首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this work,the vertical deformation,horizontal displacement,and stress fields of arcuate tectonics are theoretically derived from the horizontal tectonic stress; then the characteristics of tectonic movement,seismicity,and focal mechanism of arcuate tectonics of the entire world are explained.It is pointed out that the island arc and other arcuate tectonics are gradually developed under the displacement and stress fields of the arcuate tectonics and that the under-thrusting action of the ocean plate is secondary.The distance formulas between the volcanic arc and the trench are suggested and also that theoretical results are consistent with actual data.  相似文献   

2.
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (~72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57―64 km in the Bayan Har block, and to 40―45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30―60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau.  相似文献   

3.
A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizontal component of ground motion, focusing on the effect of earthquake magnitude, site conditions, pulse duration, and statistical component. The results show that both the peak value ratio and response spectrum ratio are larger than the 2/3 value prescribed in existing seismic codes, and the relationship between the vertical and horizontal ground motions is comparatively intricate. In addition, the effect of the near-fault ground motions on bridge performance is analyzed, considering both the material nonlinear characteristics and the P~? effect.  相似文献   

4.
By using 126 earthquake focal mechanism solutions (M S≥4.7) during the period of 1963~1998, modern tectonic stress field in North China is inverted by means of the step by step convergence. The inversion results indicate that the tectonic stress field in the research region is clearly variational in space and time: (1) The middling principal stress axis σ 2 is basically vertical. The maximum and minimum principal stress axes σ 1 and σ 2 are nearly horizontal, but the azimuths of σ 1 and σ 3 are inconsistent in different districts and periods. (2) Before the Tangshan earthquake in 1976, the three principal stress axes are uniform. The azimuth of maximum principal stress axis σ 1 is 68° (striking in a NEE-SWW direction). (3) After the Tangshan earthquake, the maximum principal stress axis σ 1 and minimum principal stress axis σ 3 have variations in different districts. In the northern area of North China and on the eastern side of the Tancheng-Lujiang fault zone, the maximum principal stress axis σ 1 is also striking in a NEE-SWW direction. Its azimuth is 68°. It is the same as that before the Tangshan earthquake. In the southern area of North China, the maximum principal stress axis σ 1 is striking in a E-W direction and its azimuth is 87°.  相似文献   

5.
This paper approaches the neotectonic stress field based on the data of foeal mechanismsolution,ground stress measurement,tectonic mechanical analysis and geodetic surveying,and finds out that the orientations of the maximum principal comproessive sterss patterns arequite discordant with different methods and the stress patterns are widely differnt betweenthose in the shallow and deep part of the crust in North China.Based on the analysis ofabove-mentioned data,we established a duplex model by considering the diversities of theStress patterns in 3-dimentional spaces,the boundary conditions and the lithospheric media,and made an inverse calculation by using the finite element method.The calculated results fitwell with the reality in North China,i.e.the stress patterns in lower crust which is below thedetachment interface at the deptp of 10 km from ground surface are relatively consistent withnearly horizontal state and NE-ENE trending of the maximum principal compressive stressaxes,whereas the stress patt  相似文献   

