首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
三角网格有限元法具有网格剖分的灵活性,能有效模拟地震波在复杂介质中的传播.但传统有限元法用于地震波场模拟时计算效率较低,消耗较大计算资源.本文采用改进的核矩阵存储(IKMS)策略以提高有限元法的计算效率,该方法不用组合总体刚度矩阵,且相比于常规有限元法节省成倍的内存.对于时间离散,将有限元离散后的地震波运动方程变换至Hamilton体系,在显式二阶辛Runge-Kutta-Nystr9m(RKN)格式的基础之上加入额外空间离散算子构造修正辛差分格式,通过Taylor展开式得到具有四阶时间精度时间格式,且辛系数全为正数.本文从理论上分析了时空改进方法相比传统辛-有限元方法在频散压制、稳定性提升等方面的优势.数值算例进一步证实本方法具有内存消耗少、稳定性强和数值频散弱等优点.  相似文献   

2.
有限差分方法因其操作简单、计算消耗低而成为地震勘探领域中最为常用的数值模拟方法之一,然而用离散的显式差分算子数值逼近地震波动方程中的连续导数容易导致数值频散,并且基于正方形网格离散形式的有限差分方法对不同地质模型的适应性较低.针对一阶变密度声波方程的数值模拟,本文发展了一种适用于矩形网格离散形式的时间高阶空间隐式有限差分格式,可以有效压制时间和空间频散,同时灵活的网格剖分增强了其应用的广泛性.基于本文矩形交错网格时间高阶空间隐式有限差分格式的时空域频散关系和变量替换的思想,首先采用泰勒级数展开方法求解不同方向的非轴上时间差分系数及轴上空间差分系数,使本文差分格式可以获得任意偶数阶时间和空间精度.为了进一步提高本文差分格式在更大波数区域的空间模拟精度,我们采用线性优化方法来求取新的轴上空间差分系数用于一阶变密度声波方程的波场迭代求解中.频散、稳定性分析及数值模拟算例表明:相比于传统十字形空间域隐式有限差分格式,本文矩形交错网格时间高阶空间隐式有限差分格式在精度、稳定性和效率方面均具有优势.  相似文献   

3.
求解弹性波方程的辛RKN格式   总被引:2,自引:2,他引:0       下载免费PDF全文
将弹性波方程变换至Hamilton体系,构造适用于弹性波模拟的高效显式二阶辛Runge-Kutta-Nystrm(RKN)格式,运用根数理论得到此格式的阶条件方程组.通过给定系数的限定条件,得到方程的对称解.为了使时间离散误差达到极小,提出数值频率与真实频率比较,通过Taylor展开,得到关于辛系数的限定方程,求解方程组得到最小频散辛RKN格式.对比分析时间演进方程的稳定性,得到使库朗数达到极大值的限定方程,求解方程组得到最稳定辛RKN格式.发现此两种格式为同一格式.新得到的辛RKN格式不依赖于空间离散方法,为了对比的需要,选取有限差分法进行空间离散.在频散、稳定性分析中,与常见辛格式对比,从理论上分析了本文提出的格式在数值频散压制、稳定性提升等方面的优势,数值实验进一步证实了理论分析的正确性.  相似文献   

4.
结构动力反应分析的三阶显式方法   总被引:14,自引:6,他引:14  
本通过对传统动力反应分析方法的总结,阐明了建立隐式和显式方法的一般思路及数学本质,提出了使用系统位移反向向量三阶导数的隐工和实用显式积分方法-3阶显式方法,分析了该显式方法的精度和稳定性,并对建立更高阶隐式和显式方法以及方法的精度和稳定性作了初步讨论。最后,通过算例对本方法、献[1]方法和经典的常平均加速度法(隐式方法、视为精确解)的精度和稳定性进行了比较分析。结果表明,本方法具有明显的优点。  相似文献   

