首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
利用地球日长(LOD)资料和美国环境预报中心/国家大气研究中心(NCEP/NCAR)的气象要素资料,统计分析发现1962-2010年LOD的变化和北半球中纬度地面温度均存在明显的十年以上的波动周期.相关分析、合成分析等统计方法均检测到LOD与中纬度地面温度的显著负相关关系,当地球自转速率加快时,北半球中纬度地面增温;反之,中纬度地面降温.小波功率谱和交叉谱分析则确定二者的相互关系属于准20年周期尺度上的年代际变化联系,并且LOD的变化超前于地面温度的变化大概3~4年.平均而言,LOD的变化可带来中纬度地面温度0.2℃的降温(或增温).通过对大气相对角动量、纬向风场、海平面气压场的年代际合成分析,揭示了LOD与地面温度的年代际联系形成的具体物理过程.当地球自转加速时,北半球高低纬度经向温差梯度减弱,热带地区向极地扩展,造成北半球中纬度地区地面增温;地球自转减速时段相反,经向温差梯度增强,热带地区向赤道收缩,中纬度地区地面降温.  相似文献   

2.
亚洲-太平洋涛动是北半球夏季亚洲大陆和北太平洋副热带地区对流层中高层扰动温度场上大尺度的东西反相的遥相关现象,其异常变化与亚洲-太平洋地区夏季风气候有着密切的联系.基于欧洲中心的ERA-40再分析资料和国家气候中心BCC_CSM1.1(m)气候系统模式多年的数值模拟结果,本文主要评估了BCC_CSM1.1(m)模式对于夏季亚洲-太平洋涛动的空间分布、指数的时间演变及与其变化所对应的亚洲地区夏季环流异常等方面的模拟能力,结果表明:BCC_CSM1.1(m)模式能够较好地模拟出北半球夏季对流层中高层扰动温度在亚-太地区中纬度存在的西高东低"跷跷板"现象;模式能够模拟出夏季亚洲-太平洋涛动指数的年际变率,但是不能模拟出该指数在20世纪60-70年代明显下降的年代际趋势;模式还能较好地模拟出亚洲-太平洋涛动高低指数年亚洲-太平洋地区夏季环流的异常:指数偏高年份,南亚高压增强,高空西风急流带和热带东风急流均加强,索马里越赤道气流增强,南亚热带季风和东亚副热带季风均增强,东亚季风低压槽加强,西北太平洋副热带高压增强,南亚和东亚北部降水增加,菲律宾地区、中国长江流域-朝鲜半岛-日本一带地区降水减少,反之亦然.  相似文献   

3.
本文评估了44个CMIP5模式对东亚冬季风环流系统,特别是东亚冬季风指数及其对应的环流和气温特征的模拟能力.结果表明:CMIP5模式对地表气温和500 hPa位势高度场模拟效果最好,对200 hPa纬向风的模拟次之,而对海平面气压和850 hPa经向风的模拟相对较差.与单个模式相比,多模式集合(MME)的模拟能力要更优,其能够很好地再现西伯利亚高压、阿留申低压、东亚低层偏北风、中层东亚大槽、高层东亚西风急流以及地表气温的空间分布.不过,模拟的环流系统偏强,造成东亚地表气温总体偏低.对于东亚冬季风指数,分别选取基于300 hPa纬向风(I_(Jhun))、850 hPa风场(I_(Wang))、500 hPa位势高度(I_(Cui))、以及海平面气压(I_(Guo))定义的四个指数表征东亚冬季风强度.MME能很好地模拟I_(Cui)和I_(Wang)指数的长期变化,还能合理再现四个指数所指示的东亚冬季风环流和气温的变化特征:对应冬季风偏强年份,西伯利亚高压、阿留申低压、东亚沿岸低层北风、东亚大槽和高空西风急流加强,东亚大陆地表气温和极端低温降低,但变化的幅度比观测结果偏弱.  相似文献   

