墙地震土压力振动台实验研究   总被引:5,自引:0,他引:5  
结合汶川震区调查资料,利用大型振动台模型试验,分析了碎石土填料的岩石场地重力式挡土墙的地震土压力及其分布规律,并以此对我国现行铁路、公路抗震规范做合理性讨论和细化。研究发现,地震作用下,挡土墙的动土压力沿墙高呈单峰曲线状分布,且60%~80%集中作用于挡墙中部;随着地震峰值加速度的增加,地震土压力分布逐渐偏离现行振震设计规范所认为的三角形线性状,而呈现非线性状;合力作用点高于1/3墙高,0.4g地震加速度作用下,接近0.4倍墙高,对岩石场地下粗粒径墙背填料的地震土压力作用点高度,建议取0.35倍墙高。对比计算表明,现行规范能基本满足工程抗震设计需要,但建议对柔性挡土墙的抗震设计作出必要规定。  相似文献   

10.
地下隧道抗震分析的关键在于确定地震过程中隧道所受的地震作用,亦即地震动土作用。本文采用间接边界元方法,求解了弹性基岩上覆层状场地中地下隧道所受的横截面内地震动土作用,通过参数分析揭示了地震动土作用的峰值大小、空间分布等基本规律。研究表明,土-隧道动力相互作用对地震动土作用的空间分布形式影响较小,地下隧道结构横截面内所受地震动土作用的空间分布形式与隧道相应位置处自由场土层应力空间分布形式基本一致;土-隧道动力相互作用对地震动土作用有明显放大效应,隧道主要位置点的水平动土作用和竖向动土作用与隧道相应位置处自由场土层应力相比分别放大1.4~2.0倍和1.2~1.6倍;随隧道埋深的增加,隧道所受地震动土作用呈明显增大趋势。最后在此基础上提出了横截面内地震动土作用的一个简化计算方法。该简化方法基于自由场地震响应分析,采用动力放大系数来考虑土-隧道动力相互作用,方法简单实用,计算精度可以满足工程需求。  相似文献   

11.
Knowledge of seismic active earth pressure behind rigid retaining wall is very important. Commonly used Mononobe–Okabe method considers pseudo-static approach, which gives the linear distribution of seismic earth force. In this paper, the pseudo-dynamic approach, which considers the effect of primary and shear wave propagations, is adopted to calculate the seismic active force. Considering the planar rupture surface, the effect of wide range of parameters like inclination of retaining wall, inclination of backfill surface, wall friction and soil friction angle, shear wave and primary wave velocity, horizontal and vertical seismic coefficients are taken into account to evaluate the seismic active force. Results are presented in terms of seismic coefficients in tabular form and variation of pressure along the depth.  相似文献   

12.
In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.  相似文献   

13.
The M–O (Mononobe–Okabe) theory is used as a standard method to determine the seismic earth pressure. However, the M–O theory does not consider the influence of soil cohesion, and it cannot determine the nonlinear distribution of the seismic earth pressure. This paper presents a general solution for the nonlinear distribution of the seismic active earth pressure of cohesive-frictional soil using the slice analysis method. A new method is proposed to determine the critical failure angle of the backfill wedge under complex conditions, and an iterative calculation method is presented to determine the tension crack depth of the seismic active earth pressure. The considered parameters in the proposed method include the horizontal and vertical seismic coefficients, wall inclination angle, backfill inclination angle, soil friction angle, wall friction angle, soil cohesion, wall adhesion and uniform surcharge. The classical methods of the M–O and Rankine theories can be regarded as special cases of the proposed method. Furthermore, the proposed method is compared with the test results and previously existing solutions to validate the correctness of the results. Additionally, the parameters׳ effect on the critical failure angle, the resultant force, the application-point position, the tension crack depth and the nonlinear distribution of seismic active earth pressure are studied in graphical form.  相似文献   

14.
The static and seismic sliding limit equilibrium condition of retaining walls is investigated, and analytical solutions for the angle of the active slip surface, the critical acceleration coefficient and the coefficient of active earth pressure are provided for different surcharge conditions. In particular, walls retaining a horizontal backfill without surcharge, walls supporting an extended uniform surcharge applied at different distances from the wall and walls supporting a limited uniform surcharge or linear uniform surcharge parallel to the wall are considered in the analysis.The solutions have been derived in the framework of the limit equilibrium approach, considering the effect of the wall through its weight, and accounting for the shear resistance at the base of the wall and the inertia force arising in the wall under seismic conditions.For the wall without surcharge the effect of the vertical component of the seismic acceleration as well as the effects of the inclination of the wall internal face and of the soil–wall friction were also investigated.The angle of the slip plane, the critical seismic acceleration coefficient and the coefficient of active earth pressure are given as functions of dimensionless parameters and the boundary conditions for the applicability of each solution are specified. The influence of soil weight, surcharge conditions and inertia forces on the active earth pressure coefficient is analysed.  相似文献   

