首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提升微生物诱导碳酸盐沉淀(MICP)技术在海洋环境下对钙质砂的加固效果,在以往研究的基础上,设计进行了人工海水环境下巴氏芽孢杆菌多梯度人工驯化培养试验,并结合MICP固化钙质砂柱的力学试验和微细观结构分析,对巴氏芽孢杆菌的驯化效果进行了综合评价。结果表明:(1)海水环境下五梯度驯化后细菌的菌液浓度可达到淡水环境的97%以上,其与胶结液作用后碳酸盐的生成量较淡水环境下有一定幅度提高;(2)驯化后的巴氏芽孢杆菌具有很好的温度适应能力,在10~30℃温度下均有较好的MICP性能;(3)海水环境下加固的钙质砂柱无论是碳酸盐生成量还是无侧限抗压强度均较未驯化前高,尤其是五梯度驯化后的细菌,驯化后的细菌菌体变小,在海水环境生成的碳酸盐(碳酸钙和碳酸镁)晶体更小,更加致密,能更好地填充钙质砂颗粒的孔隙并胶结相邻的钙质砂颗粒,具有更优异的MICP性能。相关研究思路和方法可为MICP技术在海洋环境钙质砂地基加固方面的研究与应用提供参考。  相似文献   

2.
基于微生物诱导矿化技术,分别以钙源、营养液浓度及颗粒粒径为变量开展了钙质砂微生物注浆试验。通过无侧限抗压强度测试结合扫描电镜测试综合研究了固化试样碳酸钙产率、无侧限抗压强度与各因素间关系,探究了不同因素对固化效果的影响及固化机理。结果表明:钙源是影响钙质砂固化效果的关键,氯化钙作为钙源时的固化效果优于乙酸钙;低浓度营养液较高浓度营养液更有利于钙质砂胶结成型,高浓度营养液易造成大量碳酸钙晶体阻塞管口部位并影响脲酶活性;小粒径钙质砂微生物固化效果较好,微生物诱导生成的碳酸钙晶体更易将小粒径钙质砂粒间孔隙充填。  相似文献   

3.
为了将海水作为原料利用于微生物诱导碳酸钙(MICP)加固岛礁地基,进行了海水浓缩试验以及将浓缩海水作为钙源溶液的MICP砂土加固试验,研究细菌固定方式、细菌注入批次、胶结液中尿素浓度以及胶结液注入流速对加固效果的影响。研究表明,在不析出钙离子的条件下,将海水进行浓缩的最高倍数为3倍,此时钙离子含量约为0.033mol/L;尿素添加量宜为浓缩海水中钙离子含量的3倍,可有效利用胶结液中钙离子产生沉淀;使用2 mL/min的胶结液注入流速对5 cm砂柱进行加固可以得到最佳加固效果;加固后砂柱无侧限抗压强度达653 kPa,耗时4.5 d;增加细菌注入批次无法对砂柱加固效果进行有效改善。  相似文献   

4.
低温条件下微生物诱导沉淀产率低,制约着微生物诱导固化(MICP)技术的实际工程应用。通过控制不同温度和pH值,对比分析巴氏芽孢杆菌和巨大芽孢杆菌的生长繁殖特征和脲酶活性,同时在胶凝液中添加营养物质和控制尿素浓度和钙离子浓度,研究提高沉淀产率的方法,利用XRD测试分析沉淀晶型。进行渗透性试验和无侧限抗压强度试验,对比分析了不同菌种的砂土固化效果,结果表明,低温条件下巨大芽孢杆菌生长繁殖比巴氏芽孢杆菌快,脲酶活性更高,且巨大芽孢杆菌最适宜p H=8,更适合于碱性环境;可以通过在胶凝液中添加营养物质,控制尿素浓度为1.5 M和醋酸钙浓度为0.5 M增加碳酸钙沉淀产率;低温条件下巨大芽孢杆菌沉淀产率总高于巴氏芽孢杆菌,沉淀晶型为更稳定的方解石;采用巨大芽孢杆菌固化的试样渗透性可降低3~4个数量级,而巴氏芽孢杆菌固化的砂柱渗透性只降低2~3个数量级,其中颗粒粒径越小,渗透性降低越明显,且同等条件下巨大芽孢杆菌固化的砂柱试样强度也大于巴氏芽孢杆菌固化试样。因此,低温条件下巨大芽孢杆菌更适合进行实际工程应用。  相似文献   

