首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用3种不同的滤波方法获得了2007年相对于2005年的卫星重力变化图像,并与同期地面重力测量的结果进行比较,对比分析GRACE月重力场滤波方法的优缺点。结果表明,去相关平滑滤波算法优于高斯滤波和直接截断法,且去相关平滑滤波DDK5处理得到的卫星重力动态变化图像与地面观测结果符合最好,表明GRACE卫星时变重力场可以用来分析大区域重力动态变化。  相似文献   

2.
针对GRACE Level2卫星时变重力数据后处理方法如何评价的问题,该文以中国数字地震观测网络获得的青藏高原地区地面重力变化图像为参考,基于平均结构相似性等图像相似度指标,研究了与该区域地面重力观测同期、不同后处理方法得到的GRACE卫星重力变化图像的可靠性。结果显示,GRACE卫星重力和地面重力观测结果具有一定的可比性,滑动窗口去相关滤波和高斯400 km滤波的组合方法可以获得最优的处理效果。本文的方法和结论对GRACE及GRACE Follow-On卫星重力数据应用中后处理方法和参数的选取有一定的借鉴意义。  相似文献   

3.
卫星重力探测技术为监测全球陆地水储量变化提供了新的技术手段。采用Level-2 Release-05版本GRACE时变重力场模型数据计算了2010年全球陆地水储量的月变化;着重研究了扇形滤波对反演结果的影响;并结合GLDAS水文模型数据对反演结果进行了验证分析。实验结果表明:GRACE反演结果 GLDAS水文模型结果在时空分布上符合较好;扇形滤波能够削弱GRACE时变重力场模型的高阶项误差影响,有效去除反演结果中的条带状噪声。  相似文献   

4.
本文利用UTCSR 2003年1月到2008年8月间的GRACE Level-2 RL04重力场模型估计了南极冰盖质量变化。计算过程中分别采用高斯和Wiener滤波两种平滑方法,分别采用22、43和65个月重力场模型计算Wiener滤波信号与噪声函数,得出以下结论:在实际的计算过程中需要具体计算Wiener滤波平滑因子值,65个月GRACE重力场模型计算得到的Wiener滤波权值非常接近于平滑半径为540km高斯滤波权值;采用两种不同的滤波方法在相同区域质量变化率基本相同。  相似文献   

5.
GRACE时变重力场滤波方法   总被引:1,自引:1,他引:0  
针对GRACE时变重力场模型高阶项误差较大导致的"南-北"条带噪声,该文利用模拟的GRACE数据分析了去相关滤波、Gaussian滤波、组合滤波和平滑先验信息滤波方法对噪声的滤除效果和对真实信号的衰减程度。实验表明:4种滤波算法均能有效降低条带噪声,但单独使用去相关滤波时效果较差,需与其他算法结合使用;Guass滤波和组合滤波在减小噪声条带的同时,也在一定程度上牺牲了空间分辨率;平滑先验信息滤波在移除噪声、保留有效信号方面比其他3种算法有较为明显的优势。  相似文献   

6.
本文基于GRACE最新重力场模型RL05序列研究了高斯滤波、Wiener滤波、各向异性滤波三种方法在长江流域水储量变化监测中的适用性,计算了应用三种方法得到的水储量变化速率。通过与长江流域水文模型的比较,高斯滤波平滑半径为430km时所得的结果与Wiener滤波基本一致,但各向异性滤波反演的结果与水文模型更为接近,并且优于前面两种方法。研究结果表明GRACE RL05时变重力场球谐系数误差存在各向异性的分布特征,因此各向异性滤波更适用于GRACE区域水储量变化的研究。  相似文献   

7.
GRACE时变重力位系数误差的改进去相关算法   总被引:6,自引:1,他引:5  
GRACE卫星时变重力场模型的高阶位系数存在较大误差,用它反演的重力场结果中表现为严重的条带噪声。Swenson提出的滑动窗多项式拟合去相关误差方法在赤道两侧区域取得了显著效果,但其在文献中并没有说明实现的具体步骤,因而许多学者在利用其思想进行滤波时并没有达到其文献中的滤波效果。针对滑动窗的特点,使用反向边界延拓技术,对滑动窗去相关误差数据处理方法作了改进。改进的滑动窗去相关误差方法应用于GRACE时变重力场模型时,在赤道两侧区域取得了显著的去条带误差效果,并利用全球地面资料同化系统GLDAS土壤湿度资料验证该方法的正确性。  相似文献   

