首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
南北地震带岩石圈S波速度结构面波层析成像   总被引:13,自引:8,他引:5       下载免费PDF全文
本文利用天然地震面波记录和层析成像方法,研究了南北地震带及邻近区域的岩石圈S波速度结构和各向异性特征.结果表明南北地震带的东边界不但是地壳厚度剧变带,也是地壳速度的显著分界.其西侧中下地壳的S波速度显著低于东侧,强震大多发生在低速区内部和边界.青藏高原东缘中下地壳速度显著低于正常大陆地壳,在松潘甘孜地块和川滇地块西部大约25~45 km深度存在壳内低速层;这些低速特征与高原主体的低速区相连,有利于下地壳物质的侧向流动.地壳的各向异性图像与下地壳流动模式相符,即下地壳物质绕喜马拉雅东构造结运动,东向的运动遇到扬子坚硬地壳阻挡而变为向南和向北东的运动.面波层析成像结果支持青藏高原地壳运动的下地壳流动模型.南北地震带的岩石圈厚度与其东侧的扬子和鄂尔多斯地块相似但速度较低.川滇西部地块上地幔顶部(莫霍面至88 km左右)异常低速;松潘甘孜地块上地幔盖层中有低速夹层(约90~130 km深度).岩石圈上地幔的速度分布图像与地壳显著不同,在高原主体与川滇之间存在北北东向高速带,可能会阻挡地幔物质的东向运动.上地幔各向异性较弱且与地壳的分布图像显然不同.因此青藏高原岩石圈地幔的构造运动具有与地壳不同的模式,软弱的下地壳提供了壳幔运动解耦的条件.  相似文献   

2.
利用中美合作在青藏高原布设的11台 PASSCAL 宽频带数字地震仪记录到的瑞利面波资料,测得青藏高原内不同块体的瑞利面波相速度(周期为10——120s),并反演了不同路径的地壳上地幔 S 波速度结构,发现青藏高原 S 波速度结构的横向变化显著.亚东——安多裂谷带的面波频散与相邻的块体差异最大,温泉至日喀则路径的相速度比其它路径的相速度明显偏高.该路径的地壳平均速度为3.79km/s,比其它路径的地壳平均速度3.40——3.50km/s高得多.青藏高原内不同块体的地壳中均有低速层存在,但低速层的厚度和速度不尽相同.位于北部的松潘甘孜块体。其地壳较薄约为65km,Sn 速度为4.48km/s,而且在约120km 深处的上地幔中存在一厚度为60km,速度为4.15km/s 的上地幔低速层.其它路径的上地幔速度相近,均没有明显的上地幔低速层出现.羌塘块体与拉萨块体的瑞利波相速度和 S 波速度结构极为相似,上地幔顶部的速度较松潘甘孜块体略高.在青藏高原广大地区中,地壳的平均速度低,普遍存在地壳低速层;上地幔顶部的横波速度为4.50——4.65km/s,上地幔中或者没有低速层或者低速层埋藏较深.   相似文献   

