首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Karoo Supergroup outcropst in the mid-Zambezi Valley, southern Zambia. It is underlain by the Sinakumbe Group of Ordovician to Devonian age. The Lower Karoo Group (Late Carboniferous to Permian age) consists of the basal Siankondobo Sandstone Formation, which comprises three facies, overlain by the Gwembe Coal Formation with its economically important coal deposits, in turn overlain by the Madumabisa Mudstone Formation which consists of lacustrine mudstone, calcilutite, sandstone, and concretionary calcareous beds. The Upper Karoo Group (Triassic to Early Jurassic) is sub-divided into the coarsely arenaceous Escarpment Grit, overlain by the fining upwards Interbedded Sandstone and Mudstone, Red Sandstone; and Batoka Basalt Formations.Palynomorph assemblages suggest that the Siankondobo Sandstone Formation is Late Carboniferous (Gzhelian) to Early Permian (Asselian to Early Sakmarian) in age, the Gwembe Coal Formation Early Permian (Artinskian to Kungurian), the Madumabisa Mudstone Late Permian (Tatarian), and the Interbedded Sandstone and Mudstone Early or Middle Triassic (Late Scythian or Anisian). The marked quantitative variations in the assemblages are due partly to age differences, but they also reflect vegetational differences resulting from different paleoclimates and different facies.The low thermal maturity of the formations (Thermal Alteration Index 2) suggests that the rocks are oil prone. However, the general scarcity of amorphous kerogen, such as the alga Botryococcus sp., and the low proportion of exinous material, indicates a low potential for liquid hydrocarbons. Gas may have been generated, particularly in the coal seams of the Gwembe Coal Formation, that are more deeply buried.  相似文献   

2.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

3.
The Palaeozoic marine invertebrate fossil record in southern Africa is characterised by extensive data for the Early and Middle Devonian but extremely limited or absent for other Palaeozoic Periods. The Mesozoic Era is lacking in marine invertebrate fossils for the Triassic, Late Jurassic, and Cretaceous. For the Cenozoic Era there is limited marine megafossil information. Overall, in benthic, cool waters, Palaeozoic, marine megafossils from southern Africa appear to represent relatively low diversity communities, when compared to ecologically comparable warm water environments elsewhere. However, the marine benthic Cretaceous and Cenozoic faunas of southwestern Africa are typically diverse warm water types, until the later Miocene when cool waters again prevailed. The Benguela Current clearly influenced lower diversity faunas.Climatically, it can be inferred from the marine megabenthic pal˦ontological evidence, thatwarm conditions were present from Early Cambrian until mid-Ordovician times, followed by a much cooler climate that persisted well into the Middle Devonian. The Late Palaeozoic evidence thus indicates cool to cold conditions. In contrast, the Late Permian fossils are consistent with warmer conditions, continuing through Late Jurassic and Cretaceous times along the East African and West African coasts, until the Late Miocene.Within the Gondwanan framework, a Central African region can be envisaged that was subject to non-marine conditions during the entire Phanerozoic Eon. Peripheral to this central African region were marine environments of various ages. The geological history of these peripheral regions was fairly unique. Some features in southern Africa are similar of those found in the Paraná Basin and the Falkland Islands.Most of North Africa from central Senegal to Libya contains a Phanerozoic marine cover extending from the Early Cambrian through to the Carboniferous, characterised by warm water faunas, except for the Ordovician which yields cool-cold water faunas.The Palaeozoic of Arabia, which was an integral part of Africa until the Miocene, has yieldedwarm water fossils.  相似文献   