4.
青藏高原春季积雪在南海夏季风爆发过程中的作用   总被引:7,自引:2,他引:5       下载免费PDF全文
本文应用欧洲中期预报中心(ECMWF,European Centre for Medium\|Range Weather Forecasts—ERA\|40)资料和美国国家环境预测中心和国家大气研究中心(NCEP/NCAR, National Centers for Environmental Prediction/National Center for Atmospheric Research)资料,研究了青藏高原雪深变化对南海夏季风爆发的影响和ENSO对青藏高原降雪的影响.结果表明:(1)ECMWF的雪深资料是可信的,可以用来研究青藏高原雪深变化对南海夏季风爆发的影响;(2)青藏高原的积雪异常影响到500 hPa以上的温度异常和印度洋与大陆间的气温对比,一方面使上层的南亚高压移动速度发生变化,另一方面也影响到低层大气的运动和东西向风异常,在青藏高原少雪年,东印度洋产生西风异常和一个气旋对,而在青藏高原多雪年,东印度洋产生东风异常和一个反气旋对;(3)ENSO与青藏高原春季积雪关系密切.东太平洋SST正异常时,东印度洋和南海气压偏高,从而导致该区海陆经向压强梯度增强和西风异常.另外,此时青藏高原北部气压偏高,北风偏强,副热带锋面增强,同时,印度洋的SST偏高,为青藏高原降雪提供了水汽保障,这些都有利于青藏高原的降雪.  相似文献   

5.
An exact solution to the barotropic potential vorticity equation is used to examine the properties of barotropic vortices under arbitrary nth-order hyper-diffusivity. Analytical expressions are derived for an eddy's lifetime, meridional drift, decay in size, and energy, as functions of the Coriolis parameter, order and magnitude of diffusivity, and the eddy's size, shape and strength. These expressions provide a simple explanation for many observed features of oceanic and atmospheric vortices. For example, the competition between the Coriolis effect and eddy strength in giving permitted eddy geometries; the bias towards a zonal anisotropy for large vortices but not for small ones; energetic preference for axisymmetry; poleward meridional drift of cyclonic vortices; and meridional speed variation depending on eddy geometry and strength.  相似文献   

6.
Meterological rocket soundings, launched between 1969–74 at six locations representative of low, middle, and high altitudes, are employed with the use of the statistical theory of diffusion, to determine the zonal and meridional component of eddy diffusivity between 30 and 55 km as a function of season, latitude, and altitude. A comparison is also made between annually-averaged eddy diffusivities above and below 30 km.It is shown that the zonal component of eddy diffusivity is approximately three to five times as large as the meridional component, in most cases. Both components of eddy diffusivity vary greatly with season, latitude, and altitude. Highest eddy diffusivities, found in the vicinity of the winter westerly jet, are approximately one order of magnitude higher than those present during the summer. Tropical eddy diffusivities, however, remain relatively small throughout the year. Annually, a minimum is indicated near 25 km between maximums located at the stratopause and tropopause.  相似文献   

7.
定常情况下,本文利用球坐标系(λ,φ,r)的动力、热力学方程导出三维速度场(vλ,vφ,vr)的动力系统.这种包括摩擦力和热传导的不可压缩大气运动的动力系统,无论从定性上还是从定量上都能描述由赤道和极地间的加热不均匀造成的三圈环流.定性上表明,在北半球经向速度vφ和纬向速度vλ同符号,地表刮北风(vφ<0)和刮东风(vλ<0)相对应,刮南风(vφ>0)和刮西风(vλ>0)相对应.在南半球,经向速度vφ和纬向速度vλ符号相反,刮北风(vφ<0)和刮西风(vλ>0)相对应,刮南风(vφ>0)和刮东风(vλ<0)相对应.定量分析表明球面上的压力场p可以用球调和函数plm(sinφ)cosmλ来表达.当取l=6,m=0时即可导出三圈环流.在经圈剖面(φ,r)上,地表的φ1=±56°和φ2=±28°左右,以及赤道是速度场的奇点,它们都是鞍点,说明在副热带是下沉运动,在中纬度是上升运动,这正是三圈环流中的Ferrel环流的特征.这样经向速度vφ和纬向速度vλ相联系,经向速度vφ又和垂直速度相联系,那么三圈环流的三维速度场就构成了一个整体.  相似文献   