6.
Focal depths of the 2008 M_s6.1 Panzhihua earthquake sequence and tectonic stress field in the source area are investigated.Source depths of 24 earthquakes in Panzhihua earthquake sequence with a magnitude M≥3.0 were determined using the seismic depth phase sPL;additionally,the focal depths of 232 earthquakes were measured by fitting the threecomponent waveforms of the P and S waves.The source depth of the main shock is~12 km.The majority of the aftershocks with magnitude M≥3.0 occurred in the brittle upper crust at the depths range of 12-18 km.Further,the Source mechanisms of the 232events around the Panzhihua earthquake source area were determined,and the results show that the earthquakes have predominantly strike-slip mechanisms in the Dianzhong Block,but display complexity of the focal mechanisms outside and near the boundary of the Dianzhong block.The 232 earthquake mechanisms from this study are combined with the solutions from the Global Centroid Moment Tensor (GCMT) catalog to derive 2D stress field.The inversion results show that the Dianzhong block is predominantly under a strike slip faulting regime and the direction of the maximum principal compressionσ1 is northwestsoutheast (NW-SE)-trending.The distribution is coincide with GPS velocity field.However,orientations of principal stress axes as well as the faulting types change outside and near the Dianzhong block.The results show that the tectonic stress field in the study area is predominantly controlled by the southeast (SE)-trending horizontal movement and clockwise rotation of the Dianzhong block as a result of the eastward movement of eastern Tibetan meeting the old and rigid South China block (SCB).The Panzhihua earthquake ruptured at~12 km depth where the tectonic stress regime is under the SE-direction horizontal compression and the NE-direction horizontal extension.  相似文献   

7.
Based on the lateral segmentation and vertical stratification characteristics of the crustal medium in Sichuan-Yunnan region,and the asymmetry of the static dislocations on the coseismic fault plane of the Wenchuan M_S8. 0 earthquake,we built a three-dimensional viscoelastic finite element model of the crust in the Sichuan-Yunnan region. The postseismic impact of the Wenchuan M_S8. 0 earthquake on the Sichuan-Yunnan region was studied.The results show that:① The far-field horizontal deformation caused by the viscoelastic relaxation of the medium in the 10 years after the earthquake is about 0-20 mm within the Sichuan-Yunnan diamond-shaped block,which has a greater influence on north side and smaller on south side.② In the 10 years after the earthquake,the far-field vertical deformation caused by the viscoelastic relaxation effect of the medium is small,and it shows an increase of about 0-4 mm in most areas of the Sichuan-Yunnan diamond-shaped block.③ The Xianshuihe fault and the eastern segment of the East Kunlun fault,which are close to the seismogenic fault,show a high gradient on deformation fields after the earthquake.④ In order to compare with the strong earthquake activity in the SichuanYunnan region after the Wenchuan earthquake, the horizontal stress state and the Coulomb failure stress change of the active block boundary are also calculated. From the spatial distribution of the coseismic and postseismic displacement field,the fault activity characteristics reflected by the stress state and the stress loading of the fault layer reflected by the Coulomb failure stress change,there is a certain correlation with the spatial distribution of strong earthquake activity in this region.  相似文献   

8.
The mechanism of the effects of the upwelling mean on the ENSO event mature phase locking is ex-amined by using a mixed-mode model. The results show that the positive feedback process of the ef-fects of the seasonal variation of the upwelling mean on the Kelvin wave is the mechanism of the locking of the event mature phase to the end of the calendar year. The memory of the Rossby waves for the sign-shifting of the sea surface temperature anomaly from positive to negative 6 months before the cold peak time is the other mechanism of the locking of the La Nia event mature phase to the end of the calendar year. The results here are different from previous ones which suggest that the balance between cold and warm trends of sea surface temperature anomaly is the mechanism involved. The cold trend is caused by the upwelling Kelvin wave from upwelling Rossby wave reflected at the western boundary, excited by the westerly anomaly stress over the central Pacific and amplified by the seasonal variation of the coupled strength in its way propagating westward. The warm trend is caused by the Kelvin wave forced by the western wind stress over the middle and eastern equatorial Pacific. The cause of the differences is due to the opposite phase of the seasonal variation of the upwelling mean to that in the observation and an improper parameterization scheme for the effects of the seasonal varia-tion of the upwelling mean on the ENSO cycle in previous studies.  相似文献   