4.
Sediments of the Ordovician to Devonian Sinakumbe Group (∼210 m thick) and overlying Upper Carboniferous to Lower Jurassic Karoo Supergroup (∼4.5 km thick) were deposited in the mid-Zambezi Rift Valley Basin, southern Zambia.The Sinakumbe-Karoo succession represents deposition in a extensional fault-controlled basin of half-graben type. The basin-fill succession incorporates two major fining-upward cycles that resulted from major tectonic events, one event beginning with Sinakumbe Group sedimentation, possibly as early as Ordovician times, and the other beginning with Upper Karoo Group sedimentation near the Permo-Triassic boundary. Minor tectonic pulses occurred during deposition of the two major cycles. In the initial fault-controlled half-graben, a basin slope and alluvial fan system (Sikalamba Conglomerate Formation), draining southeastward, was apparently succeeded, without an intervening transitional facies, by a braided river system (Zongwe Sandstone Formation) draining southwestward, parallel to the basin margin. Glaciation followed by deglaciation resulted in glaciofluvial and glacio-lacustrine deposits of the Upper Carboniferous to Lower Permian Siankondobo Sandstone Formation of the Lower Karoo Group, and isostatic rebound eventually produced a broad flood plain on which the coal-bearing Lower Permian Gwembe Coal Formation was deposited. Fault-controlled maximum subsidence is represente by the lacustrine Upper Permian Madumabisa Mudstone Formation. Block-faulting and downwarping, probably due to the Gondwanide Orogeny, culminated with the introduction of large quantities of sediment through braided fluvial systems that overwhelmed and terminated Madumabisa Lake sedimentation, and is now represented by the Triassic Escarpment Grit and Interbedded Sandstone and Mudstone Formations of the Upper Karoo Group. Outpourings of basaltic flows in the Early Jurassic terminated Karoo sedimentation.  相似文献   

5.
北天山上石炭统奇尔古斯套组中发现早二叠世珊瑚化石   总被引:3,自引:1,他引:3  
新近于北天山艾维尔沟北原划为上石炭统的奇尔古斯套组火山岩系所夹灰岩中,采到了结节脊板杯珊瑚Cy-athocariniatuberculataSoshkina,其时代属于早二叠世,表明该区奇尔古斯套组的一部分应属下二叠统。另外,于头屯河原划为上石炭统的奇尔古斯套组火山-碎屑岩系所含灰岩砾石中,采到伊万诺夫格鲁特珊瑚GrootiaivanoviDubrolyubova,时代属于晚石炭世,与达拉阶(即莫斯科阶)相当,故地层时代应晚于晚石炭世达拉期,根据区域对比推测该地层的一部分也应属于下二叠统。艾维尔沟一带早二叠世珊瑚化石的发现,表明北天山石炭纪强烈的拉张事件可以持续到早二叠世。  相似文献   

6.
四川盆地西缘上三叠统须家河组植物化石丰富,在最近的地质调查中新发现保存完好、年轮清晰的化石木。通过对化石木年轮的研究分析,初步探讨了四川盆地西缘晚三叠世须家河组沉积期的古气候特征。研究表明:须家河组沉积时期气候温暖,化石木中明显的年轮表明大气降水呈季节性波动,这与盛行于二叠纪至三叠纪的巨型季风密切相关;化石木的平均敏感度小于0.3,说明植物生长过程中年水分供给均衡;化石木年轮的早材带与晚材带宽度变化大,显示植物的生长受到了晚三叠世巨型季风的强烈影响。  相似文献   

7.
我国腐植煤的还原性质及其与沉积环境的关系   总被引:3,自引:2,他引:3  
赵师庆 《沉积学报》1984,2(2):53-65
一、不同还原性腐植煤的基本特征在研究华北聚煤区东部晚古生代太原组(C3)和山西组(P11)煤性质差别及显微特征的基础上,作者认为除煤岩成分和变质程度外,还存在着影响煤质的第三个成因因素--还原性质。  相似文献   

8.
Following the greatest known end-Permian mass extinction plants have low diversity. Lycopsids and conifers dominated on land. A new gymnosperm Xinjiangoxylon gen. nov. is proposed based on a woody stem specimen collected from the Upper Permian (latest, Changhsingian) Upper Guodikeng Formation of the Taoshuyuan section, Turpan, Xinjiang Uygur Autonomous Region, Northwest China. The decorticated stem is characterized by a complex pith, endarch primary xylem and a thick secondary xylem cylinder. Numerous petrified woods were found in the Changhsingian at this section. However, there are rare wood fossils in the Early Triassic. The abrupt decrease of fossil woods worldwide relates to the crisis at the end of the Permian. Xinjiangoxylon turpanense gen et. sp. nov. appears to represents one gymnosperm that existed in the latest Permian.  相似文献   

