首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
本文对极区通量观测系统作了介绍,在国际极地年(IPY)全球协同观测中,极区通量观测系统在南极中山站进行了连续14个月的观测。结果表明,中山站年净辐射通量为12.9 W/m2。感热通量夏半年(10~2月)为正值,冬半年(3~9月)为负值,年平均1.9 W/m2。潜热通量全年都为正值,年平均11.2 W/m2。总体而言,地表通过净辐射获得热能,又通过感热和潜热方式向大气输送。观测得到的CO2通量全为负值,年平均为-0.031 mg/m2,表明南极中山站是CO2汇。  相似文献   

2.
用2006年夏~2007年秋在北部湾获得的船测气象资料,由块体公式计算了海-气通量.结果表明:北部湾春、夏季节获得热通量,而秋、冬季节失去热通量.春季通过湍流交换造成的热通量对海面热平衡的贡献最小,其次是夏季、冬季和秋季.在年平均尺度上感热通量和潜热通量分别占净辐射通量的7.4%和77.4%,15.2%的净辐射热量通过海洋过程消耗掉.感热通量随海-气温差的加大而增大,而与风速之间呈现复杂的非线性关系.海-气温差增加1 ℃,感热通量增加6.7~12.7 W/m2;较大的感热通量(>30 W/m2)容易出现在5~10 m/s风速条件下.潜热通量与风速和相对湿度呈明显的相关关系:风速增加1 m/s,潜热通量增加约18 W/m2,而相对湿度下降1%会导致6 W/m2潜热通量的增加.  相似文献   

3.
第七次南极考察中山站越冬海洋气象考察报告   总被引:1,自引:1,他引:1  
胡胜利 《海洋预报》1993,10(2):51-58
1991年中山站越冬海洋气象考察,主要是对南极中山站气温、气压、云量、风向风速,大气湿度和日照时间,进行日常地面气象观测,取得每日四次现场观测资料,对各种气象要素进行分析统计,并与前二年气象资料进行了对比,得出了1991年中山站地区,风暴多,风速大,气温比前年高的气象特点。在越冬期间还对中山站海冰、湖冰厚度进行测量,掌握沿岸海冰各月分布变化情况。1991年中山站最大风速达46.2m/s,这是中山站建站以来所观测到的最大风速。冬季最低气温为-28.6℃也是建站以来最高一年。  相似文献   

4.
南极中山站夏季下降风数值模拟个例研究   总被引:3,自引:2,他引:1  
南极内陆地面辐射冷却产生的近表层冷空气,沿高原斜坡向下流动而形成下降风,其分布形态决定了南极大陆近表层风场的主要特征。我国南极中山站全年均受下降风的强烈影响。夏季晴天时,中山站的下降风一般在傍晚开始出现,风速在午夜达到极值,在次日中午之前逐渐减弱,风速有显著的日循环特征。本文选取南极中山站2010年1月的夏季下降风个例,使用常规地面气象观测资料和Polar WRF极地大气数值模式进行了分析研究。结果表明:中山站夏季夜间晴天出现偏东向的下降风时,近地面风速变化趋势与地面气温呈负相关,相关系数为-0.91。数值模拟发现,中山站下降风在距地面高度约100~150 m之间时风速最大,约为15~21 m/s。在下降风发生时,近地层大气存在逆温现象。下降风较强时,近地层逆温也较强,逆温层厚度约为200~300 m,逆温强度约为4~6℃。在地面摩擦的作用下,中山站近地面下降风风向为东南,随着高度的增加,风向逆时针偏转,最终趋于与地形等高线平行。没有太阳直接辐射时,南极大陆地区存在持续的逆温层,逆温层的出现加强了下降风气流,随着逆温的增强,大风区逐渐西移,且面积不断增加。在夏季太阳辐射造成的逆温消失的短暂时间内,逆温时产生的下降风尚不能完全消失,由此形成了较稳定的风向空间分布特征。  相似文献   