3.
中国西部及邻区岩石圈S波速度结构面波层析成像   总被引:7,自引:5,他引:2       下载免费PDF全文
黄忠贤  李红谊  胥颐 《地球物理学报》2014,57(12):3994-4004
本文利用瑞利波群速度频散资料和层析成像方法,研究了中国西部及邻近区域(20°N—55°N,65°E—110°E)的岩石圈S波速度结构.结果表明这一地区存在三个以低速地壳/上地幔为特征的构造活动区域:西蒙古高原—贝加尔地区,青藏高原,印支地区.西蒙古高原岩石圈厚度约为80 km,上地幔低速层向下延伸至300 km深度,说明存在源自地幔深部的热流活动.缅甸弧后的上地幔低速层下至200 km深度,显然与印度板块向东俯冲引起俯冲板片上方的热/化学活动有关.青藏高原地壳厚达70 km,边缘地区厚度也在50 km以上并且具有很大的水平变化梯度,与高原平顶陡边的地形特征一致.中下地壳的平均S波速度明显低于正常大陆地壳,在中地壳20~40 km深度范围广泛存在速度逆转的低速层,这一低速层的展布范围与高原的范围相符.这些特征说明青藏高原中下地壳的变形是在印度板块的北向挤压下发生塑性增厚和侧向流动.地幔的速度结构呈现与地壳显著不同的特点.在高原主体和川滇西部地区上地幔顶部存在较大范围的低速,低速区范围随深度迅速减小;100 km以下滇西低速消失,150 km以下基本完全消失.青藏高原上地幔速度结构沿东西方向表现出显著的分段变化.在大约84°E以西的喀喇昆仑—帕米尔—兴都库什地区,印度板块的北向和亚洲板块的南向俯冲造成上地幔显著高速;84°E—94°E之间上地幔顶部速度较低,在大约150~220 km深度范围存在高速板片,有可能是俯冲的印度岩石圈,其前缘到达昆仑—巴颜喀拉之下;在喜马拉雅东构造结以北区域,存在显著的上地幔高速区,可能阻碍上地幔物质的东向运动.川滇西部岩石圈底界深度与扬子克拉通相似,约为180 km,但上地幔顶部速度较低.这些现象表明青藏高原岩石圈地幔的变形/运动方式可能与地壳有本质的区别.  相似文献   

4.
收集辽宁及其周边地区(吉林、河北、山东、内蒙)70个宽频带地震仪2012年连续背景噪声波形数据,基于地震背景噪声层析成像方法,得到研究区面波群速度及相速度图像。利用台站对互相关方法,提取瑞利面波格林函数,采用时频分析法(FTAN)获取2 416条相速度频散曲线,从中筛选1 661条信噪比较高的频散曲线。将研究区以0.25°×0.25°进行网格化,采用Ditmar等提出的层析成像反演方法,得到周期10—40 s的瑞利面波群速度及相速度结构分布图。与群速度结果相比,分辨率更高,研究区大部可达0.5°×0.5°(局部可达0.25°×0.25°)。结果表明,辽宁地区地壳及上地幔面波相速度结构存在显著的横向不均匀性。在周期10—15 s的群速度图中,浅层及中上地壳速度分布与研究区地形地貌及主要地质构造单元具有较好的对应关系,盆地及沉积层低速,山区隆起高速,且在高低速转换带多为地震孕震区;在周期20—30 s相速度结构图中,下地壳至上地幔顶部深度范围内,相速度速度结构主要受地壳厚度及渤海湾内巨厚沉积层的影响,在海城至大连区域内出现的低速异常推测为地下热物质上涌;随着深度的增加,在周期30—40 s的相速度图中,速度分布逐渐受控于莫霍面起伏,明显变化出现在辽东半岛,由高速变为低速。  相似文献   

5.
单新建  冯德益 《内陆地震》1993,7(2):142-150
用网格频散反演技术计算了155条瑞利面波混合频散数据,将中国大陆分为目前最小分格2°×2°,得到了中国西部及邻区深至80km地壳和上地幔顶部的三维剪切波SV速度结构。结果表明:(1)天山褶皱系地壳平均厚度为54km,上地壳平均速度为3.3km/s,下壳平均速度3.93km/s,上地幔盖层平均速度为4.64km/s,都偏大。北天山壳厚比天山薄,壳和上地幔盖层下均有低速层。(2)塔里木盆地中部地壳厚46km,到其边缘的昆仑山、天山地带壳厚增加到52~55km。壳内无低速层,壳平均速度很低,为3.49km/s,地表有9km的沉积层。(3)青藏高原莫霍面呈凹形,平均壳厚为67km,平均壳速度为3.58km/s。东西端存在壳内低速层,埋深为15~35km。(4)南北带为构造复杂的区域,莫霍面深度具有东高西低,南北两端高、中间低的特点,带内普遍存在壳内低速层。南北带从群速度、速度、莫霍面等深线都可看到明显的横向差异。(5)准噶尔盆地地壳厚47km,无壳内低速层,中地壳不明显。该区呈稳定的大陆壳结构。(6)柴达木盆地在正常速度的中壳顶部有一高速夹层,速度为3.72km/s,厚10km,上顶部埋深14km。  相似文献   