8.
基于卫星加速度恢复地球重力场的去相关滤波法   总被引:3,自引:0,他引:3  
宁津生  钟波  LUO Zhicai  罗志才  汪海洪 《测绘学报》2010,39(4):331-337,343
基于加速度法恢复地球重力场时,卫星加速度是由卫星轨道数值微分得到,而数值微分会放大高频误差,进而降低了重力场解算结果的精度.针对数值微分导出的加速度误差具有有色噪声的特性,提出利用去相关算法构造白化滤波器对加速度有色噪声进行滤波处理,并根据去相关的基本原理分别构造了基于三点差分和ARMA模型的白化滤波器.采用不同噪声背景的CHAMP卫星模拟轨道数据进行解算,结果表明:基于去相关滤波解算的重力场模型精度均要比等权解算的重力场模型精度高,初步验证了去相关滤波方法的有效性.  相似文献   

9.
卫星重力测量是当前探测全球一致、高精度和高分辨率地球重力场的高效技术手段,主要包括高低卫星跟踪卫星测量(satellite-to-satellite tracking in high-low mode, SST-hl)、低低卫星跟踪卫星测量(satellite-to-satellite tracking in low-low mode, SST-ll)和卫星重力梯度测量(satellite gravity gradiometry,SGG)。系统总结了利用卫星重力测量技术(包括SST-hl、SST-ll和SGG及多模式组合)反演地球重力场的主要方法,评述了利用挑战性小卫星有效载荷(challenging mini-satellite payload, CHAMP)、重力恢复与气候实验(gravity recovery and climate experiment, GRACE)/ GRACE继任者(GRACE follow-on, GRACE -FO)和地球重力场和海洋环流探索器(gravity field and steady-state ocean circulation explorer, GOCE)卫星重力数据构建静态和时变重力场模型的最新进展,并对当前具有代表性的地球重力场模型精度进行了分析和评估,以期对未来的地球重力场研究及其地学应用提供参考。  相似文献   

10.
在卫星重力场测量中,星星跟踪是获取中高阶重力场模型的有效方式,是GRACE Follow-on、GRACE II等下一代国际重力卫星所采用的测量方式.星星跟踪重力卫星任务设计需要考虑轨道高度、星间距离、定轨误差、星间距离变化率测量误差、非引力干扰确定误差、任务测量时间和数据采样间隔等任务参数,这些参数共同决定了重力场测量的时间分辨率、空间分辨率及其精度等重力场测量性能.如何分析这些系统参数对重力场测量性能的复杂物理机理,进而提出合理、优化的任务参数设计方法,是星星跟踪重力场测量系统设计中的重要问题.为此,本文建立了星星跟踪重力场测量性能的解析计算模型,并利用GRACE重力卫星测量参数验证了该解析模型,进而提出了重力卫星系统参数设计方法,为实现星星跟踪重力场测量性能最大化奠定了理论基础.  相似文献   

11.
晁定波 《测绘科学》2006,31(6):16-18,23
阐述了联全新一代卫星重力测量数据、卫星测高数据及全球陆地重力数据确定高精度180阶全球重力场模型、以全球重力场模型为框架参考场、利用我国地面重力数据、GPS水准资料、数值高程模型和地形密度信息确定高分辨率cm级区域大地水准面的思想。指出了一个重点发展方向:利用GRACE卫星每30天的重力位模型分析时变重力场,联系合卫星测高同时相平均海面以及水文、气候和海洋模型,分析我国黄河流域和海洋地区水储量分布和海流季节性变化,并解释与气候要素变化的相关性。  相似文献   

12.
为了实现科尔沁沙地的水资源监测,该文采用2003年7月至2010年12月的GRACE月重力场模型,经过去相关滤波、高斯平滑滤波和GIA改正,利用尺度因子法恢复重力场信号,反演科尔沁沙地的陆地水储量变化,与CPC水文模型反演结果进行对比分析。研究结果表明:由GRACE Release-05Level-2数据反演得到的2003年7月至2010年12月科尔沁沙地陆地水储量下降速率为-13.2±2.6(mm·a-1);CPC水文模型反演的该地区陆地水储量变化曲线与GRACE反演结果呈现出良好的一致性,具有相似的季节变化;2009年秋至2010年春该地区陆地水储量呈现直线减少,并达到最低点,这一现象与该时段中国北方的干旱事件相一致。  相似文献   

13.
针对研究中国西部长期重力变化的问题,该文利用GRACE月重力场模型,基于Slepian变换构建中国西部区域局部重力场,并采用GIA和GLDAS等模型扣除相应误差,通过时间序列分析方法得到该区域2003—2013年卫星重力变化。结果表明,东天山呈现负重力变化,可能由区域冰川消融引起的;西天山的正重力变化,应与冰川小幅增加和构造运动引起的壳幔物质积累有关;青藏高原内陆正重力变化可能由区域地壳抬升、粘弹性地壳的构造应变以及壳幔物质的质量迁移与积累引起;青藏高原边界区域的负重力变化,应与冰川加速消融以及地下水抽取有关。Slepian方法较好地克服了滤波平滑处理带来的重力变化信号压制及细节平滑,可为中国西部的地壳运动、地震活动和气候变化等研究提供数据支撑。  相似文献   