5.
MICP联合纤维加筋改性钙质砂的动力特性研究   总被引:1,自引:0,他引:1  
王瑞  泮晓华  唐朝生  吕超  王殿龙  董志浩  施斌 《岩土力学》2022,43(10):2643-2654
为了提高我国南海钙质砂地基的抗液化性能,提出利用微生物诱导碳酸钙沉积(MICP)技术联合纤维加筋技术对钙质砂进行改性处理。通过开展动三轴试验,对比分析了改性前后钙质砂试样的动应变、动孔压、应力−应变滞回曲线以及动弹性模量的发展规律和演化特征,并结合扫描电镜(SEM)试验探究了MICP和纤维加筋技术对钙质砂的联合改性机制。研究结果表明:(1)MICP技术可以明显改善钙质砂试样的抗变形与抗液化性能,相比于未胶结处理试样,仅MICP处理试样的动应变和动孔压分别降低了95.74% 和 92.46%;(2)纤维的掺入进一步提升了MICP的改性效果,相比于仅MICP处理试样,MICP和纤维加筋联合处理试样的动应变和动孔压分别降低了 74.32%和 74.18%;(3)MICP 和纤维加筋技术通过减轻试样在循环荷载作用下的循环活动强度和能量耗散、提高试样的动弹性模量和减小动弹性模量的衰减速率,从而实现试样抗变形与抗液化性能的显著提高;(4)SEM 试验分析结果表明,MICP 与纤维对钙质砂动力特性的改善具有协同作用。纤维的掺入为细菌提供了更多的附着场所,促进了碳酸钙晶体的生成量,该部分碳酸钙不仅增加了颗粒间的胶结强度,同时也将纤维固定在砂颗粒上增强了纤维网的约束作用。  相似文献   

6.
钙质砂是中国南海岛礁工程建设的主要建筑材料和地基土成份,其具有高孔隙、易破碎和强度低等不良工程地质特性。为改善钙质砂力学性能,提高其工程可靠性,提出利用微生物诱导碳酸钙沉积(MICP)协同纤维加筋改性钙质砂。文章通过开展无侧限抗压试验以及扫描电镜测试,对比分析不同纤维掺量下MICP固化钙质砂的力学响应特性及微观破坏机理。结果表明:(1)MICP技术能够有效固化钙质砂,并提升其力学强度;(2)纤维能够增加细菌定殖面积,提升碳酸钙沉积量,并由此提升试样延性和韧性,降低刚度;(3)应力应变曲线呈阶梯状多峰特征。在应力上升阶段,砂颗粒和碳酸钙会发生局部破碎;在峰后应力下降阶段,碳酸钙、砂颗粒、纤维的胶结作用增强了纤维的抗拔性能,限制了破坏面的发展;(4)碳酸钙、砂颗粒、纤维的耦合胶结作用是纤维加筋改善试样韧性、延性的根本原因。  相似文献   