6.
长白山火山区壳幔S波速度结构研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用面波层析成像和远震接收函数方法对长白山地区的地壳上地幔速度结构进行了研究。结果表明:长白山火山区附近存在岩石圈减薄、上地幔软流圈增厚以及上地幔S波速度降低等与上地幔高温物质有关的现象,它表明长白山的岩浆系统一直延伸到上地幔软流圈范围。天池火山区地壳内部存在明显的S波低速层,在离天池火山口较近的WQD台附近,低速层顶部埋深约8km,厚度近20km,S波最小速度约2.2km/s。在距离天池火山北部50km的EDO台地壳中没有明显的低速层。火山区S波速度结构总体表现出距离天池越近,地壳的V_P/V_S越大,低速层的厚度和幅度增加的特征,表明天池火山口附近地壳内部存在高温物质或岩浆囊。CBS台站不同方位的接收函数及反演结果表明,地表低速层厚度以及莫霍面深度存在随方位的变化。地表低速层在南部方向明显较厚,莫霍面深度在南部天池火山口方向存在小幅度抬升。CBS台站附近特殊的近地表速度结构可能是该台站记录的火山地震波形主频较低的主要因素。天池火山口附近莫霍面的小幅度抬升意味着存在与火山作用有关的壳幔物质交换通道  相似文献   

7.
华北地区三维地壳上地幔结构   总被引:40,自引:7,他引:33  
本文用均等显示滤波频时分析方法分析了长周期瑞利面波资料,获得了路经中国大陆及邻区的238条混合路径的面波群速度频散,其周期范围为10.5-113s.用改进的分格反演方法从混合路径频散中提取出位于华北地区的12个4°×4°网格单元的纯路径频散并反演其地壳上地幔结构.所得结果表明,华北地区地壳上地幔结构横向变化显著;从东向西地壳逐渐变厚;位于华北东部的分格在地壳中20km深处普遍存在低速层,整个华北地区上地幔低速层埋藏较浅,一般为55-100km之间.各个网格上地幔低速层的速度不尽相同.  相似文献   

8.
冯策  焦明若  沈军 《地震》2018,38(1):84-95
收集辽宁及邻区59个宽频带地震仪记录的自2012年1月1日至12月31日的背景噪声连续波形垂向记录, 以背景噪声的方法获取辽宁及邻区面波群速度图像。 过程采用互相关的方法提取瑞利面波格林函数, 利用CPS330提取了群速度的频散曲线, 共从1655条频散曲线中筛选出了1233条信噪比较高的频散曲线。 将研究区划分为0.5°×0.5°的网格, 应用的层析成像方法得到了周期为8~40 s的瑞利面波群速度结构分布。 结果表明: 辽宁地区地壳及上地幔存在明显的横向不均匀性。 短周期群速度分布与研究区内断裂带及地质构造地貌形态表现出良好的相关性, 其中8~15 s周期内群速度分布特征与盆地坳陷、 山区隆起对应性较好, 呈“两垒高, 一堑低”的群速度分布特点, 基本与地质构造相吻合, 地震多位于高低速过渡带内。 较长周期20~30 s的群速度在渤海湾-辽东湾中存在低速异常, 显示了渤海湾盆地和下辽河盆地具有较厚的沉积层覆盖。 35~40 s与莫霍面的深度有明显关联性,莫霍面埋深大体呈西厚东薄的特点。 38~40 s周期内郯庐断裂带东侧的低速异常可能说明渤海内存在局部的热物质上涌现象。 本文结果较好地反映了研究区内地貌地质构造情况, 与区域内地壳及上地幔结构的相关研究成果相吻合, 为辽宁及邻区的地震活动构造背景及地震孕育机理提供重要参考资料。  相似文献   