14.
利用世界上第一个采用高低卫_卫跟踪技术的CHAMP重力卫星计划导出的全新的高精度全球长波重力场模型EIGEN_1S结果 ,根据二维高斯滤波原理 ,基于相同空域尺度对卫星重力结果和由卫星测高解算的几种版本的海洋重力异常数据进行了长波部分的分析研究。结果表明 ,在中国海及其邻近海域卫星重力数据与卫星测高解算的海洋重力异常数据之间存在明显的偏差。  相似文献   

15.
日本Mw9.0地震前GRACE卫星重力变化   总被引:1,自引:1,他引:0  
利用GRACE重力卫星月重力场数据,通过去相关与高斯滤波等方法获取日本大地震震前震源区周缘年度、季度和年度差分重力变化,以及若干点位时间序列重力变化;分析结果表明:日本大地震前5年内在震源区周边出现了比较明显的卫星重力异常正负交替和迁移现象,至震前1-2年,震区周边形成了明显正负异常区,正重力异常区重力增加现象明显;点位重力时间序列分布指出了日本MW9.0级地震前存在与1976年唐山地震类似的重力变化现象。这些结果反映了日本大地震震前震源区周边地下物质运动、质量迁移和能量积累等问题,为研究该地震的孕育过程提供了证据。  相似文献   

16.
卫星重力与地球重力场   总被引:1,自引:1,他引:0  
卫星重力探测技术可获取全球均匀覆盖的地球重力场信号。以GRACE为代表的卫星跟踪卫星(satellite—to—satellite tracking,SST)计划为人类提供了前所未有丰富的中长波尺度的全球地球重力场信息。本文包含两部分研究内容:一是给出基于能量守恒原理的GRACESST重力观测方程,并采用此方法以实测GRACE观测数据求解得到120阶的GRACE地球重力场模型WHU—GM—05,并同国际上具有代表性的类似模型进行了分析比较;二是采用解析方法分析了SST观测系统中KBR、ACC、星载GPS等有效栽荷误差与获取地球重力场信号性能的响应,为我国SST设计和实施提供参考。  相似文献   

17.
重力场是反映地球介质密度变化和在各种环境(固体地球潮汐、内部热流、固体和液体之间质量的交换、表面负荷和地震构造运动等)下动力学特征的最基本和最直接的物理量。GRACE(Gravity Recovery and Climate Experiment)卫星作为探测全球重力场的工具已经为科研工作者提供了超过10a的全球时变重力场数据。由于GRACE数据存在固有误差,GRACE数据产品需要进行后处理对局部重力场进行研究。回顾整理了GRACE数据后处理中的处理方法,包括高斯滤波法及非各向同性滤波法,位系数去相关法,主成分分析法,小波分解法,Slepian方法,以及顾及先验信息的改进算法等,并对GRACE后处理算法的后续改进和发展进行了展望。  相似文献   

18.
基于改进短弧积分法的GRACE重力反演理论、方法及应用   总被引:1,自引:0,他引:1  
陈秋杰 《测绘学报》2017,46(1):130-130
正CHAMP、GRACE和GOCE等卫星重力任务的成功实施,为大地测量学、冰川学、海洋学、水文学等学科提供了诸多高时空分辨率的地球重力场模型。由于GRACE对地球重力场的长波段信号十分敏感,且能以较高的精度恢复中波段重力场信号,因此应用GRACE重力数据恢复时变与静态地球重力场,一直以来备受大地测量学者关注。本文在经典短弧积分法的基础上,对重力场反演理论和方法作进一步的探讨和改进,并用GRACE实测数据解算了静态和时变重力场模型,主要研究成果  相似文献   

19.
针对欧洲中程天气预报中心实时大气数据中由于水平及垂直分辨率变化所引起的大气压跳跃,利用再分析大气数据(ERA-Interim)及去平滑球谐分析方法计算重力恢复与气候实验卫星(gravity recovery and climate experiment,GRACE)大气去混频模型,从谱域、空域角度及利用主成分分析方法比较其与标准大气与海洋去混频模型的差距,并采用星间距离变率残差作为标准衡量两种模型的优劣。结果表明:两种模型之间精度相近,用于计算时变重力场模型时其影响可忽略,但在用于计算下一代卫星重力场模型时,需考虑其影响。  相似文献   

20.
鞠晓蕾 《测绘学报》2019,48(2):267-267
正由于GRACE(gravity recovery and climate experiment)时变重力场模型直接解算质量变化时存在较大的误差,需要对其进行相应的滤波处理,提高质量变化的反演精度。本文总结了GRACE监测全球与区域质量变化的研究进展,分析了最新时变重力场模型的精度及其滤波方法;提出了基于重力位系数协方差阵的时变重力场滤波方法;分析了南极冰盖的质量变化、亚马孙流域陆地水质量和海平面变化。本文的研究成果及创新点主要包括以下几个方面:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号