5.
三维波动方程时空域混合网格有限差分数值模拟方法   总被引:1,自引:0,他引:1  
常规高阶和时空域高阶有限差分方法广泛应用于三维标量波动方程的数值模拟,这两种差分方法仅利用笛卡尔坐标系中的坐标轴网格点构建三维Laplace差分算子,相应的差分离散波动方程本质上仅具有2阶差分精度,模拟精度低.本文将三维笛卡尔坐标系中非坐标轴网格点分为两类:坐标平面内的非坐标轴网格点和坐标平面外的非坐标轴网格点,系统推导出了两类非坐标轴网格点构建三维Laplace差分算子的方法,进而提出了一种利用坐标轴网格点和非坐标轴网格点共同构建三维Laplace差分算子的混合网格有限差分方法,并利用时空域频散关系和泰勒展开建立差分系数方程,推导出了差分系数的通解.相比常规高阶和时空域高阶差分格式的2阶差分精度,时空域混合网格差分离散波动方程理论上能够达到任意偶数阶差分精度,模拟精度显著提高,同时稳定性更强.频散分析表明:相比常规高阶和时空域高阶差分格式,在计算效率基本相同时,时空域混合网格差分格式能更有效地减小数值频散,减弱数值各向异性,模拟精度更高;在模拟精度基本相当时,混合网格差分格式能采用更大的时间采样间隔,计算效率更高.数值模拟实例进一步验证了混合网格差分格式在提高模拟精度和计算效率方面的先进性,也验证了其普遍适用性.  相似文献   

6.
在数值模拟中,隐式有限差分具有较高的精度和稳定性.然而,传统隐式有限差分算法大多由于需要求解大型矩阵方程而存在计算效率偏低的局限性.本文针对一阶速度-应力弹性波方程,构建了一种优化隐式交错网格有限差分格式,然后将改进格式由时间-空间域转换为时间-波数域,利用二范数原理建立目标函数,再利用模拟退火法求取优化系数.通过对均匀模型以及复杂介质模型进行一阶速度-应力弹性波方程数值模拟所得单炮记录、波场快照分析表明:这种优化隐式交错网格差分算法与传统的几种显式和隐式交错网格有限差分算法相比不但降低了计算量,而且能有效的压制网格频散,使弹性波数值模拟的精度得到有效的提高.  相似文献   

7.
Newm ark-更新精细积分法是动力方程求解的隐式的时域逐步积分法,其稳定性条件非常容易满足。与隐式方法相比较,显式积分方法不需要求解耦联的方程组,可以有效地减少内存占用和机时耗费。因此,根据显式积分方法的特点和优点,基于Newm ark-更新精细积分法的基本思想,提出其显式积分格式。对显式积分方法的精度与稳定性进行了初步的分析,指出该显式积分方法具有极好的稳定性,其精度比隐式积分方法的精度稍低。随着时间步长的增加,其精度优于传统的方法。  相似文献   

8.
有阻尼体系动力问题的一种显式差分解法   总被引:15,自引:7,他引:15  
本文以中心差分方法为基础,结合Newmark常平均加速度法的基本假定,推导出了一种求解有限自由度有阻尼体系动力方程的自起步显式差分格式。此格式的稳定性条件与一般中心差分格式的相当,其计算精度不低于二阶精度。  相似文献   

9.
基于李小军等提出的显式积分格式应用于波动有限元模拟时的递推形式,重新定义了波动传递函数;以一维均匀离散体系为模型,对给出的传递函数进行了理论推导和求解,并通过数值试验验证了其正确性;通过对传递函数的分析研究,探讨了这种显式积分格式对离散网格中波动传播规律包括截止频率、频散现象和能量耗散等方面的影响.以期为该显式积分格式在波动问题求解中的应用提供更详细的理论参考.   相似文献   