7.
作为一种特殊的岩土介质材料,钙质砂具有在低压下易破碎的性质。微生物诱导方解石沉淀(MICP)技术得到了广泛的关注和认可,可用来改善钙质砂的破碎特性。文章从室内试验和离散元模拟两个角度分别对钙质砂颗粒MICP固化前后进行单颗粒压碎试验,通过Weibull分布和SEM扫描等探究了MICP对钙质砂颗粒破碎行为的影响。结果表明:离散元模拟得到的生存概率曲线及Weibull模量m值与试验结果均吻合较好,验证了该数值模型的有效性。与室内试验相比,数值模拟可以精确地反映颗粒的裂纹分布及破碎过程,且可以研究同一颗粒MICP固化前后的情形,弥补了室内实验的不足,但其取决于模型参数的选取;经过MICP固化后的钙质砂颗粒表面有明显的方解石结晶生成,颗粒表面及内孔隙分别得到一定程度的包裹和填充,导致颗粒破碎强度有明显的增强且离散性大大降低,破碎模式由“多峰型”向“单峰型”转变,局部裂纹减少,多以表面磨损和直接产生贯穿裂纹为主。  相似文献   

8.
钙质砂广泛分布于热带海岸地区,其抗剪强度较低,在较高应力条件下极易破碎。因此,对以钙质砂为主要原料的地基材料进行加固,是海洋岩土工程领域的研究热点。基于尿素水解过程的碳酸钙成矿技术(MICP)是近年来地基材料加固领域的一项新技术。目前广泛使用的生物强化法实现MICP存在成本昂贵及环境适应性差等问题,制约了其大规模工程应用。研究采用原位生物激发MICP法对钙质砂进行加固,并对加固后试样开展直剪和一维压缩试验。结果表明:原位生物激发MICP方法可以在钙质砂中形成有效胶结,胶结水平最大可达6.26%。采用高浓度胶结溶液或增加注射次数可提高胶结水平。同时,加固后钙质砂的最大应力比、最大剪胀角以及残余内摩擦角均随胶结水平增加而显著增大,但竖向应力水平增大会抑制这些力学指标的增大。随胶结水平升高,试样压缩性显著减小;压缩后的原位激发MICP加固钙质砂中,细颗粒与粗颗粒的比例均随胶结水平的增加而增大。  相似文献   

9.
微生物诱导碳酸钙沉积(MICP)技术广泛应用于土体改良,其生态友好特性符合当今环境保护和可持续发展理念。然而由于软土的特殊工程性质,MICP加固软土的研究鲜有报道。文章研究了微生物—砂井与微生物—生物炭两种复合材料加固软土的一维固结压缩试验,实验方法分别采用微生物—砂井联合真空排水法和微生物—生物炭直接拌合法,探究了砂井数量、生物炭掺量对加固效果的影响,基于扫描电子显微镜(SEM)测试与XRD衍射试验,获得了固化软土的微观结构特征。结果表明:经MICP作用后的软土孔隙比随砂井数量和生物炭掺量的增加显著降低,当生物炭掺量在一定范围(8%左右)内能够减小压缩系数,增大压缩模量。碳酸钙含量测定结果显示碳酸钙生成量随深度增加逐渐减少,分布具有不均匀性。微观测试表明:两种实验方法处理后的软土中均出现大量碳酸钙聚集体且填充于颗粒接触处,碳酸钙晶体类型主要为球霰石。  相似文献   

10.
针对微生物诱导碳酸钙沉积 (MICP)固化钙质砂脆性强、抗拉强度低等问题,通过制备“8”字形MICP固化钙质砂试样并开展直接拉伸试验,对纤维加筋的改善作用、纤维-MICP联合加固机理及纤维掺量、纤维长度等影响因素进行了研究。结果表明:纤维加筋能够显著提高抗拉强度、峰值位移和残余强度,减轻峰值强度点的脆性破坏现象,但受纤掺量和长度的影响,总的来说,抗拉强度随纤维掺量的增加和长度的加长呈先增后减的趋势。相比无纤维试样,添加最优纤维掺量(0.6%)时,试样的抗拉强度增长了172.4%,峰值变形提升了158.1%。机理可解释为纤维增加了微生物的吸附量,促进碳酸钙在纤维与钙质砂之间以及纤维表面的沉积,增大纤维与钙质砂之间的界面作用力,整体提升钙质砂的抗拉强度特性。纤维的添加能够显著改变试样的变形特征,无纤维添加试样曲线仅有初始误差阶段和弹性阶段两个阶段,添加纤维后曲线表现为四个阶段包括初始误差阶段、弹性阶段、损伤破坏阶段和残余阶段。纤维掺量影响的内因是纤维与钙质砂的界面作用力和纤维空间分布状态随纤维掺量的变化而变化,纤维长度的影响主要和破坏面附近纤维数量和单位长度所能承担的拉应力相关。研究成果对以钙质砂为地基的岛礁工程的稳定性、安全性具有一定的指导意义。  相似文献   