5.
南黄海海气热通量观测及其与OAflux数据集比较研究   总被引:1,自引:0,他引:1       下载免费PDF全文
2007年在南黄海进行了3个航次的热通量观测,包括长、短波辐射,近海表空气温度、湿度,风速,海表皮温等观测数据。依据计算的冬季、春季、秋季三个航次的海气热通量分析了热通量不同季节特征,南黄海海域冬季、春季和秋季平均潜热通量分别为80.7W/m2,5.6W/m2和142.1W/m2,感热通量分别为32.0W/m2,-12.5W/m2和18.9W/m2(海洋向大气传递为正)。将国际较为通用的OAflux数据集与3个季节观测数据做了逐点的比对,作为对OAflux数据集在南黄海海域的评估,结果显示:OAflux数据集热通量结果与观测数据在2006—2007年冬季最为接近,感热和潜热通量均方差是15.3W/m2和21.4W/m2。春季的潜热通量存在明显偏差,均方差为28.4W/m2。秋季的感热和潜热通量均存在显著偏差,均方差分别为20.5W/m2和57.5W/m2。导致春季偏差的主要原因是OAflux数据集和现场观测的近海表空气湿度差异,而秋季偏差则应主要归因于海表温度的偏差。  相似文献   

6.
本文用中美海气联合考察3个航次的常规观测资料,分析了西太平洋赤道附近洋面上的边界层特性,平均情况下,ΔT(=T_(10)-T_s)小于-2℃,Δe(=e_(10)-e_s)近于-10hPa,近海面层的温度层结基本上呈现为不稳定层结.用层结订正后的整体输送系数方法,计算了动量通量,感热和潜热通量.在西太平洋10°N—10°S海面上,波纹比β小于0.1,潜热通量远大于感热通量,感热和潜热通量主要是从海面向大气输送.  相似文献   

7.
海气热通量算法的改进及应用   总被引:1,自引:0,他引:1  
COARE模型是国际上常用的计算海气热通量的算法,其风速适用范围可达20m/s,但未包含飞沫等高风速下的影响因子,将其直接扩展到20m/s以上风速的海况存在不合理性。本文提出了适合各种风速条件下的包含飞沫影响的海面动力粗糙度长度参数化方案,并利用该方案改进了COARE 3.0模型。利用南海浮标的观测数据,根据改进的COARE 3.0模型计算了海气热通量,分析了飞沫对海气热通量的影响。结果表明,在0~20m/s风速范围内,感热通量与潜热通量主要由海气温差和海气湿差决定,与波龄的相关性很小,飞沫对热通量无显著影响。当风速大于20m/s,感热通量和潜热通量与海气温差和海气湿差的相关性减小,与波龄的相关性增加,潜热通量与波龄呈现负相关。考虑飞沫的效应后,总热通量明显增加,飞沫所增加的感热通量平均可占界面感热通量的38.89%,飞沫所增加的潜热通量平均占界面潜热通量的39.19%。  相似文献   

8.
1997年冬季南海南部海区不同天气过程下的湍汉通量输送   总被引:3,自引:0,他引:3  
利用“九五”南沙群岛及其邻近海区综合科学考察1997年11月3-26日期间的走航和定点连续观测获得的大气和海洋资料,探讨了调查海区的气象特征;使用考虑风速和大气稳定笥影响并经高度订正的整体通量输送动力学公式,计算了动量、感热和潜热的湍流通量。结果表明,与其它天气过程相比,降水过程期间无论是大气向海洋输送的动量通量,还是海洋向大气输送的感热通量,其值都是最大的。  相似文献   

9.
基于2016-02-01—2016-05-21在南海博贺海洋气象观测平台观测的实验资料,首先利用整体空气动力学算法分别计算海气界面处感热通量与潜热通量,同时利用涡动相关法计算液滴蒸发层处总的感热通量与潜热通量。然后比较海气界面处热通量与液滴蒸发层处热通量的值,并利用差比法分别对2处感热通量和潜热通量进行做差计算。结果表明:液滴蒸发层处热通量与海气界面处热通量存在明显差异。通过与海洋飞沫引起的热通量值比较,结果表明液滴蒸发层处热通量与海气界面处热通量的差值由海洋飞沫作用引起;且在中低风速条件下,海洋飞沫引起的热通量与风速呈正相关;相比感热通量而言,潜热通量随着风速的变化更为显著。  相似文献   

10.
南极中山站气象要素变化特征分析   总被引:3,自引:0,他引:3  
利用1989—2008年南极中山站及戴维斯站的气象观测数据统计分析了表面气温、气压、风向风速和相对湿度的年际、年和日尺度变化特征,并讨论了各气象要素的长期变化趋势。分析结果表明中山站年均气温趋于升高,气压趋于下降,但变化趋势并不明显,说明在全球气候变化大背景下,南极中山站的大气要素仍保持相对稳定。但也有一些比较显著的变化趋势,如风速减弱,以及秋季气温增暖趋势等。  相似文献   