10.
动力方程求解的显式积分格式及其稳定性与适用性   总被引:12,自引:0,他引:12  
文献(1)给出了一种求解有阻尼体系动力方程的显式积分格式,文中以数值表格的形式给出了格式的稳定性条件,本文对该格式的稳定性问题作了进一步的分析,并给出了其计算稳定性条件的表示式。本文还着重讨论了基于这一显式积分格式的推导过程而派生出的另一形式的积分格式的稳定性,并指出了该派生格式的适用性问题。  相似文献   

11.
本文通过对传统动力反应分析方法的总结,阐明了建立隐式和显式方法的一般思路及数学本质,提出了使用系统位移反应向量三阶导数的实用显式高阶积分方法,分析了该显式方法的精度和稳定性,并对建立更高阶隐式和显式方法以及方法的精度和稳定性作了初步讨论。结果表明,本文方法具有明显的优点。  相似文献   

12.
有限元法是复杂介质地震模拟的有力工具,它能比较客观地反映地震波的传播,比较细致地再现地震图像.但是,为了获得较精确的结果,有限元法模拟地震波的传播需要的网格点数多,具有计算量大和消耗内存多的缺点.针对上述缺点,本文对刚度矩阵采用压缩存储行(CSR)格式,以减少计算量并节省内存;采用集中质量矩阵得到对角的质量矩阵以提高有限元法(显式有限元)的计算效率;时间离散采用保能量的Newmark算法以提高有限元法的计算精度;采用变分形式(弱形式)的PML吸收边界条件对人工截断边界进行处理.通过与高精度的数值方法--谱元法的数值试验的对比表明,上述方法的引入可使有限元法在计算精度和计算效率方面均可取得比较显著的改进.为了获得相当的计算精度,相比于7阶谱元法,显式有限元法需要更精细的网格.然而,显式有限元法的计算速度比前者快近2倍,而内存需求仅为谱元法的1/4~1/6.  相似文献   

13.
基于离散控制理论,结合CR法和RST法提出一种无条件稳定的动力学显式新算法。以算法精度和稳定性为条件,通过离散传递函数推导参数表达式和极点,使得新算法可满足零振幅衰减率和零周期延长率。算法参数αγ作为传递格式选择参数,当αγ分别取1时,新算法对应CR法和RST法的位移速度表达式。对新算法的精度和稳定性理论分析表明:新算法可满足无振幅衰减和周期延长,且对于线性系统和非线性刚度软化系统为无条件稳定,对非线性刚度硬化系统为条件稳定,并给出了非线性刚度硬化系统的稳定性范围。算例分析验证了新算法的精度和稳定性,证明提出的新算法是可靠有效的。  相似文献   

14.
地震波场数值模拟在地球物理勘探和地震学中具有重要的支撑作用.本文将组合型紧致差分格式用于声波和弹性波方程的数值模拟中.根据泰勒级数展开和声波方程,建立了位移场时间四阶离散格式,并将组合型紧致差分格式用于位移场空间导数的求取,然后对该差分格式进行了精度分析、误差分析、频散分析和稳定性分析.理论研究结果表明:①该差分格式为时间四阶、空间六阶精度,与常规七点六阶中心差分和五点六阶紧致差分相比,具有更小的截断误差和更高的模拟精度;②每个波长仅需要5.6个采样点,且满足稳定性条件的库郎数为0.792,可以使用粗网格和较大时间步长进行计算.所以该方法具有占用内存少、计算效率高和低数值频散等优势.最后,本文进行了二维各向同性完全弹性介质的声波和弹性波方程的数值模拟,实验结果表明本文提出的方法具有更高的计算精度,能够大幅度的节约计算量和内存需求,对于三维大尺度模型问题具有更好的适应性.  相似文献   