9.
青藏高原东缘下地壳流动的地震学证据   总被引:1,自引:0,他引:1  
在2000年完成的穿过川西高原和四川盆地的深地震测深剖面揭示了川西高原的地壳结构具有地壳增厚(主要是下地壳增厚)、地壳平均速度低等特点,显示地壳的缩短与增厚的碰撞变形特征。根据川西高原上设置各爆炸点的记录截面图共同呈现PmP(莫霍界面反射波)弱能量的特点,推断在川西高原的下地壳介质具有强衰减(Qp=100~300)的性质。利用我国西部地区的宽频带地震台站的面波资料反演青藏高原及其邻区的地壳上地幔S波三维速度结构,在周期T=29.2s和T=42.9s的Rayleigh波群速度分布图上,显示了青藏高原东部(包括川西高原)呈现大范围的低速异常。多方面的结果表明,地震学方法为当前流行的下地壳流动模型提供了深部证据。  相似文献   

10.
中国大陆西北造山带及其毗邻盆地的地震层析成像   总被引:41,自引:6,他引:35  
根据新疆、甘肃、青海和吉尔吉斯斯坦地震台网提供的地震数据,利用地震层析成像法重建了中国大陆西北造山带及其毗邻盆地的地壳上地幔三维速度图像.上地壳造山带大都为高速区,盆地和地陷区的低速显然与较厚的松散沉积层有关.地壳中部东、西天山之间存在低速边界,造山带及青藏高原北部的莫霍面深度较大,盆地和坳陷区的莫霍面相对较浅.上地幔软流层在青藏高原、阿尔泰山、祁连山等地较浅,在塔里木盆地和天山一带较深.地幔热物质有可能在板块碰撞中沿构造边界上升到造山带的底部,它们的动力学性质与中国大陆西北造山带的形成演化有着密切的联系。  相似文献   

11.
利用连续地震背景噪声记录和互相关技术获得瑞利面波格林函数,进而反演获得了青藏高原东部和周边地区的地壳三维速度结构.地震数据源于北京大学宽频带流动观测地震台阵,国家数字测震台网数据备分中心提供的部分固定台站的连续记录及INDEPTH IV宽频带流动观测地震台阵.首先对观测数据进行处理和分析取得所有可能台站对的面波经验格林函数和瑞利波相速度频散曲线,反演得到了观测台阵下方周期从6~60s的瑞利波相速度异常分布图像.并且进一步反演获得研究区域三维剪切波速度结构和莫霍面深度分布.短周期(6~14s)相速度异常分布与地表地质构造特征吻合较好,在青藏高原和四川盆地之间存在一个明显的南北向转换带.而本文最重要的结果是周期大于25s的相速度异常分布图像显示,以昆仑断裂带为界,柴达木盆地和祁连山脉地区呈现与青藏高原截然不同的中地壳速度结构,反而与青藏高原东缘地区和川滇菱形块体速度结构相似.反演获得的剪切波速度在27.5~45km深度的切片也明显地揭示:青藏高原的松潘—甘孜地块和羌塘地块呈现均一的低速层;然而,柴达木盆地和祁连山脉地区则呈现较强的横向不均匀性,尤其是柴达木盆地的高速异常和四川盆地的高速异常相对应.这些结果为前人提出的青藏高原东北向台阶式增长模式提供了重要的地震学观测证据.与全球一维平均速度模型(AK135)相比较发现,本文测量和反演获得的研究区域内平均相速度和剪切波速度都比AK135模型慢很多,尤其是青藏高原的中地壳(25~40km)剪切波速度显著低于全球平均速度模型.进一步的层析成像反演证实松潘—甘孜和羌塘地块中地壳(27.5~45km)呈现大范围均一的低速层,为青藏高原可能存在大规模中下地壳"层流"提供地震学观测证据.在祁连山脉的27.5~45km深度观测到的明显低速异常体可能对应于该造山带下地幔岩浆活动导致的底侵作用,表明引起该地区地壳增厚的主要机制可能是来自地幔岩浆的底侵作用.  相似文献   