8.
A short review of research trends in the study of low-frequency mid-latitude variations is presented. Theoretical developments have been concentrated upon with the major themes of multiple equilibria, flow stability and eddy-mean flow interaction reflecting the authors main interests. A new interpretation of the role of transient eddies in maintaining atmospheric blocking is also suggested in which eddy potential vorticity fluxes are considered to mediate a downstream transition between a zonal and a steady free Rossby wave flow. This treatment avoids emphasizing local balances and fluxes by the transients which are often entirely or partially reversible. The consequences of this interpretation are explored in the barotropic model of blocking first presented by Shutts (1983). This interpretation is used to suggest conditions in which the jetstream may be unlikely to undergo transition to a blocked weather regime.  相似文献   

9.
A global 1/4° resolution product of surface currents has been developed by the Centre de Topographie des Océans et de l’Hydrosphère. The surface current is calculated from a combination of Ekman currents derived from wind estimates from QuikSCAT satellite, geostrophic current anomalies derived from altimetry, and a mean geostrophic current derived from climatology. In the equatorial band, the currents are adjusted following the methodology proposed by Lagerloef et al. (J Geophys Res, 104(C10):22313–22326, 1999). These satellite-derived currents have been compared to different types of in situ current observations. A global validation is performed using Lagrangian surface drifting buoys and acoustic Doppler current profiler current observations along ship tracks. The comparison shows a very good agreement in the subtropical and mid-latitude bands. The correlation between the satellite-derived currents and the drifter currents in zonal mean bands is around 0.7 for most of the world oceans, both for the zonal and the meridional components. This correlation rises up to 0.8 in the regions of strong boundary currents. In the equatorial band, the correlation with the surface drifting buoys is reduced. A direct comparison with the TOGA/TAO moored current meter data at the equator shows that the low frequency currents are captured by the satellite current product, but there is a substantial high-frequency signal (<20 days), which is not reproduced. This is especially the case for the meridional component and is mainly related to the tropical instability waves. We also show that using daily QuikSCAT wind forcing improves the satellite current product, particularly in the high-latitude westerly wind belt and in the tropical Indian Ocean.  相似文献   

10.
Based on numerical simulation, this study explored the characteristics and interactions of surface sensible heating and atmospheric latent heating over the main part of the Tibetan Plateau, i.e., terrain at elevations >2 km in summer. The impacts of these two types of heating on local vertical motion and monsoonal meridional circulation were compared. Theoretical analysis and numerical experimentation demonstrated that by changing the configuration of the upper-tropospheric air temperature and circulation, the two types of heating could generate both minimum absolute vorticity and abnormal potential vorticity forcing near the tropopause, enhance the meridional circulation of the Asian summer monsoon, and produce an eastward- propagating Rossby wave train within the mid-latitude westerly flow. Consequently, the manifestations of these features were shown to influence the circulation of the Northern Hemisphere.  相似文献   

11.
We investigated to what extent the isentropic, non-geostrophic formulation of zonally averaged circulation derived for stratospheric conditions is applicable to climatological transport in the extratropical troposphere and lower stratosphere. The study is based on 10 years of daily data of ECMWF analysis and on the ECHAM3 climate model of the German Climate Computing Centre. The main result is a scalar isentropic mixing coefficient, Kyy, and a mean meridional transport circulation consistently derived from the same data base. For both data sources, isentropic mean meridional circulation is derived from horizontal mass flow rate for 4 representative months. Alternatively, a mean meridional circulation is calculated from total diabatic heating rates of the ECHAM3 model. It is shown that only the latter is in good agreement with the ECMWF mean meridional circulation. Isentropic analysis also comprises the seasonal cycle of the climatological meridional gradient and flux of Ertels potential vorticity (PV). Application of Tungs flux-gradient relation yields that for all seasons Kyy is positive in height-latitude regions where statistical significance is reached. Large Kyy values, marking regions of more efficient mixing, have been found in the subtropical vertical band of weak westerly wind and in mid-latitudes in regions of upward-propagating baroclinic wave activity in the middle and upper troposphere. Based on the ECMWF data and results of baroclinic-wave behaviour, strong indications are presented that positive zonally averaged PV flux polewards of the jet core in the NH is strengthened by stationary waves and nonlinear effects. Reduced eddy transport is apparent in winter and spring slightly below the subtropical tropopause jet. The seasonal cycle of Kyy from ECHAM3 data is to a great extent in agreement with the result based on ECMWF analysis. In the model, reduced interannual variability enlarges the height-latitude range where sign of Kyy is significant.  相似文献   

