首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based on the groundwater development process, and regional economic and social developing history, we divided the spring hydrological process of the Liulin Springs Basin into two periods: pre‐1973 and post‐1974. In the first period (i.e. 1957–1973), the spring discharge was affected by climate variation alone, and in the second period (i.e. 1974–2009), the spring discharge charge was influenced by both climate variation and human activities. A piecewise analysis strategy was used to differentiate the contribution of anthropogenic activities from climate variation on karst spring discharge depletion in the second period. Then, the ARIMAX model was applied to spring flow time series of the first period to develop a model for the effects of climate variation only. Using this model, we estimated the spring discharge in the second period solely under the influence of climate variation. Based on the water budget, we subtracted observed spring discharge from the estimated spring discharge and acquired the contribution of human activities on spring discharge depletion for the second period. The results of the analysis indicated that the contribution of climate variation to the spring discharge depletion is?0.20 m3/s from 1970s to 2000s. The contribution of anthropogenic activities to the spring flow depletion was ?2.56 m3/s in 2000s, which was about 13 times more than that of climate variation. Our analysis further indicates that groundwater exploitation only accounts for 29% of the spring flow depletion due to the effects of human activities. The remaining 71% of the depletion is likely to be caused by other human activities, including dam building, dewatering during coal mining, and deforestation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Littlefield Springs discharge about 1.6 m3/s along a 10‐km reach of the Virgin River in northwestern Arizona. Understanding their source is important for salinity control in the Colorado River Basin. Environmental tracers suggest that Littlefield Springs are a mixture of older groundwater from the regional Great Basin carbonate aquifer and modern (post‐1950s) seepage from the Virgin River. While corrected 14C apparent ages range from 1 to 9 ka, large amounts of nucleogenic 4He and low 3He/4He ratios suggest that the carbonate aquifer component is likely even older Pleistocene recharge. Modeled infiltration of precipitation, hydrogeologic cross sections, and hydraulic gradients all indicate recharge to the carbonate aquifer likely occurs in the Clover and Bull Valley Mountains along the northern part of the watershed, rather than in the nearby Virgin Mountains. This high‐altitude recharge is supported by relatively cool noble‐gas recharge temperatures and isotopically depleted δ2H and δ18O. Excess (crustal) SF6 and 4He precluded dating of the modern component of water from Littlefield Springs using SF6 and 3H/3He methods. Assuming a lumped‐parameter model with a binary mixture of two piston‐flow components, Cl?/Br?, Cl?/F?, δ2H, and CFCs indicate the mixture is about 60% Virgin River water and 40% groundwater from the carbonate aquifer, with an approximately 30‐year groundwater travel time for Virgin River seepage to re‐emerge at Littlefield Springs. This suggests that removal of high‐salinity sources upstream of the Virgin River Gorge would reduce the salinity of water discharging from Littlefield Springs into the Virgin River within a few decades.  相似文献   

3.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

5.
The existence of time‐dependent variance or conditional variance, commonly called heteroscedasticity, in hydrologic time series has not been thoroughly investigated. This paper deals with modelling the heteroscedasticity in the residuals of the seasonal autoregressive integrated moving average (SARIMA) model using a generalized autoregressive conditional heteroscedasticity (GARCH) model. The model is applied to two monthly rainfall time series from humid and arid regions. The effect of Box–Cox transformation and seasonal differencing on the remaining seasonal heteroscedasticity in the residuals of the SARIMA model is also investigated. It is shown that the seasonal heteroscedasticity in the residuals of the SARIMA model can be removed using Box–Cox transformation along with seasonal differencing for the humid region rainfall. On the other hand, transformation and seasonal differencing could not remove heteroscedasticity from the residuals of the SARIMA model fitted to rainfall data in the arid region. Therefore, the GARCH modelling approach is necessary to capture the heteroscedasticity remaining in the residuals of a SARIMA model. However, the evaluation