12.
青藏高原中东部地壳和上地幔顶部P波层析成像   总被引:1,自引:1,他引:0       下载免费PDF全文
为获取青藏高原中东部地壳和上地幔顶部的精细结构,本文基于1万4 484条天然地震的P波(Pg和Pn)到时数据,对青藏高原中东部地壳和上地幔顶部进行P波三维速度结构层析成像,获取了该区域内地壳P波、上地幔顶部Pn波的速度结构和地壳厚度信息。层析成像结果显示,青藏高原中东部地壳P波速度范围为5.2—7.2 km/s,上地幔顶部Pn波速度范围为7.7—8.4 km/s,地壳厚度范围为48.0—68.6 km,地壳和上地幔顶部存在强烈的横向不均匀性,与地质块体分布有较好的对应关系。地壳P波速度结构显示,研究区中、下地壳分布有较大范围的低速区,上地壳与中下地壳P波分布存在明显的差异:羌塘地块和巴颜喀拉地块在上地壳主要表现为高速异常,随着深度增加逐渐表现为低速异常;而柴达木地块在上地壳主要表现为低速异常,下地壳则表现为高速异常;柴达木地块和拉萨地块在上地幔顶部表现为较高的Pn波速度,最高约为8.4 km/s,而在巴颜喀拉地块和羌塘地块东部,Pn波总体上表现为低速,最低约为7.7 km/s。研究区内地壳厚度的总体特征表现为南厚北薄,其中羌塘地块东部和拉萨地块的地壳较厚,而柴达木地块和巴颜喀拉地块东部的地壳相对较薄,羌塘地块西部存在局部的地壳变薄现象,反映了印度板块对欧亚板块北向俯冲作用下的岩石圈变形特征。   相似文献   

13.
1999~2000年从青海玛沁到陕西榆林,横跨青藏高原东北缘和鄂尔多斯布设了一条由47台宽频带数字地震仪组成的长约1000km的流动地震台阵观测剖面.利用记录到的远震体波波形资料和接收函数方法获得了剖面下0~100km深度的地壳和上地幔S波速度结构.结果表明,沿观测剖面地壳结构显示了明显的分块特征; 地壳厚度自东向西由40km增加到64km左右;在海原地震带下方和西秦岭断裂以西到日月山断裂之间的区域Moho间断面结构复杂;在1920年海原震区及其西侧,上地壳存在明显的低速层,在该地区的绝大部分地震分布在该低速层东边界偏向高速区一侧;祁连山东缘Moho面有约4km的深度间断,壳内向西逐渐减薄的低速层内有大量微震发生,沿祁连山的逆冲加走滑的构造运动在深度上已经穿透了Moho面;在玛沁断裂和日月山断裂之间,上地壳存在厚度很大的低速层,同时该区域下地壳也明显加厚.研究结果表明,青藏高原东北缘与鄂尔多斯地块之间的过渡带地壳变形强烈,地壳结构较为破碎,这与该地区地震频发相一致.  相似文献   