15.
廉西猛  张睿璇 《地球物理学报》2013,56(10):3507-3513
近年来,随着地震波数值模拟对计算精度和效率的要求越来越高,间断有限元方法开始受到越来越多的关注.本文中,针对具有吸收边界条件的二维地震声波波动方程,作者提出了一种基于局部间断有限元方法的数值模拟算法.该算法在空间上使用局部间断有限元方法进行离散,在时间上采用了显式蛙跳格式.在这种时空离散的组合方式下,每个时间步上,此算法在空间剖分的每个单元上的求解计算是相互独立的,因而具有极高的并行性.通过数值算例,我们将该算法与连续有限元方法进行了比较.结果表明,本算法不仅具有对起伏构造的良好适应性,而且在计算效率和计算精度等方面,都具有优越性.  相似文献   

16.
本基于有限差分交叠格式和解耦有限元方法的基本概念,以应力-速度为变量,提出了求解波动的应力-速度有限元解耦交叠格式,这一格式不仅时空解耦,而且为显式,它适合于线性及非线性波动问题的数值模拟,已有的应力-速度有限元交叠格式(即格子法)为本的特例。通过解析解数值检验表明,本建议的方法具有较高的精度,而格子法计算精度较低。  相似文献   

17.
有限差分方法广泛应用于求解许多科技领域所涉及的偏微分方程,高阶显式有限差分方法通常用来提高求解精度,已经提出的高阶隐式有限差分方法和截断高阶显式有限差分方法可用来进一步提高模拟精度而不增加计算量。本文首先计算了针对常规网格上的一阶导数和二阶导数、交错网格上的一阶导数的有限差分系数,发现高阶隐式有限差分系数中存在一些小的系数。频散分析结果表明:忽略这些小的差分系数能够近似维持有限差分的精度,但是显著减小了计算量。然后,引入镜像对称边界条件来提高隐式有限差分方法的精度和稳定性,采用混合吸收边界条件来减小来自模型边界所不需要的反射。最后,给出了针对均匀和非均匀介质模型的弹性波模拟例子,表明了本文方法的优点。  相似文献   

18.
李小军  廖振鹏 《地震学报》1995,17(3):362-369
推导出了分析二维粘及弹性场地地形对地震动影响的显式有限元-有限差分方法.这一方法中,首先利用人工边界及有限元离散方法,给出问题分析的有限元离散网格计算力学模型,并利用一种类似于差分方法的有限元方法,建立局部网格节点的动力方程,而后利用笔者提出的有阻尼体系动力方程求解的显式差分格式,及推广的多次透射边界公式,给出网格节点运动量计算的时域显式逐步积分公式.利用计算机程序实现这一方法的计算具有所需计算机内存量小及计算时间量小的优势,而且,这一方法适用于任意地形情况,具有较高的计算精度及较好的计算稳定性.   相似文献   

19.
本文发展了基于辛格式离散奇异褶积微分算子(SDSCD)的保结构方法模拟弹性波场,求解弹性波动方程时,引入辛差分格式进行时间离散,采用离散奇异褶积微分算子进行空间离散.相比于传统的伪谱方法,该方法提高了计算精度和稳定性.数值结果表明SDSCD方法可以有效地抑制数值频散,为解决大尺度、长时程地震波场模拟问题提供了合适的数值方法.  相似文献   

20.
在岩石圈动力学数值模拟中,现有的黏弹塑性数值模型通常在每个时间步先使用迎风间断Galerkin方法对偏应力张量进行旋转,然后使用Particle-In-Cell (PIC)方法或场方法求解对流方程,所构成的时间离散格式为显格式或半隐格式.我们将黏弹塑性介质的经典数值模型和非牛顿流体力学领域的黏弹性流体问题计算方法相结合,提出了一种基于有限单元法的求解黏弹塑性介质流动的全隐格式算法.本文通过数值实验将这种全隐格式算法与PIC方法和半隐格式算法进行了详细的对比,实验结果表明全隐格式算法的数值稳定性优于PIC方法,而当Deborah数较高时精度优于半隐格式算法.同时,我们在应力场引入三阶WENO (Weighted Essentially Non-Oscillatory)限制器,可以在保留数值解精度的同时有效消除应力集中引起的数值振荡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号