9.
内蒙古林西地区晚二叠世—早三叠世沉积演化及构造背景   总被引:3,自引:0,他引:3  
在林西地区新发现的叶肢介和介形虫等化石,证实了大兴安岭南部存在早三叠世地层。这套地层为具有红层性质的河—湖环境产物,与下伏上二叠统林西组沉积有较大的差异。林西组中—下部以海相沉积为主,并发育浊流沉积,反映直到晚二叠世中期大兴安岭南部仍有残余海盆存在,应是造成晚二叠世南北植物化石仍保持区系特征的主因。林西地区晚二叠世—早三叠世的沉积—构造演化特征揭示,大兴安岭南部的晚古生代板块构造活动一直到印支构造旋回才结束。  相似文献   

10.
陆相二叠纪-三叠纪地层划分与对比研究对认识该时期全球性重大生物和环境事件具有重要意义.以大兴安岭南段阿鲁科尔沁旗坤都地区新发现的下三叠统老龙头组为研究对象, 重点对二叠系-三叠系接触关系开展详细调查研究, 系统采集了界线上下的古生物化石, 对老龙头组火山岩进行了锆石U-Pb同位素测试分析, 并确定了老龙头组与下伏林西组呈平行不整合接触关系, 两者之间存在短暂沉积间断.生物地层显示林西组时代为晚二叠世晚期, 老龙头组古生物匮乏, 可能与二叠系-三叠系之交的生物灭绝事件有关.而老龙头组中3个同位素年龄值分别为251.5±2.2 Ma、249.7±2.5 Ma和249.5±1.8 Ma, 时代指示为早三叠世, 然而二叠系-三叠系界线的准确位置还需进一步研究.大兴安岭南段普遍存在可能与古亚洲洋闭合有关的早三叠世岩浆事件, 古亚洲洋沿着西拉木伦河缝合带发生碰撞闭合, 其闭合时限至少持续至早三叠世, 老龙头组是两大板块拼贴碰撞作用的产物.   相似文献   

11.
Sediments of the Upper Carboniferous to Lower Jurassic Karoo Supergroup (∼ 4.5 km thick) were deposited in the mid-Zambezi Valley Basin, southern Zambia. The Upper Palæozoic Lower Karoo Group in this area ends with a Late Permian sedimentary unit called the Madumabisa Mudstone Formation. The formation is 700 m thick and comprises four lithofacies grouped into two facies assemblages, collectively interpreted as lacustrine deposits. Sediments of a massive mudrock facies assemblage were deposited from suspension, probably from sediment-laden rivers entering a lake. Concretionary calcilutite beds probably mark the positions of palæosediment-water interfaces where calcite was precipitated. A laminated mudrock facies assemblage is attributed to lacustrine deposition from inflowing rivers at the lake margins and shallow parts of the lake. Repeated thickening-upward cycles are evidence of upward shallowing, interrupted by events of more abrupt deepening. Sandstone interbeds are interpreted as fluvial deposits laid down during low lake stands, with cross-lamination and asymmetrical ripples indicating current rather than wave deposition. A fossil assemblage of ostracods, bivalves, gastropods, fish scales, the alga Botryococcus sp. and fossil burrows is consistent with a lacustrine origin for the formation.  相似文献   

12.
兰坪-思茅盆地中段的石登-小格拉一带,发育一套石炭-二叠纪含火山岩地层,与周边地质体多呈断裂接触,并且化石较少,因而以往地层划分和时代归属意见不一。在1∶5万区调中新采获早石炭世牙形石和晚二叠世植物、腕足类化石,发现石炭纪和二叠纪地层之间为不整合接触,因此将其划分为早石炭世石登组和晚二叠世羊八寨组。  相似文献   