9.
Comprehensive statistical analysis was performed on the basic features of focal mechanisms of 619 ML≥2.0 earthquakes which occurred in the capital circle area from January 2002 to June 2010. By dividing the capital area into three studying regions based on regional tectonic characteristics, cluster analysis was conducted on the focal mechanisms of all subregions using the longest distance method in the statistical cluster analysis to study the characteristics of tectonic stress tensors. The result shows that dominant P-axis azimuth distribution is NNE-NEE and that of T-axis is NNW--NWW, most of the focal areas are controlled by a horizontal stress field and rupture is mainly of horizontal strike-slip. The maximum principal compression stress orientation is NE75° in the west, NE62° in the middle, and near EW in the east of the capital area. The regional tectonic stress field is characterized by horizontal compression.  相似文献   

10.
The S wave velocity structure of the earth below Eastern Southeast Asia has been investigated by analyzing the seismogram from surface wave to multiple depth waves in the time domain and three Cartesian components simultaneously. The wave passes across the front area of subduction zone between the Philippine plate and the Asian plate. The main data are waveform comparisons, instead of the arrival times. The synthetic seismogram is calculated using the GEMINI method. The synthetic seismogram constructed by PREMAN global earth model deviates greatly from the measured one. To solve this problem, corrections are needed for the β speed structure. Corrections cover the gradient change of βh, which turns from negative to positive in upper mantle layers as in the PREMAN, change of earth crust depth and change of zero order coefficients of β velocity function in all earth mantle layers. So, the fitting is obtained, as well as the arrival time or the waveform of Love and Rayleigh surface waves, the S wave and the repetitive depth waves ScS2 and ScS3. This result reveals that the Southeast Asia, being stretched due to tectonic release, has a mantle in some parts with negative anomaly of S wave velocity and vertical anisotropy in all earth mantle layers.  相似文献   

11.
Introduction The research of present-day tectonic stress and the mechanism of strain plays an important role in tectonic physics, because the stress and strain affect the tectonic action on the plate bounda-ries and inside the plates. This action should be reflected in geometric field of deformation and in some geophysical fields such as gravitational, geothermal and seismic field as well, for instance, some researchers have investigated the tectonic movement and tectonic stress field in the E…  相似文献   

12.
本文提出一种基于重力/GPS联合观测数据计算垂向构造应力的新方法.计算步骤如下:(1)通过重力/GPS联合观测数据计算布格重力异常;(2)依据布格重力异常数据推算莫霍面深度;(3)依据GPS观测数据,通过均衡理论计算均衡面深度;(4)依据莫霍面与均衡面之间剩余物质(壳幔物质密度差)所承受的附加浮力,计算地壳承载的垂向构造应力.本文利用上述构造应力新算法,计算了巴颜喀拉块体东边界及周边地区垂向构造应力分布,发现龙泉山断裂带以东地区垂向构造应力基本为零,龙泉山断裂带与龙门山断裂带之间地区垂向构造应力为正值,巴颜喀拉地块东部垂向构造应力为负值.鲜水河断裂带东南段周边蓄积了-40~-50 MPa的垂向构造应力,且梯度变化剧烈;松潘高原蓄积的垂向构造应力大约为-10~-20 MPa,相对较小.  相似文献   

13.
Statistical properties of reported earthquake precursors show apparent focal mechanism dependence. Intensity of anomaly is described by the ‘anomaly ratio’ as defined by the number of stations/items reporting anomalies before the target earthquake over the number of stations/items in operation around the target earthquake. Variation of the ‘anomaly ratio’ with the magnitude of the target earthquake was studied for dip-slip earthquakes all over China, strike-slip earthquakes in eastern China, and strike-slip earthquakes in western China, respectively. It is observed that for strike-slip earthquakes, the ‘anomaly ratio’ increases linearly with the magnitude of the target earthquake, while earthquakes in eastern China and western China have different slopes. For dip-slip earthquakes, however, the ‘anomaly ratio’ has no statistically significant change with the magnitude of the target earthquake. Limited data imply that the ‘anomaly ratio’ seems proportional to the apparent stress of the target earthquake. The result might be heuristic for the analysis of candidate earthquake precursors. Foundation item: National Natural Science Foundation of China (40274013) and MOST Project (2001BA601B02). Contribution No.04FE1020, Institute of Geophysics, China Earthquake Administration.  相似文献   