11.
Using meteorological data of field observation in 1990 - 2000, especially polar orbit high-resolution NOAA satellite cloud maps received from the Antarctic expedition vessel since 1997, the formation and development of the Prydz Bay cyclone are studied in this paper. Some new viewpoints are suggested such as: when surround-polar cyclone enters the Prydz Bay, it can also intensify and develop in summer; cyclone can also develop in the easterlies in this bay. These view points revise old uncom-plete view point that the Prydz Bay is a burial ground of cyclone, and also further consummate formation-development theory of surround-cyclone in the Antarctic westerlies and cyclone in the Antarctic easterlies. In this paper, the mechanism of ice-air-sea interaction in the Prydz Bay is studied, and the physical process of cyclone formation-development is explained. By use of wholly dynamic transportation method, an energy exchange case of a cyclone, which explosively developed after entering the Prydz Bay, is calcu  相似文献   

12.
Long term in situ atmospheric observation of the landfast ice nearby Zhongshan Station in the Prydz Bay was performed from April to November 2016. The in situ observation, including the conventional meteorological elements and turbulent flux, enabled this study to evaluate the sea ice surface energy budget process. Using in situ observations, three different reanalysis datasets from the European Centre for Medium-Range Weather Forecasts Interim Re-analysis(ERA-Interim), National Centers for Environmental Prediction Reanalysis2(NCEP R2), and Japanese 55-year Reanalysis(JRA55), and the Los Alamos sea ice model, CICE, output for surface fluxes were evaluated. The observed sensible heat flux(SH) and net longwave radiation showed seasonal variation with increasing temperature. Air temperature rose from the middle of October as the solar elevation angle increased.The ice surface lost more energy by outgoing longwave radiation as temperature increased, while the shortwave radiation showed obvious increases from the middle of October. The oceanic heat flux demonstrated seasonal variation and decreased with time, where the average values were 21 W/m~2 and 11 W/m~2, before and after August,respectively. The comparisons with in situ observations show that, SH and LE(latent heat flux) of JRA55 dataset had the smallest bias and mean absolute error(MAE), and those of NCEP R2 data show the largest differences.The ERA-Interim dataset had the highest spatial resolution, but performance was modest with bias and MAE between JRA55 and NCEP R2 compare with in situ observation. The CICE results(SH and LE) were consistent with the observed data but did not demonstrate the amplitude of inner seasonal variation. The comparison revealed better shortwave and longwave radiation stimulation based on the ERA-Interim forcing in CICE than the radiation of ERA-Interim. The average sea ice temperature decreased in June and July and increased after September,which was similar to the temperature measured by buoys, with a bias and MAE of 0.9°C and 1.0°C, respectively.  相似文献   

13.
北冰洋浮冰站近地层参数的观测估算   总被引:1,自引:1,他引:0       下载免费PDF全文
利用2008年8月20~27日我国第3次北极考察队在85°N附近设立的冰站上进行的湍流通量、辐射观测所获取的相关资料,采用涡动相关法对夏季北冰洋浮冰下垫面的近地层参数进行了估算.结果显示,观测期间浮冰区冰雪面的平均感热、潜热和净辐射通量分别是0.2 W/m2,1.2 W/m2和9.9 W/m2,表明下垫面获得的大部分热...  相似文献   

14.
Annual observations of first-year ice(FYI) and second-year ice(SYI) near Zhongshan Station, East Antarctica,were conducted for the first time from December 2011 to December 2012. Melt ponds appeared from early December 2011. Landfast ice partly broke in late January, 2012 after a strong cyclone. Open water was refrozen to form new ice cover in mid-February, and then FYI and SYI co-existed in March with a growth rate of 0.8 cm/d for FYI and a melting rate of 2.7 cm/d for SYI. This difference was due to the oceanic heat flux and the thickness of ice,with weaker heat flux through thicker ice. From May onward, FYI and SYI showed a similar growth by 0.5 cm/d.Their maximum thickness reached 160.5 cm and 167.0 cm, respectively, in late October. Drillings showed variations of FYI thickness to be generally less than 1.0 cm, but variations were up to 33.0 cm for SYI in March,suggesting that the SYI bottom was particularly uneven. Snow distribution was strongly affected by wind and surface roughness, leading to large thickness differences in the different sites. Snow and ice thickness in Nella Fjord had a similar "east thicker, west thinner" spatial distribution. Easterly prevailing wind and local topography led to this snow pattern. Superimposed ice induced by snow cover melting in summer thickened multi-year ice,causing it to be thicker than the snow-free SYI. The estimated monthly oceanic heat flux was ~30.0 W/m2 in March–May, reducing to ~10.0 W/m2 during July–October, and increasing to ~15.0 W/m2 in November. The seasonal change and mean value of 15.6 W/m2 was similar to the findings of previous research. The results can be used to further our understanding of landfast ice for climate change study and Chinese Antarctic Expedition services.  相似文献   