criteria do not necessarily show that the GARCH model improves the performance of the SARIMA model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Though the S. Susanna spring system is one of the biggest water sources in the central Apennines, its hydrogeological dynamics have been scarcely investigated. This study tried to clarify some of the factors controlling the recharge/discharge processes of this spring by modelling the available climate series, water balance equations and new isotopic and quantitative data, using statistical and raster overlay functions embedded in a Geographic Information System (GIS). Oxygen and hydrogen isotopic data were recorded monthly over a 2‐year period at the spring itself and in eight rain gauges in Reatini Mountains. The effective infiltration rate was calculated using the Kennessey coefficients and the Turc equation. Finally, the recharge area was identified with the help of an expert evaluation procedure. Local δ18O and δD versus altitude regression curves were used to validate the digital recharge model by comparing their expected values with the values actually measured. Recharge process was framed within the perspective of the ongoing local climate trends. The current discharge rate of 4·1 m3·s?1 is significantly lower than the average value of 5·5 m3·s?1 measured up to the 1980s, confirming the fall in the recharge/discharge rate. The hydrogeological system shows a delayed response, due to an average groundwater residence time in the aquifer, which is estimated to be about 15/20 years on the basis of the offset between calculated and observed isotope data at the main spring. For this reason the system is presently not equilibrated and is gradually changing towards a final equilibrium discharge estimated in about 3·4 m3·s?1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Niangziguan Spring complex is the largest karst spring in North China. We investigate the karst hydrological processes by using Morlet wavelet transform analysis and cross wavelet analysis based on monthly precipitation from 1958 to 2010 and spring discharge from 1958 to 2009. From Morlet wavelet transform coefficients of precipitation and the spring discharge in Niangziguan Springs Basin, we find that the precipitation and discharge are characterized by the multi‐scale features in the time domain, and the energy distribution of the signal is highly irregular across scales. Although precipitation eventually becomes spring discharge by infiltrating and propagating through karst formations, the signals are attenuated. The results also show that the precipitation of Niangziguan Springs Basin has the main periodic components of 1‐, 5‐, 12‐, and 17‐year periods with alternating wet–drought cycle. Similarly, the spring discharge of Niangziguan Springs has the main components of 17‐year periods, but the 1‐, 5‐, and 12‐year periodicity of precipitation are not reflected in spring discharge, which is filtered by the aquifers. The results of cross wavelet analysis reveal that the precipitation and spring discharge share the common periodicity of 17 years. This means that those signals with high energy and long timescales can penetrate through the aquifer and be reflected in spring discharge, whereas other signals are filtered and modified. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
ABSTRACT

To acquire better understanding of spring discharge under extreme climate change and extensive groundwater pumping, this study proposed an extreme value statistical decomposition model, in which the spring discharge was decomposed into three items: a long-term trend; periodic variation; and random fluctuation. The long-term trend was fitted by an exponential function, and the periodic variation was fitted by an exponential function whose index was the sum of two sine functions. A general extreme value (GEV) model was used to obtain the return level of extreme random fluctuation. Parameters of the non-linear long-term trend and periodic variation were estimated by the Levenberg-Marquardt algorithm, and the GEV model was estimated by the maximum likelihood method. The extreme value statistical decomposition model was applied to Niangziguan Springs, China to forecast spring discharge. We showed that the modelled spring discharge fitted the observed data very well. Niangziguan Springs discharge is likely to continue declining with fluctuation, and the risk of cessation by August 2046 is 1%. The extreme value decomposition model is a robust method for analysing the nonstationary karst spring discharge under conditions of extensive groundwater development/pumping, and extreme climate changes.
Editor D. Koutsoyiannis; Associate editor J. Ward  相似文献   

9.