11.
喻成成  卢正  姚海林  刘杰  詹永祥 《岩土力学》2022,(S1):157-163+172
微生物诱导碳酸钙沉淀(microbial induced calcite precipitation,简称MICP)技术可能是有助于解决膨胀土胀缩行为的一种潜在方法。用细菌浓度和脲酶活性作为控制指标,研究了在不同培养条件下的巴氏芽孢杆菌的生长特性,确定了最有利于细菌生长的温度、pH和摇床震荡速率。用MICP技术对两种不同的膨胀土进行处治,通过比较处治前后土样的自由膨胀率、无荷膨胀率、黏聚力、内摩擦角以及抗剪强度等物理力学指标,验证处治效果,从微观角度解释了改性膨胀土的作用机制。结果表明:培养温度为30℃、pH为7、摇床震荡速率为200 r/min时,最适宜细菌生长。MICP处治后的膨胀土自由膨胀率和无荷膨胀率均有明显下降,黏聚力、内摩擦角以及抗剪强度均有明显增强,MICP过程中生成的碳酸钙起到了孔隙填充和土颗粒胶结作用,同时钙离子对低价阳离子的置换和碳酸钙对土颗粒的包裹效应,共同作用改善了膨胀土特性。研究可为微生物处治膨胀土技术和工程应用提供参考。  相似文献   

12.
微生物诱导碳酸钙沉积(MICP)作用是一种新型的土体改良技术。钙源作为MICP反应中重要的反应物,对微生物诱导碳酸钙沉积的效果有重要的影响。目前应用最广泛的钙源——氯化钙(CaCl2),具有成本高,环境污染性大的缺点。为此,文章提出利用石灰石粉提取钙源,通过在石灰石粉中加入乙酸溶液,释放钙离子用于微生物固化土体。通过开展无侧限抗压强度试验以及微观结构的扫描电镜观测、碳酸钙含量测定等分析,验证利用石灰石粉提取的钙源用于微生物诱导碳酸钙沉积作用固化土体的可行性,同时与醋酸钙和氯化钙固化砂柱进行了对比分析。研究结果表明:(1)石灰石粉用于微生物固化土体具有可行性,固化后砂柱的强度和碳酸钙含量较高,结构完整性高;(2)不同钙源固化砂柱的力学特性不同但均呈典型的脆性破坏模式,其中醋酸钙固化砂柱的无侧限抗压强度略高于石灰石钙源固化砂柱,氯化钙固化砂柱的无侧限抗压强度则远低于前两者且表面更加粗糙,孔隙更多,破坏后的完整性更低;(3)不同钙源固化砂柱的碳酸钙含量不同。醋酸钙和石灰石钙源固化砂柱的碳酸钙含量相近,而氯化钙固化砂柱中碳酸钙含量较低。不同钙源固化砂柱的碳酸钙含量和无侧限抗压强度基本呈正相关关系;(4)醋酸钙和石灰石钙源固化砂柱中砂土颗粒的表面和接触点间均沉积大量碳酸钙,碳酸钙晶体主要为薄片状堆叠的方解石。氯化钙固化砂柱中碳酸钙沉积量低于前两者,碳酸钙晶体主要为六面体状的方解石;(5)不同钙源主要通过影响微生物成矿过程的晶型、晶貌、晶体含量、晶体分布及胶结特征来改变固化效果。  相似文献   