15.
地震土压力评价是挡土墙抗震设计的关键问题之一.以往的研究结果表明,挡墙上地震土压力的大小及分布与墙体的侧向位移或者墙后填土的侧向变形密切相关.经典的物部-冈部地震土压力公式可计算填土处于主动与被动状态的极限平衡条件下的土压力,未考虑挡墙侧向位移或填土侧向变形对土压力的影响.在研究土压力系数随应变增量比变化规律的基础上,本文指出土压力系数与挡土墙位移量之间不存在唯一性关系,发现正常固结填土的土压力系数与以应变增量比表述的填土侧向应变约束条件之间具有良好的唯一性,揭示了压剪耦合效应是土压力形成的物理本质;基于上述的唯一性关系和中间土楔等概念,提出了可考虑填土侧向变形的地震土压力实用计算方法,并通过土压力模型试验结果初步验证了该方法的合理性.  相似文献   

16.
Novel approaches to the dynamic analysis of the reinforced soil walls have been reported in the literature. Use of marginal soils reduces the cost of geosynthetic reinforced soil walls if proper drainage measures are taken. Therefore the affect of using cohesive marginal soils as backfill in geosynthetic reinforced retaining structures were investigated in this research. The dynamic response of reinforced soil walls was investigated in a similar focus, using finite element analysis. The results obtained from walls with cohesive backfill were compared to the results obtained from walls with granular backfill. The height of the wall was chosen as 6 m in the two-dimensional plane strain finite element model and the base acceleration was chosen to be a harmonic motion. The effects of various parameters like the backfill type, facing type, reinforcement stiffness, and peak ground acceleration on the cyclic response of reinforced soil retaining walls were investigated. After analyzing the wall response for end of construction and dynamic excitation phases, it was determined that the deformations and reinforcement tensile loads increased during the cyclic load application and that the amount of additional deformation that occurred during cyclic load application was strongly related to backfill soil type, facing type, reinforcement type and peak ground acceleration. It was determined that a cohesive backfill and geotextile reinforcement was a good combination to reduce the deformations of geosynthetic reinforced walls during cyclic loading for medium height walls.  相似文献   

17.
Prediction of the seismic rotational displacements of retaining wall under passive condition is an important aspect of design in earthquake prone region. In this paper, the pseudo-dynamic method is used to compute the rotational displacements of rigid retaining wall supporting cohesionless backfill under seismic loading for the passive earth pressure condition. The proposed method considers time, phase difference and effect of amplification in shear and primary waves propagating through both the backfill and the retaining wall. The influence of ground motion characteristics on rotational displacement of the wall is evaluated. Also the effects of variation of parameters like wall friction angle, soil friction angle, amplification factor, shear wave velocity, primary wave velocity, period of lateral shaking, horizontal and vertical seismic accelerations on the rotational displacements are studied. The rotational displacement of the wall increases substantially with increase in amplification of both shear and primary waves, time of input motion, period of lateral shaking and decreases with increase in soil friction angle, wall friction angle. The rotational displacements of the wall also increase when the effect of wall inertia is taken into account. Results are provided in graphical form.  相似文献   

18.
An overview of past and recent developments on the subject of seismic earth pressures on yielding, gravity-type walls, retaining cohesionless backfill, is first presented, focusing on available data on the issue of phase difference that develops between the peak values of wall inertia and seismic earth thrust increment. The results of a FEM parametric study are next presented regarding the dependence on the resulting dynamic earth thrust reduction – acting on the time of peak wall inertia – on backfill rigidity, wall height, and shaking characteristics. The reliability of the numerical analyses was verified by modeling centrifuge tests reported by Nakamura [24] and successfully comparing measured vs. computed behavior. The results of the parametric analyses indicate that the seismic active earth thrust, acting on the wall at the time of maximum wall inertia, is significantly reduced (compared to its peak value) with increasing shaking intensity of backfill, increasing wall displacements, increasing wall height, and decreasing backfill rigidity. No systematic dependence on the ratio of input motion frequency to the natural frequency of the backfill (f/f1) was observed. The above findings: (1) verify earlier experimental and numerical results, (2) explain the reported lack of damage to retaining walls under strong ground shaking, and (3) indicate the need for revising the pertinent provisions of current seismic codes. Graphs summarizing the results of the numerical analyses are presented which may be used as a guide for selecting the magnitude of seismic active earth thrust that needs to be taken into account in the design of the examined type of earth retaining walls.  相似文献   

19.
本文在已有研究成果的基础上,根据库伦土压力的计算原理,从滑动土楔处于极限平衡状态时力的平衡条件出发,考虑实际地震中对挡土墙稳定性最不利的情况,推导出了计算黏性土或无黏性土主动土压力的公式。该公式适用于均布荷载作用于挡土墙后任意位置。对地震多发区考虑水平惯性力作用下重力式挡土墙设计中土压力的计算具有一定参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号