12.
The effect of sea-ice on various aspects of the Southern Hemisphere (SH) extratropical climate is examined. Two simulations using the LMD GCM are performed: a control run with the observed sea-ice distribution and an anomaly run in which all SH sea-ice is replaced by open ocean. When sea-ice is removed, the mean sea level pressure displays anomalies predominantly negatives near the Antarctic coast. In general, the meridional temperature gradient is reduced over most of the Southern Ocean, the polar jet is weaker and the sea level pressure rises equatorward of the control ice edge. The high frequency filtered standard deviation of both the sea level pressure and the 300-hPa geopotential height decreases over the southern Pacific and southwestern Atlantic oceans, especially to the north of the ice edge (as prescribed in the control). In contrast, over the Indian Ocean the perturbed simulation exhibits less variability equatorward of about 50°S and increased variability to the south. The zonal averages of the zonal and eddy potential and kinetic energies were evaluated. The effect of removing sea-ice is to diminish the available potential energy of the mean zonal flow, the available potential energy of the perturbations, the kinetic energy of the growing disturbances and the kinetic energy of the mean zonal flow over most of the Southern Ocean. The zonally averaged intensity of the subpolar trough and the rate of the baroclinic energy conversions are also weaker.  相似文献   

13.
The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy tracking algorithms are applied to simulated horizontal velocity vectors, and the anticyclonic and cyclonic eddies identified are composited to obtain their three-dimensional structures. The mean lifetime of all long-lived eddies is about 52 days, and their mean diameter is 147 km. Two typical characteristics of mesoscale eddies are revealed and possible dynamic explanations are analyzed. One typical characteristic is that surface eddies are generally separated from subthermocline eddies along the bifurcation latitude(~13°N) of the North Equatorial Current in the western tropical Pacific, which may be associated with different eddy energy sources and vertical eddy energy fluxes in subtropical and tropical gyres. Surface eddies have maximum swirl velocities of 8–9 cm s~(-1) and can extend to about 1500 m depth. Subthermocline eddies occur below 200 m, with their cores at about 400–600 m depth, and their maximum swirl velocities can reach 10 cm s~(-1). The other typical characteristic is that the meridional velocity component of the eddy is much larger than the zonal component. This characteristic might be due to more zonal eddy pairs(two eddies at the same latitude),which is also supported by the zonal wavelength(about 200 km) in the high-frequency meridional velocity component of the horizontal velocity.  相似文献   

14.
本文将夏季气候平均的基本气流分解为正压和斜压分量,使用一个线性斜压模式,研究了不同斜压基本气流对热带西北太平洋地区初始气旋性环流扰动低频发展演变的重要作用.其中,控制试验较好地模拟出初始气旋扰动向西北方向传播、在西北太平洋季风槽附近停滞增强、在东亚地区出现经向波列和在南海到海洋大陆地区形成西北—东南向波列等特征.改变斜压分量的敏感性试验结果表明,正压基流不能为西传的初始扰动供给足够的能量;海陆热力差异引起东亚地区的纬向温度梯度和北风垂直切变,是东亚太平洋型经向波列形成和维持的重要因素;当基本气流中的斜压纬向偏差部分线性增大时,扰动的能量会呈e指数迅速增强,提示在气候变化的背景下,基本气流微小的改变可能带来天气或季节内扰动强度的剧烈响应.  相似文献   

15.
Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba), mid-latitude (Volgograd) and high-latitude (Heiss Island) regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2-3% from its mean value in the stratosphere and increases by 4-6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16-18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth’s atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.  相似文献   