This work presents results from a nearly two-year monitoring of the hydrologic dynamics of the largest submarine spring system in Florida, Spring Creek Springs. During the summer of 2007 this spring system was observed to have significantly reduced flow due to persistent drought conditions. Our examination of the springs revealed that the salinity of the springs' waters had increased significantly, from 4 in 2004 to 33 in July 2007 with anomalous high radon (222Rn, t1/2=3.8 days) in surface water concentrations indicating substantial saltwater intrusion into the local aquifer. During our investigation from August 2007 to May 2009 we deployed on an almost monthly basis a continuous radon-in-water measurement system and monitored the salinity fluctuations in the discharge area. To evaluate the springs' freshwater flux we developed three different models: two of them are based on water velocity measurements and either salinity or 222Rn in the associated surface waters as groundwater tracers. The third approach used only salinity changes within the spring area. The three models showed good agreement and the results confirmed that the hydrologic regime of the system is strongly correlated to local precipitation and water table fluctuations with higher discharges after major rain events and very low, even reverse flow during prolong droughts. High flow spring conditions were observed twice during our study, in the early spring and mid-late summer of 2008. However the freshwater spring flux during our observation period never reached that reported from a 1970s value of 4.9×106 m3/day. The maximum spring flow was estimated at about 3.0×106 m3/day after heavy precipitation in February-March 2008. As a result of this storm (total of 173 mm) the salinity in the spring area dropped from about 27 to 2 in only two days. The radon-in-water concentrations dramatically increased in parallel, from about 330 Bq/m3 to about 6600 Bq/m3. Such a rapid response suggests a direct connection between the deep and the surficial aquifers.  相似文献   

10.
The effects of climate change and population growth in recent decades are leading us to consider their combined and potentially extreme consequences, particularly regarding hydrological processes, which can be modeled using a generalized extreme value (GEV) distribution. Most of the GEV models were based on a stationary assumption for hydrological processes, in contrast to the nonstationary reality due to climate change and human activities. In this paper, we present the nonstationary generalized extreme value (NSGEV) distribution and use it to investigate the risk of Niangziguan Springs discharge decreasing to zero. Rather than assuming the location, scale, and shape parameters to be constant as one might do for a stationary GEV distribution analysis, the NSGEV approach can reflect the dynamic processes by defining the GEV parameters as functions of time. Because most of the GEV model is designed to evaluate maxima (e.g. flooding, represented by positive numbers), and spring discharge cessation is a ?minima’, we deduced an NSGEV model for minima by applying opposite numbers, i.e. negative instead of positive numbers. The results of the model application to Niangziguan Springs showed that the probability of zero discharge at Niangziguan Springs will be 1/80 in 2025, and 1/10 in 2030. After 2025, the rate of decrease in spring discharge will accelerate, and the probability that Niangziguan Springs will cease flowing will dramatically increase. The NSGEV model is a robust method for analysing karst spring discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Submarine groundwater discharges (SGD) were investigated in a marine watershed in south‐eastern Korea using water budget analysis and a 222Rn mass balance model. Multi‐layered TOPMODEL added hydrological assumption was used to estimate groundwater components in the water budget analysis. Field observations of soil moisture, rainfall, runoff and groundwater fluctuations were used for calibration and validation of the hydrologic model. Based on observed hydrological data and terrain analyses, parameters for the hydrologic model were delineated and used to describe several hydrologic responses in the watershed. SGD estimations by 222Rn mass balance method were also performed at Il‐Gwang bay in July, 2010, and May, June, July and Nov. 2011. The estimated groundwater through hydrologic modeling and water balance analysis was 1.3x106 m3/year, which rapidly increased during typhoon season due to heavy rainfall and permeable geologic structure. The estimated groundwater was approximately 3.7–27.1% of SGD as evaluated by 222Rn mass balance method ranges 3.44 and 17.45 m3m?2year?1. Even though SGD is predominantly influenced by tide fluctuation, the head gradient (difference) from hydrologic processes associated with heavy rainfalls can also have extra significant influences. Comprehensive understanding of SGD evaluation can be improved through a simultaneous application of both these approaches. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Conservative solute injections were conducted in three first-order montane streams of different geological composition to assess the influence of parent lithology and alluvial characteristics on the hydrological retention of nutrients. Three study sites were established: (1) Aspen Creek, in a sandstone–siltstone catchment with a fine-grained alluvium of low hydraulic conductivity (1·3×10−4 cm/s), (2) Rio Calaveras, which flows through volcanic tuff with alluvium of intermediate grain size and hydraulic conductivity (1·2×10−3 cm/s), and (3) Gallina Creek, located in a granite/gneiss catchment of coarse, poorly sorted alluvium with high hydraulic conductivity (4·1×10−3 cm/s). All sites were instrumented with networks of shallow groundwater wells to monitor interstitial solute transport. The rate and extent of groundwater–surface water exchange, determined by the solute response in wells, increased with increasing hydraulic conductivity. The direction of surface water–groundwater interaction within a stream was related to local variation in vertical and horizontal hydraulic gradients. Experimental tracer responses in the surface stream were simulated with a one-dimensional solute transport model with inflow and storage components (OTIS). Model-derived measures of hydrological retention showed a corresponding increase with increasing hydraulic conductivity. To assess the temporal variability of hydrological retention, solute injection experiments were conducted in Gallina Creek under four seasonal flow regimes during which surface discharge ranged from baseflow (0·75 l/s in October) to high (75 l/s during spring snowmelt). Model-derived hydrological retention decreased with increasing discharge. The results of our intersite comparison suggest that hydrological retention is strongly influenced by the geologic setting and alluvial characteristics of the stream catchment. Temporal variation in hydrological retention at Gallina Creek is related to seasonal changes in discharge, highlighting the need for temporal resolution in studies of the dynamics of surface water–groundwater interactions in stream ecosystems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
The proposed harvesting of previously undeveloped forests in north coastal British Columbia requires an understanding of hydrological responses. Hydrometric and isotopic techniques were used to examine the hydrological linkages between meteoric inputs to the surface‐groundwater system and runoff response patterns of a forest‐peatland complex. Quickflow accounted for 72–91% of peak storm discharge. The runoff ratio was lowest for open peatland areas with thick organic horizons (0·02–0·05) due to low topographic gradients and many surface depressions capable of retaining surface water. Runoff ratio increased comparatively for ephemeral surface seep flows (0·06–0·40) and was greatest in steeply sloping forest communities with more permeable soils (0·33–0·69). The dominant mechanism for runoff generation was saturated shallow subsurface flow. Groundwater fluxes from the organic horizon of seeps (1·70–1·72 m3 day?1 m?1) were an important component of quickflow. The homogeneous δ2H? δ18O composition of groundwater indicated attenuation of the seasonal rainfall signal by mixing during recharge. The positive correlation (r2 = 0·64 and 0·38, α = 0·05) between slope index and δ18O values in groundwater suggests that the spatial pattern in the δ18O composition along the forest‐peatland complex is influenced by topography and provides evidence that topographic indices may be used to predict groundwater residence time. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A two‐dimensional variable‐density groundwater flow and transport model was developed to provide a conceptual understanding of past and future conditions of nitrate (NO3) transport and estimate groundwater nitrate flux to the Gulf of Mexico. Simulation results show that contaminant discharge to the coast decreases as the extent of saltwater intrusion increases. Other natural and/or artificial surface waters such as navigation channels may serve as major sinks for contaminant loading and act to alter expected transport pathways discharging contaminants to other areas. Concentrations of NO3 in the saturated zone were estimated to range between 30 and 160 mg?L?1 as NO3. Relatively high hydraulic vertical gradients and mixing likely play a significant role in the transport processes, enhancing dilution and contaminant migration to depth. Residence times of NO3 in the deeper aquifers vary from 100 (locally) to about 300 years through the investigated aquifer system. NO3 mass fluxes from the shallow aquifers (0 to 5.7 × 104 mg?m?2?day?1) were primarily directed towards the navigation channel, which intersects and captures a portion of the shallow groundwater flow/discharge. Direct NO3 discharge to the sea (i.e. Gulf of Mexico) from the shallow aquifer was very low (0 to 9.0 × 101 mg · m?2?day?1) compared with discharge from the deeper aquifer system (0 to 8.2 × 103 mg?m?2?day?1). Both model‐calibrated and radiocarbon tracer‐determined contaminant flux estimates reveal similar discharge trends, validating the use of the model for density‐dependent flow conditions. The modelling approach shows promise to evaluate contaminant and nutrient loading for similar coastal regions worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The mid‐ to high‐boreal forest in Canada occupies the discontinuous permafrost zone, and is often underlain by glaciolacustrine sediments mantled by a highly porous organic