13.
As integral parts of du Toit’s (1927) “Samfrau Geosyncline”, the Sauce Grande basin–Ventana foldbelt (Argentina) and Karoo basin–Cape foldbelt (South Africa) share similar paleoclimatic, paleogeographic, and paleotectonic aspects related to the Late Paleozoic tectono-magmatic activity along the Panthalassan continental margin of Gondwanaland. Late Carboniferou-earliest Permian glacial deposits were deposited in the Sauce Grande (Sauce Grande Formation) and Karoo (Dwyka Formation) basins and Falkland–Malvinas Islands (Lafonia Formation) during an initial (sag) phase of extension. The pre-breakup position of the Falkland (Malvinas) Islands on the easternmost part of the Karoo basin (immediately east of the coast of South Africa) is supported by recent paleomagnetic data, lithofacies associations, paleoice flow directions and age similarities between the Dwyka and the Lafonia glacial sequences. The desintegration of the Gondwanan Ice Sheet (GIS) triggered widespread transgressions, reflected in the stratigraphic record by the presence of inter-basinally correlatable, open marine, fine-grained deposits (Piedra Azul Formation in the Sauce Grande basin, Prince Albert Formation in the Karoo basin and Port Sussex Formation in the Falkland Islands) capping glacial marine sediments. These early postglacial transgressive deposits, characterised by fossils of the Eurydesma fauna and Glossopteris flora, represent the maximum flooding of the basins. Cratonward foreland subsidence was triggered by the San Rafael orogeny (ca. 270 Ma) in Argentina and propogated along the Gondwanan margin. This subsidence phase generated sufficient space to accommodate thick synorogenic sequences derived from the orogenic flanks of the Sauce Grande and Karoo basins. Compositionally, the initial extensional phase of these basins was characterized by quartz-rich, craton-derived detritus and was followed by a compressional (foreland) phase characterized by a paleocurrent reversal and dominance of arc/foldbelt-derived material. In the Sauce Grande basin, tuffs are interbedded in the upper half of the synorogenic, foldbelt-derived Tunas Formation (Early–early Late? Permian). Likewise, the first widespread appearance of tuffs in the Karoo basin is in the Whitehill Formation, of late Early Permian (260?Ma) age. Silicic volcanism along the Andes and Patagonia (Choiyoi magmatic province) peaked between the late Early Permian and Late Permian. A link between these volcanics and the consanguineous airborne tuffs present in the Sauce Grande and Karoo basins is suggested on the basis of their similar compositions and ages.  相似文献   

14.
滇西昌宁—孟连地区依柳组、平掌组地层初议   总被引:9,自引:4,他引:5  
吴根耀 《地层学杂志》1993,17(4):302-309
<正> 滇西昌宁—孟连出露的火山岩系,1/100万普洱幅(1965)因其伏于中石炭统之下而称之下石炭统,1/20万凤庆幅(1981)、孟连幅(1982)分别创立平掌组、依柳组用以表示北部和南部的早石炭世火山岩,后被广泛采用并认为时代与地层对比问题已经解决(云南省地质矿产局,1990)。近年来有不少专事火山岩研究的工作者,如李涤辉(1989)、杨开辉(1989),也认为是一套地层并视为下石炭统。  相似文献   

15.
克拉美丽山位于准噶尔盆地东部,晚古生代克拉美丽洋盆向北俯冲消亡,西伯利亚板块与准噶尔地块在该地区发生碰撞造山。目前,就石炭纪之后克拉美丽山的构造活动存在持续挤压、拉分、伸展、挤压-伸展转换多种观点,构造样式也各不相同。本文应用断层相关褶皱理论,从盆山过渡带现今构造样式入手来探讨克拉美丽山南缘西段盆山耦合机制。研究结果表明,克拉美丽山西段在石炭纪之后经历了中二叠世早期、早三叠世早期、晚三叠世末期、晚侏罗世-早白垩世、晚白垩世早期和古新世末期6 次构造隆升。前4 期相对稳定沉积,晚白垩世早期,晚古生代地层沿着下二叠统底部的泥岩层滑脱面以叠瓦状构造楔样式向南楔入,构造缩短量大于15 km,现今盆山构造样式初步形成。始新世构造楔遭受后期突破断层改造。始新世后,克拉美丽山大规模的构造活动基本停止,地层遭受剥蚀最终形成现今地质结构。  相似文献   