14.
本文利用EIGEN-6C4重力数据和ETOPO1地形数据,在考虑物质密度横向不均匀的情况下,在东北亚地区展开地壳均衡研究,并重点分析了长白山的隆升机制.首先,针对穿越长白山和库页岛的两条近乎东西向的剖面(剖面A、B)展开详细研究,以CRUST1.0模型为初始条件,利用布格重力异常数据,基于Airy模型和Airy-Pratt模型分别反演了相应剖面的地壳密度结构,发现两剖面的地壳密度呈现一定程度的横向不均匀特性;接着基于上述密度结构和高程数据,利用Airy均衡理论计算了相应剖面的均衡面深度,并进一步比较莫霍面(Moho)和均衡面的差异,计算了剖面的垂向构造应力分布;然后,把上述方法应用到整个东北亚地区,计算了1°采样的21条东西向剖面的垂向构造应力,插值得到整个东北亚地区的垂向构造应力分布.结果表明,东北亚大部分地区垂向构造应力基本为零,总体处于均衡状态,长白山地区垂向构造应力为-15~-25 MPa,日本列岛垂向构造应力为-40~-50 MPa,太平洋海沟垂向构造应力为15~25 MPa;最后,本文运用自由空气重力异常导纳方法,计算了长白山地区的有效弹性厚度(Te)和加载比,发现长白山地区的Te为10 km,表明该地区的岩石圈较为柔软;加载比结果显示,岩石圈初始加载主要来自莫霍面,占总加载的78%,表明长白山的隆升主要源自地幔物质上涌.  相似文献   

15.
Barkam-Luqu-Gulang deep seismic sounding profile runs from north of Sichuan Province to south of Gansu Province. It is located at the northeastern edge of Tibetan Plateau and crosses eastern A’nyemaqên suture zone. The upper crust structures around eastern A’nyemaqên suture zone and its adjacent area are reconstructed based on the arrival times of refracted Pg and Sg waves by using finite difference method, ray tracing inversion, time-term method and travel-time curve analysis. The results show that the depth variation of basement along profile is very strong as indicated by Pg and Sg waves. The basement rose in Zoigê basin and depressed in eastern A’nyemaqên suture zone, and it gradually rose again northward and then depressed. The results also indicate that eastern A’nyemaqên suture zone behaves as inhomogeneous low velocity structures in the upper crust and is inclined toward the south. Hoh Sai Hu-Maqên fault, Wudu-Diebu fault and Zhouqu-Liangdang fault are characterized by low velocity distributions with various scales. The distinct variation in basement depth occurred near Hoh Sai Hu-Maqên fault and Zhouqu-Liangdang fault, which are main tectonic boundaries of A’nyemaqên suture zone. Wudu-Diebu fault, located at the depth variation zone of the basement, possibly has the same deep tectonic background with Zhouqu-Liangdang fault. The strongly depressed basement characterized by low velocity distribution and lateral inhomogeneity in A’nyemaqên suture zone implies crushed zone features under pinching action. Foundation item: National Natural Science Foundation of China (40334040).  相似文献   

16.
Introduction At present, China Earthquake Administration (CEA), National Nature Science Foundation(NNSF) of China, Geological Survey (USGS), National Science Foundation (NSF) of UnitedStates and Incorporated Research Institutions for Seismology (IRIS) all support Sino-Americatechnical cooperation project— China Digital Seismograph Network (CDSN). Institute of Geo-physics, China Earthquake Administration (IGCEA) and Albuquerque Seismological Laboratory,Geological S…  相似文献   