mat. The result is a poorly drained landscape dominated by wetlands. Frost‐table dynamics and surface storage conditions help to control runoff contributions from various landscape elements, hydrological linkages between these elements, and basin streamflow during spring snowmelt. Runoff components and pathways in a forested peatland basin were assessed during two spring snowmelts with contrasting input and basin conditions. Runoff from relatively intense melt (up to 16 mm day?1) on slopes with limited soil thawing combined with large pre‐melt storage in surface depressions to produce high flows composed primarily of meltwater (78% of the 0·29 m3 s?1 peak discharge) routed over wetland surfaces and through permeable upper peat layers. Melt intensity was less in the subsequent year (maximum of 10 mm day?1) and active layer development was relatively greater (0·2 m deeper at the end of spring melt), resulting in less slope runoff. Coupling of reduced slope contributions with lower storage levels in basin wetlands led to relatively subdued streamflows dominated by older water (73% of the 0·09 m3 s?1 peak discharge) routed through less‐permeable deeper peat layers and mineral soil. Interannual differences in runoff conditions provide important insight for the development of distributed hydrological models for boreal forest basins and into potential influences on biogeochemical cycling in this landscape under a warming climate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Glacial retreat and the thawing of permafrost due to climate warming have altered the hydrological cycle in cryospheric‐dominated watersheds. In this study, we analysed the impacts of climate change on the water budget for the upstream of the Shule River Basin on the northeast Tibetan Plateau. The results showed that temperature and precipitation increased significantly during 1957–2010 in the study area. The hydrological cycle in the study area has intensified and accelerated under recent climate change. The average increasing rate of discharge in the upstream of the Shule River Basin was 7.9 × 106 m3/year during 1957–2010. As the mean annual glacier mass balance lost ?62.4 mm/year, the impact of glacier discharge on river flow has increased, especially after the 2000s. The contribution of glacier melt to discharge was approximately 187.99 × 108 m3 or 33.4% of the total discharge over the study period. The results suggested that the impact of warming overcome the effect of precipitation increase on run‐off increase during the study period. The evapotranspiration (ET) increased during 1957–2010 with a rate of 13.4 mm/10 years. On the basis of water balance and the Gravity Recovery and Climate Experiment and the Global Land Data Assimilation System data, the total water storage change showed a decreasing trend, whereas groundwater increased dramatically after 2006. As permafrost has degraded under climate warming, surface water can infiltrate deep into the ground, thus changing both the watershed storage and the mechanisms of discharge generation. Both the change in terrestrial water storage and changes in groundwater have had a strong control on surface discharge in the upstream of the Shule River Basin. Future trends in run‐off are forecasted based on climate scenarios. It is suggested that the impact of warming will overcome the effect of precipitation increase on run‐off in the study area. Further studies such as this will improve understanding of water balance in cold high‐elevation regions.  相似文献   

17.
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution and errors. When using these rainfall datasets as input for hydrological models, their errors and uncertainties propagate through the hydrological system. The aim of this study is to investigate the effect of differences between rainfall measurement techniques on groundwater and discharge simulations in a lowland catchment, the 6.5‐km2 Hupsel Brook experimental catchment. We used five distinct rainfall data sources: two automatic raingauges (one in the catchment and another one 30 km away), operational (real‐time and unadjusted) and gauge‐adjusted ground‐based C‐band weather radar datasets and finally a novel source of rainfall information for hydrological purposes, namely, microwave link data from a cellular telecommunication network. We used these data as input for the, a recently developed rainfall‐runoff model for lowland catchments, and intercompared the five simulated discharges time series and groundwater time series for a heavy rainfall event and a full year. Three types of rainfall errors were found to play an important role in the hydrological simulations, namely: (1) Biases, found in the unadjusted radar dataset, are amplified when propagated through the hydrological system; (2) Timing errors, found in the nearest automatic raingauge outside the catchment, are attenuated when propagated through the hydrological system; (3) Seasonally varying errors, found in the microwave link data, affect the dynamics of the simulated catchment water balance. We conclude that the hydrological potential of novel rainfall observation techniques should be assessed over a long period, preferably a full year or longer, rather than on an event basis, as is often done. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.  相似文献   

18.