15.
北冰洋浮冰区湍流通量观测试验及参数化研究   总被引:3,自引:2,他引:1       下载免费PDF全文
利用2008年8月21~29日我国第3次北极考察期间在北冰洋海区(84°27′N,143°37′W~85°13′N,147°20′W)冰站观测的湍流资料及相关资料,对海冰近地层湍流通量及其特征参数进行了研究.结果表明:观测期间浮冰近地层始终存在逆温和逆湿层.这与我们以前(1999年在75°N和2003年在78°N)的观...  相似文献   

16.
李凯 《海洋预报》2011,28(5):82-88
利用第25次南极考察队获取的中山站海洋、气象考察资料,结合中山站过去20年的历史气象资料,统计分析了2009年中山站气温、气压、湿度、风速风向等主要气象要素特征,同时围绕互联网络带来的预报手段的进步、预报能力的提高等阐述了近年来我国在天气预报领域的新进展.  相似文献   

17.
林龙  赵进平 《海洋学报》2018,40(11):23-32
雪热传导系数是海冰质量平衡过程中的重要物理参数,决定了穿透海冰的热传导通量。北冰洋海冰质量平衡浮标观测获得多年冰上冬季温度链剖面可以明显地区分冰雪界面。本文考虑到冰雪界面处温度随时间变化,再根据冰雪界面热传导通量连续假定,提出了新的雪热传导系数计算方法。受不同环境因素影响,多年冰上各个浮标的雪热传导系数在0.23~0.41 W/(m·K)之间,均值为(0.32±0.08) W/(m·K)。北冰洋多年冰上冬季穿过海冰的热传导通量最大发生在11月至翌年3月,约14~16 W/m2。结冰季节,来自海冰自身降温的热量对穿过海冰向大气传输的热量贡献逐月减少,从9月100%减小到12月的35%,翌年的1月至3月稳定在10%左右。夏季,短波辐射通能量通过热传导自上而下加热海冰,海冰上层温度高于下层,热量传播方向与冬季反向,往海冰内部传递。直到9月短波辐射完全消失,气温下降,热量再次转变为自下往上传递。从冰底热传导来看,夏季出现海冰向冰水界面传递热量现象。由于雪较好的绝热性,冰上覆雪极大地削弱了海冰上层热传导通量,从而减缓了秋冬季节的结冰速度。尽管受雪厚影响,多年冰上层热传导通量与气温依旧具有很好的线性关系,气温每降低1℃,热传导通量增加约0.59 W/m2。  相似文献   

18.
2016年8月7-14日中国第七次北极科学考察期间,在83°N附近设立的长期浮冰站开展了辐射和湍流通量观测研究。结果表明,观测期间反照率变化范围为0.64~0.92,平均反照率为0.78;基于现场观测数据评估了PW79、HIRHAM、ARCSYM和CCSM3 4种不同复杂度的反照率参数化方案在天气尺度的表现,最为复杂的CCSM3结果优于其他参数化方案,但不能体现降雪条件下的反照率快速增长。浮冰区冰雪面平均净辐射为18.10 W/m2,平均感热通量为1.73 W/m2,平均潜热通量为5.55 W/m2,海冰表面消融率为(0.30±0.22) cm/d,表明此时北冰洋浮冰正处于快速消融期。冰面的平均动量通量为0.098(kg·m/s)/(m2·s),动量通量与风速有很好的对应关系,相关系数达0.80。  相似文献   

19.
随着中国南极考察事业的不断发展,科考工作进一步深入,南极地区不同机型的各类飞行活动将日益增多。开展南极航空气象服务是确保飞行安全,提高科考效率的迫切需求。南极冰雪高原的地形复杂,天气多变且局地性强,但是航路和场站的气象资料积累很少,航空气象服务的困难较大。本文对南极中山站地区影响飞行安全的主要天气现象,中山站地区的适航时间,天气条件等进行了初步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号