14.
青藏高原东部的Pn波层析成像研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用INDEPTH/ASCENT台阵和其它布设在青藏高原的流动宽频带地震仪数据,反演了青藏高原东部和周边区域的上地幔顶层Pn波速度以及台站延迟.研究区域的平均Pn波速度是8.1 km/s,略高于中国大陆的平均Pn波速度.低速区主要分布在羌塘地块的西部和松潘-甘孜地块,高温异常的岩石圈上地幔很可能是导致这一低速区的原因.班公-怒江缝合带东端区域的Pn波速度达到8.35 km/s,这一高速区可能与向北俯冲的印度板块(东端)有关.另一Pn波高速区分布在祁连山和昆仑山之间,主要由柴达木盆地和共和盆地及其周边地区,两个并不完全连续的高速异常区组成,它可能对应于特提斯洋闭合时北部增生的克拉通地体;在后来的欧亚板块与印度板块的碰撞中,这一地体有可能阻挡了青藏高原向北的生长.相对密集的台站提供了高分辨率的速度结构横向分布和地壳厚度变化.台站延迟显示青藏高原北部和东部的地壳存在显著的减薄--松潘-甘孜地块东北缘的地壳厚度仅为约50 km,而羌塘地块东部唐古拉山地壳最厚,达到75 km,这可能是由于印度-欧亚板块碰撞引起的羌塘地块内部变形增厚所致.  相似文献   

15.
本研究使用中国数字地震台网(CDSN)(2009—2016)走时数据开展青藏高原地壳地震波速度三维层析成像研究,获得分辨率达到1°×1°×20 km的青藏高原地壳S波三维速度结构和泊松比分布.结果表明,分布在可可西里和羌塘北部的高钾质和钾质火山岩带,其上地壳到下地壳都存在S波波速扰动负异常和高泊松比.说明第三纪青藏高原隆升过程中,由于大陆碰撞使三叠纪的东昆仑缝合带重新破裂,造成大量壳幔混合熔融物质上涌和火山喷发,进而揭示了青藏高原北部新生代火山岩的存在与青藏高原的形成和隆升密切相关;青藏高原新生代裂谷位于中下地壳S波速度扰动负异常带的两侧,裂谷带之下的中下地壳泊松比减小到0.22以下.裂谷带之下中下地壳的S波速异常分布和泊松比值可以推断青藏高原新生代裂谷深达中地壳底部,这个推论与密度扰动三维成像的相关结论一致.青藏高原S波速度和泊松比在下地壳至壳幔边界随深度产生急剧变化,说明地壳内部发生了大规模的层间拆离和水平剪切;青藏高原东构造结之下泊松比高达0.29~0.33,S波速度扰动为负异常,推断东构造结下方地壳主要由坚硬的蛇纹石化橄榄岩组成;青藏高原中下地壳S波速负异常区范围大面积扩大,地壳底部几乎被S波速低值区全部覆盖.下地壳S波异常分布特点可能反映下地壳管道流的影响.  相似文献   

16.
We obtain the preliminary result of crustal deformation velocity field for the Chinese con-tinent by analyzing GPS data from the Crustal Motion Observation Network of China (CMONOC), particularly the data from the regional networks of CMONOC observed in 1999 and 2001. We de-lineate 9 tectonically active blocks and 2 broadly distributed deformation zones out of a denseGPS velocity field, and derive block motion Euler poles for the blocks and their relative motionrates. Our result reveals that there are 3 categories of deformation patterns in the Chinese conti-nent. The first category, associated with the interior of the Tibetan Plateau and the Tianshan oro-genic belt, shows broadly distributed deformation within the regions. The third category, associatedwith the Tarim Basin and the region east of the north-south seismic belt of China, shows block-likemotion, with deformation accommodated along the block boundaries only. The second category, mainly associated with the borderland of the Tibetan Plateau, such as the Qaidam, Qilian, Xining(in eastern Qinghai), and the Diamond-shaped (in western Sichuan and Yunnan) blocks, has thedeformation pattern between the first and the third, i.e. these regions appear to deform block-like,but with smaller sizes and less strength for the blocks. Based on the analysis of the lithosphericstructures and the deformation patterns of the regions above, we come to the inference that thedeformation modes of the Chinese continental crust are mainly controlled by the crustal structure.The crust of the eastern China and the Tarim Basin is mechanically strong, and its deformationtakes the form of relative motion between rigid blocks. On the other hand, the northward indentation of the Indian plate into the Asia continent has created the uplift of the Tibetan Plateau and the Tianshan Mountains, thickened their crust, and raised the temperature in the crust. The lower crust thus has become ductile, evidenced in low seismic velocity and high electric conductivity observed. The brittle part of the crust, driven by the visco-plastic flow of the lower crust, deforms extensively at all scales. The regions of the second category located at the borderland of the Tibetan Plateau are at the transition zone between the regions of the first and the third categories in terms of the crustal structure. Driven by the lateral boundary forces, their deformation style is also between the two, in the form of block motion and deformation with smaller blocks and less internal strength.  相似文献   