13.
王绪民  郭伟  余飞  易朝  孙霖 《岩土力学》2016,37(Z2):363-368
采用2次注入菌液方式,制备不同浓度营养盐处理的微生物诱导碳酸钙沉淀(MICP)胶结砂样。通过固结排水三轴试验和碳酸钙定量化学试验测定试样强度参数及碳酸钙(CaCO3)含量,分析了营养盐浓度对胶结砂物理力学特性的影响及碳酸钙沉淀量试样强度指标间的关系。结果表明,同等反应时间、同等体积营养盐溶液条件下,随着营养盐浓度的提高试样强度逐渐升高,且达到一定峰值后再下降;碳酸钙晶体分布形态较好条件下,变形模量随着试样干密度的增加而增加;碳酸钙晶体分布形态和沉淀含量共同影响MICP试样强度的提高,试验中0.5 M试样强度提高效果最好,碳酸钙含量、黏聚力、内摩擦角分别为6.03%、46.9 kPa和41.31°。  相似文献   

14.
吹填钙质砂是岛礁工程中常见的地基土,其所处的海洋环境对其渗透性和抗渗透破坏能力提出一定要求。微生物与钙质砂拌和的方法,有可能将微生物诱导碳酸钙沉积(MICP)技术与吹填工艺结合,以期在吹填过程中完成对地基土的预处理。通过对不同密实度的钙质砂进行微生物固化前后的渗透试验,探究微生物拌和固化方法改善钙质砂渗透性和抗渗透变形性能的效果。结果表明,拌和方法可以使松散钙质砂的渗透系数降低至密实砂同等水平,其抵抗渗透破坏的临界水力坡降也大幅提高,破坏形式由管涌变为流土。  相似文献   

15.
微生物矿化作用改善岩土材料性能的影响因素   总被引:1,自引:0,他引:1  
基于微生物诱导碳酸钙沉淀作用(MICP)的土体改性技术近年来在岩土工程领域引起了人们的广泛关注。该技术在改善岩土材料的强度、刚度、抗液化、抗侵蚀及抗渗透性等性能的同时,还能维持土体良好的透气性和透水性,改善植物的生长环境。由于微生物矿化作用涉及一系列生物化学和离子化学反应,固化过程中的反应步骤较多,因此,MICP固化效果受许多因素的制约与影响。基于大量文献资料,系统总结了细菌种类、菌液浓度、温度、pH值、胶结液配比及土的性质等关键因素对微生物改善岩土材料性能的影响,讨论了这些影响因素的优化方式和未来的研究方向,主要得到了以下几点结论:菌种类型、菌液浓度、温度、pH、胶结液性质会从微观上影响碳酸钙的晶体类型、形貌和尺寸,进而在宏观层面影响岩土体的胶结效果;菌液浓度尽可能高、温度在20~40℃间、pH值在7.0~9.5左右、胶结液浓度在1 mol/L以内的因素条件对微生物加固岩土体具有较好的效果。上述范围内的低温、较高的pH值、低浓度胶结液有助于提高土体的抗渗性,而高温、较低的pH值以及中高浓度胶结液有助于提高土体的强度;MICP加固土体的有效粒径范围为10~1 000 ?m,相对密度越大、级配越好则加固效果越好。分步灌浆法、多浓度相灌注法及电渗灌浆法有助于提高土体固化均匀性,0.042 (mol/L)/h以下的注浆速度有利于提高胶结液利用率,砂土试样的灌浆压力一般在10~30 kPa之间,粉黏土试样的灌浆压力不宜超过110 kPa,过高的灌浆压力会破坏土体结构,降低固化效果。  相似文献   