16.
Summary The maintenance of the axisymmetric component of the flow in the atmosphere is investigated by means of a steady-state, quasi-geostrophic formulation of the meteorological equations. It is shown that the meridional variations in the time-averaged axisymmetric variables can be expressed as the sum of three contributions, one being due to the eddy heat transport, another to the eddy momentum transport, and a third to the convective-radiative equilibrium temperature which enters the problem through the specification of a Newtonian form of diabatic heating. The contributions by the large scale eddies are evaluated through the use of observed values for the eddy heat and momentum transports.The contributions from each of the three forcing mechanisms to the temperature and zonal wind fields are invstigated individually and found to be of about equal importance. The sum of the three contributions are also presented for the temperature, the zonal wind, the stream function associated with the mean meridional circulation and the corresponding vertical motion. Although the results fail to reproduce the main observed features of the lower stratosphere, they are found to be in good agreement with observations in the middle latitude troposphere. At any pressure level, for example, the computed mean zonal wind has a jet-like profile and the axis of the jet is found to slope to the south with height, as observed in the atmosphere.Based in part on a thesis submitted by the first author as partial fulfillment of the requirements for the Ph.D. degree at the University of Michigan. — Publication No. 194 from the Department of Meteorology and Oceanography, The University of Michigan.  相似文献   

17.
本文根据季节转换前后副高脊面附近经向温度梯度变号的本质,利用相关分析和合成分析等方法研究了季节转换年际变化与外部影响因子的联系. 结果表明,冬春季青藏高原热状况和ENSO(El Nio/Southern Oscillation,厄尔尼诺/南方涛动)是决定亚洲季风区季节转换年际变化的主要因素. 当冬、春季海温呈现El Nio异常时,Walker环流减弱,于是西太平洋暖池区对流活动受到抑制,而赤道东太平洋对流活动加强则强迫赤道印度洋地区产生绝热下沉运动,使得印度洋地区大气偏暖,结果增大了南北向温度梯度,季节转换往往偏晚. 反之,季节转换偏早. 初春高原上空对流层中高层的气温异常对于判断季节转换迟早有很好的指示意义.  相似文献   

18.
The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.  相似文献   

19.
A three-level, -plane, filtered model is used to simulate the Northern Hemisphere summer monsoon. A time-averaged initial state, devoid of sub-planetary scale waves, is integrated through 30 days on a 5° latitude-longitude grid. Day 25 through day 30 integrations are then repeated on a 2.5° grid. The planetary-scale waves are forced by time-independent, spatially varying diabatic heating. Energy is extracted via internal and surface frictional processes. Orography is excluded to simplify synoptic-scale energy sources.During integration the model energy first increases, but stabilizes near day 10. Subsequent flow patterns closely resemble the hemisphere summer monsoon. Climatological features remain quasi-stationary. At 200 mb high pressure dominates the land area, large-scale troughs are found over the Atlantic and Pacific Oceans, the easterly jet forms south of Asia, and subtropical jets develop in the westerlies. At 800 mb subtropical highs dominate the oceans and the monsoon trough develops over the Asian land mass. The planetary scales at all levels develop a realistic cellular structure from the passage of transient synoptic-scale features, e.g., a baroclinic cyclone track develops near 55°N and westward propagating waves form in the easterlies.Barotropic redistribution of kinetic energy is examined over a low-latitude zonal strip using a Fourier wave-space. In contrast to higher latitudes where the zonal flow and both longer and shorter waves are fed by barotropic energy redistribution from the baroclinically unstable wavelengths, the low-latitude waves have a planetary-scale kinetic energy source. Wave numbers 1 and 2 maintain both the zonal flow and all shorter scales via barotropic transfers. Transient and standing wave processes are examined individually and in combination.Wave energy accumulates at wave numbers 7 and 8 at 200 mb and at wave number 11 in the lower troposphere. The 800-mb waves are thermally indirect and in the mean they give energy to the zonal flow. These characteristics agree with atmospheric observation. The energy source for these waves is the three wave barotropic transfer. The implications of examining barotropic processes in a Fourier wave-space, vice the more common approach of separating the flow into a mean plus a deviation are discussed.  相似文献   

20.
副热带急流强度和赤道QBO对平流层突然增温的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
使用一个全球原始方程半谱模式模拟了副热带急流强度和赤道准两年振荡(QBO)对平流层突然增温(SSW)的影响.结果指出:副热带急流强度对SSW有明显影响,副热带急流越强,SSW发展越快,极区最大增温区的高度越低;赤道QBO不同相位零风线的南北位移对SSW没有明显影响;QBO东风相位时副热带急流更强,而QBO西风相位时副热带急流较弱的观测事实,可能是大的中冬SSW更容易发生在QBO东风相位的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号