17.
青藏高原东北缘地壳S波速度结构与泊松比及其意义   总被引:26,自引:25,他引:26       下载免费PDF全文
利用甘肃地震台网16个台站记录的远震资料,采用最大熵谱反褶积方法,得到了各个台站的接收函数. 采用接收函数扫描法和线性反演方法对研究区的壳幔结构进行了研究,这两种接收函数方法得出的结果具有很好的一致性. 青藏高原东北缘地壳厚度变化剧烈,祁连块体为50~55 km、柴达木块体和河西走廊为45 km左右(合作台除外),由北向南,Moho界面呈中央下凹的准对称状. 研究区地壳VP/VS介于166~185(σ=0215~0294,均值0254),其均值接近或略低于全球平均值;S波速度结构可见壳幔过渡带具有明显的突跳,结合其他地球物理学证据,推断该区可能不存在岩浆底侵作用和地壳部分熔融现象. 该区地壳VP/VS值与地壳厚度呈反相关关系,推断该区地壳的主要组成成分以中酸性岩石为主,其45~55 km厚的地壳可能主要是通过上地壳的叠置形成的.  相似文献   

18.
We conducted the ambient noise tomography to image the shallow crustal structure of southern Tibet. The 2D maps of phase velocity anomalies at the periods of 10–16 s show that the low velocities are mainly confined along or near some of the rift zones. While the maps at the periods of 18–25 s show that the coherent patterns that the low velocities expand outside of the rift zones. It means that the low velocities are prevailing in the middle crust of southern Tibet. According to the previous study of surface wave tomography with teleseismic data, we find that the low velocities from the lower crust to the lithospheric mantle are also restricted to the same rift zones. Thus, the integrated knowledge of the distribution of the low velocities in southern Tibet provides some new insight on the formation of the north–south trending rift zones. Compiling the multidiscipline evidences, we conclude that the rifting was an integrated process of the entire lithosphere in the early stage (~26–10 Ma), but mainly occurred within the upper crust due to the weakening a decoupling in the low velocity middle crust in the late stage (later than ~8 Ma).  相似文献   

19.
通过对南北地震带北段区域所布设的676个流动地震台站观测资料进行处理,联合反演面波频散与接收函数数据,获得了研究区内地壳厚度、沉积层厚度的分布情况以及地壳上地幔高分辨率S波速度结构成像结果.反演结果显示研究区地壳厚度从青藏高原东北缘向外总体逐渐变薄,秦岭造山带地壳厚度较同属青藏高原东北缘的北祁连块体明显减薄;鄂尔多斯盆地及河套盆地分布有非常厚的沉积层,阿拉善块体部分区域也有一定沉积层分布,沉积层与研究区内盆地位置较为一致;松潘—甘孜块体、北祁连造山带等青藏高原东北缘总体表现为S波低速异常;在中下地壳,松潘—甘孜块体下方的低速体比北祁连造山带下方的低速体S波速度值更小、分布深度更浅,更有可能对应于部分熔融的地壳;鄂尔多斯盆地在中下地壳以及上地幔内有着较大范围的高速异常一直延伸到120 km以下,而河套盆地地幔只在80 km以上部分有着高速异常的分布,此深度可能代表了河套盆地的岩石圈厚度,来自深部地幔的热物质上涌造成了该区域的岩石圈减薄;阿拉善块体在地壳和上地幔都表现出高低速共存的分布特征,暗示阿拉善块体西部岩石圈可能受青藏高原东北缘的挤压作用发生改造.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号