Abstract

The isotopic compositions (18O and D) of groundwater, springs, rivers and lake waters are used to account for the hydrological processes in the area of the closed maar Lake Masoko in Tanzania. Springs and groundwater from the northern, western and southern parts of the lake basin display relatively stable compositions, close to those of the mean precipitation, evidencing their fast infiltration rate. Springs located in the eastern part of the basin have enriched compositions, which are on the mixing line between the ?"non evaporated? water and the evaporated lake water. This underlines the hydraulic continuity between the lake and the eastern springs and supports a previous proposition of grounwater outflow from Lake Masoko. The mixing parts of lake water calculated at each spring are constant through time, evidencing the inertia of the system. Furthermore, the mixing part of the lake water decreases linearly with the distance from the lake, suggesting an homogeneous and continuous aquifer. These observations point to a west to east groundwater flow, in agreement with the altitude of different potentials.  相似文献   

19.
Uncertainty is inherent in modelling studies. However, the quantification of uncertainties associated with a model is a challenging task, and hence, such studies are somewhat limited. As distributed or semi‐distributed hydrological models are being increasingly used these days to simulate hydrological processes, it is vital that these models should be equipped with robust calibration and uncertainty analysis techniques. The goal of the present study was to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for simulating streamflow in a river basin of Eastern India, and to evaluate the performance of salient optimization techniques in quantifying uncertainties. The SWAT model for the study basin was developed and calibrated using Parameter Solution (ParaSol), Sequential Uncertainty Fitting Algorithm (SUFI‐2) and Generalized Likelihood Uncertainty Estimation (GLUE) optimization techniques. The daily observed streamflow data from 1998 to 2003 were used for model calibration, and those for 2004–2005 were used for model validation. Modelling results indicated that all the three techniques invariably yield better results for the monthly time step than for the daily time step during both calibration and validation. The model performances for the daily streamflow simulation using ParaSol and SUFI‐2 during calibration are reasonably good with a Nash–Sutcliffe efficiency and mean absolute error (MAE) of 0.88 and 9.70 m3/s for ParaSol, and 0.86 and 10.07 m3/s for SUFI‐2, respectively. The simulation results of GLUE revealed that the model simulates daily streamflow during calibration with the highest accuracy in the case of GLUE (R2 = 0.88, MAE = 9.56 m3/s and root mean square error = 19.70 m3/s). The results of uncertainty analyses by SUFI‐2 and GLUE were compared in terms of parameter uncertainty. It was found that SUFI‐2 is capable of estimating uncertainties in complex hydrological models like SWAT, but it warrants sound knowledge of the parameters and their effects on the model output. On the other hand, GLUE predicts more reliable uncertainty ranges (R‐factor = 0.52 for daily calibration and 0.48 for validation) compared to SUFI‐2 (R‐factor = 0.59 for daily calibration and 0.55 for validation), though it is computationally demanding. Although both SUFI‐2 and GLUE appear to be promising techniques for the uncertainty analysis of modelling results, more and more studies in this direction are required under varying agro‐climatic conditions for assessing their generic capability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Groundwater movements in volcanic mountains and their effects on streamflow discharge and representative elementary area (REA) have remained largely unclear. We surveyed the discharge and chemical composition of spring and stream water in two catchments: the Hontani river (NR) catchment (6.6 km2) and the Hosotani river (SR) catchment (4.0 km2) at the southern part of Daisen volcano, Japan. Daisen volcano is a young volcano (17 × 103 years) at an early stage of erosion. Our study indicated that deep groundwater that moved through thick lava and pyroclastic flows and that could not be explained by shallow movements controlled by surface topography contributed dominantly to streamflow at larger catchment areas. At the NR catchment, the deep groundwater contribution clearly increased at a catchment boundary defined by an area of 3.0 km2 and an elevation of 800 m. At the SR catchment, the contribution deep groundwater to the stream also increased suddenly at a boundary threshold of 2.0 and 700 m. Beyond these thresholds, the contributions of deep bedrock groundwater remained constant, indicating that the REA is between 2 and 3 km2 at the observed area. These results indicate that the hydrological conditions of base flow were controlled mainly by the deep bedrock groundwater that moved through thick lava and pyroclastic flows in the undissected volcanic body of the upper part of the catchment. Our study demonstrates that deep and long groundwater movements via a deep bedrock layer including thick deposits of volcanic materials at the two catchments on Daisen volcano strongly determined streamflow discharge instead of the mixing of small‐scale hydrological conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号