16.
三塘湖盆地处于西伯利亚板块南缘,早石炭世晚期,盆地褶皱基底形成;晚石炭世早期,总体处于碰撞期后伸展构造环境;晚石炭世晚期,洋壳消亡,断陷收缩与整体抬升,形成剥蚀不整合.早二叠世,进入陆内前陆盆地演化阶段;中二叠世,盆地进入推覆体前缘前陆盆地发育期;晚二叠世,构造褶皱回返,前陆盆地消失;三叠纪晚期至侏罗纪中期,进入统一坳...  相似文献   

17.
内蒙古扎赉特旗德发屯地区下三叠统老龙头组的新发现   总被引:3,自引:0,他引:3  
扎赉特旗德发屯地区的木化石原定为PhoroxylonmultiforiumZheng&Zhang,现修订为Scalaroxylonmultiforium(Zheng&Zhang)Zhang&Zhengcomb.nov.,Scalaroxylon迄今仅见于德国南部的晚三叠世沉积中。根据区域地层对比,含木化石的地层是一套红杂色陆相沉积,其地层层序、岩性、岩相特征与邻区的下三叠统老龙头组完全可以进行对比,含木化石的地层层位应为下三叠统老龙头组,而不是“上侏罗统”大磨拐河组。根据这一研究结果,对大兴安岭中部地区的下三叠统老龙头组及哈达陶勒盖组进行了较详细的讨论和对比。  相似文献   

18.
荆州地区晚三叠世—中侏罗世地层及沉积环境   总被引:1,自引:1,他引:1  
董云鹏 《地层学杂志》1997,21(2):130-135
晚三叠世—中侏罗世沉积地层特征表明,该时期荆州地区为前陆盆地构造环境,形成于秦岭造山带南部前陆地带,沉积特征及上下接触关系表明其为Ⅰ级构造层。上三叠统和中下侏罗统具有相反的粒序特征和不同的建造特征,分属于两个Ⅱ级层序,分别由3个和7个Ⅲ级层序构成。综合研究结果表明,荆州前陆盆地经历了三个演化阶段,即挠曲变形阶段(T3j)—粘弹性流变阶段(T3w)—后期前陆盆地演化阶段(J1-2),不同演化阶段前陆盆地沉降中心及前隆具纵向迁移的特征,同时,沉积盆地规模及拗陷幅度亦显示规律性变化。  相似文献   

19.
对大兴安岭中南段内蒙古科尔沁右翼前旗哈拉黑地区原定二叠系林西组和侏罗系白音高老组的样品分别进行了锆石LA-ICP-MS U-Pb同位素测年,获得林西组的282 Ma和317 Ma两组峰值年龄以及白音高老组134 Ma、242 Ma和284 Ma的3组峰值年龄,说明原定白音高老组地层并非属于侏罗纪,而应该属于白垩纪。根据锆石结构特点推测林西组地层物源可能主要来自该区晚泥盆世-早石炭世岩浆弧产物和下二叠统大石寨组火山沉积。综合区域资料研究认为,内蒙古东部大兴安岭地区可能曾经发育有三叠纪沉积,现今大面积的缺失是由于后期构造抬升剥蚀所致。  相似文献   

20.
内蒙古扎鲁特旗北色日巴彦敖包组的厘定   总被引:1,自引:0,他引:1  
色日巴彦敖包组为2006~2008年内蒙古自治区地质调查院在扎鲁特旗地区进行1:5万区域地质调查时新识别出来的地层单位.在该组下部灰黑色凝灰质粉砂质硅泥质板岩中发现早石炭世古植物化石Archaeocalamites sp.(古芦木).根据岩石地层对比及生物化石特征,将其时代由早二叠世归为晚泥盆世-早石炭世,并重新厘定为色日巴彦敖包组.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号