17.
利用基于消去-恢复原理的最小二乘配置方法,对2009-2013年相对重力/GPS联合观测数据与EGM2008模型数据进行融合,更新了巴颜喀拉块体东缘地区的自由空气与布格重力异常场.基于该布格重力异常数据,以CRUST1.0地壳密度模型为初始条件,使用二维多边形棱柱体正演与非线性最小二乘反演方法,获取了巴颜喀拉块体东缘地壳分层密度结构.基于地壳不可压缩和均衡调整原理提出了计算垂向构造应力新方法,并结合上述地壳分层密度结构和地形数据计算了巴颜喀拉块体东缘垂向构造应力分布.结果表明,龙门山断裂带中南段蓄积了较高的正向构造应力(约40 MPa),马尔康周边地区蓄积了较高的负向构造应力(约—30 MPa).对研究区域1970年以来5级(Ms)以上地震进行统计发现,地震多发生在垂向构造应力梯度带上,垂向构造应力为正的地区易触发浅源地震,为负的地区易触发深源地震.在地壳横向变形强烈的区域,垂向构造应力与地震深度的对应关系减弱.  相似文献   

18.
前人研究给出, 龙门山断裂带中南段地壳均衡异常显著, 具有发生7级以上大地震的深部动力背景。 2016年6月, 我们围绕该均衡异常显著区域开展重力/GNSS加密观测, 提高了该地区布格重力异常和地壳均衡异常场的空间分辨率。 依据上述观测结果与前期同类观测数据, 反演了汶川MW7.9地震周边地区地壳密度构造。 结果显示, 龙门山断裂带是地壳密度变化的高梯度带, 其东侧地壳较薄, 但其西部明显变厚, 上、 中、 下地壳变化趋势均呈现上述特征; 研究区东侧的莫霍面深度为35~40 km, 西侧为60~65 km。 此外, 利用重力/GNSS联合观测数据计算了汶川MW7.9地震震中区周边地区岩石圈承载的垂向构造应力场, 结果表明, 汶川MW7.9地震震中区北部、 宁强、 峨眉山周边地区蓄积了-30 MPa至-40 MPa的负向构造应力, 龙门山断裂带中南段蓄积了约40 MPa的正向构造应力, 区域最大垂向构造应力分布在龙门山断裂带中南段, 临近芦山MW6.6地震。 统计结果表明, 地震多发生在垂向构造应力高梯度带附近, 或垂向构造应力的高值区域。  相似文献   

19.
Following Airy and Pratt principles, five kinds of local-compensation models are analysed and a rapid 3-D gravity formula is utilized to calculate isostatic anomalies for 66 models with different parameters. It is noted that isostatic gravity maps appear nearly identical in their main patterns and features. The optimum compensation model in North China is one of modified Airy models in which the different density distribution in the surface, upper crust and lower crust is taken into account and the standard crustal thickness is about 50km. The position of the complete compensation interface is located in the upper mantle. The North China platform as a whole is under sub-isostatic equilibrium status with an isostatic anomaly of about 18·10−5 m/s2 on an average. The distribution of isostatic gravity anomaly shows an obvious blockwise pattern. Most positive anomaly areas occur over the eastern part, the Jiao-Liao Block, Mt. Yan block and northern margin of the Hebei-Shandong block, whereas a negative area occurs in the Shanxi graben. The comparison of models indicates that the Moho discontinuity is not suitable to be taken as a compensation interface, and the compensation effects in Airy model are better than that in Pratt model, which is consistent with the feature of dominant layered structure and less lateral inhomogeneity in crust. Some results about composite compensation, the basic characteristics of isostatic anomaly and deep stucture will be published later in the second part of this paper. Wang Bowen took part in some work in this paper.  相似文献   

20.
Introduction The northeast margin of Qinghai-Xizang block has become the place with close attentions from geo-specialists at home and abroad for its significant tectonic movement and intensive seismicity. Quite a number of achievements have been obtained from the studies on geological structures and strong earthquake activities (DING, LU, 1989, 1991; GUO, et al, 1992, 2000; GUO, XIANG, 1993; HOU, et al, 1999; Tapponnier, et al, 1990; Gaudemer, et al, 1995). In the Development Program…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号