16.
微生物沉积碳酸钙固化砂质黏性紫色土试验研究   总被引:1,自引:0,他引:1  
沈泰宇  汪时机  薛乐  李贤  何丙辉 《岩土力学》2019,40(8):3115-3124
重庆紫色土是一种砂质黏性土,地区降雨集中,水力冲蚀作用剧烈,极易产生水土流失,微生物诱导方解石沉积(MICP)技术因能耗低、污染小而广泛应用于土体加固中。通过正交试验优化了巨大芽孢杆菌(BNCC 336739)的培养基和培养条件,活菌数增长126%,活性良好。采用巨大芽孢杆菌,进行低水压(9.8kPa)灌注固化砂质黏性紫色土试验,探究了固化效果的变化规律。结果表明:随固化次数增加,碳酸钙生成量和干密度逐级增加,无侧限抗压强度与碳酸钙生成量正相关;碳酸钙有效沉积越来越少,强度提高趋于稳定,固化9次后强度提高77%;随孔隙被碳酸钙填充和上下碳酸钙硬壳的形成,渗透性不断降低,最终下降两个数量级;通过试样上、中、下三部分碳酸钙生成量C的样本标准差s来反映碳酸钙分布离散程度,发现割线弹性模量在s的影响下随C增加而波动上升,波动表现为在C相近或s相差很大时,s越小割线弹性模量越大。研究成果可以为MICP技术在紫色土地区的地基、边坡加固和水土流失防护等工程应用提供科学依据和参考。  相似文献   

17.
基于微生物或脲酶诱导碳酸钙沉淀(MICP/EICP)的土体固化技术是近年来岩土和地质工程领域的研究热点之一。在系统回顾基于生物诱导碳酸钙沉淀的土体固化技术发展历程的基础上,重点阐述了MICP/EICP固化机制、土体孔隙结构、菌液和脲酶性质、胶凝液性质和固化方式等方面对碳酸钙特性影响的研究进展。研究结果表明:土体孔隙越小,越不利于微生物或脲酶入渗,固化均匀性越差;土颗粒接触点越多,可为碳酸钙提供的沉积点位越多,碳酸钙与土颗粒间的黏结和桥接作用越强,固化效果越好;一定菌液或脲酶浓度或脲酶活性范围内,碳酸钙的生成速率和生成总量随浓度及活性的增大而增大,但过高的浓度或活性易导致碳酸钙生成速率过快,从而在土体注入端发生堵塞;低浓度胶凝液得到的碳酸钙晶体更小,在土体中的分布更均匀;采用合适的注浆饱和度可提高具有黏结作用的碳酸钙的占比;采用多层交替注入或单相低pH值注入可提高碳酸钙在试样中分布的均匀性。基于碳酸钙沉淀特性的影响因素,提高固化土体的均匀性,验证其耐久性,室内试验结果在现场尺度的适应性和改进方案应该成为以后研究的重点。  相似文献   

18.
崔猛  符晓  郑俊杰  吕苏颖  熊辉辉  曾晨  韩尚宇 《岩土力学》2022,43(11):3027-3035
植物源脲酶诱导碳酸钙沉淀(enzyme induced carbonate precipitation,简称EICP)可以显著改善砂土的工程力学特性,但在具体操作时,参数取值无对应规范,固化效果有待提升。基于黄豆脲酶,研究了温度、脲酶浓度、尿素浓度、钙浓度、pH值、钙源种类等变量对脲酶活性与碳酸钙沉淀的影响,并进行了沉淀物(碳酸钙晶体)的扫描式电子显微镜(scanning electron microscope,简称SEM)与X射线衍射(X-ray diffraction,简称XRD)测试,在此基础上开展了黄豆脲酶固化砂的无侧限抗压强度与固化效果试验研究。结果表明:脲酶活性随脲酶浓度的增加而线性增长,但存在温度阈值,温度超过阈值后,脲酶将完全失活,且阈值随脲酶浓度的增大而降低;尿素浓度与pH值共同影响脲酶活性,二者存在一个最优组合,当尿素浓度在0.1~1.0 mol/L时最优pH值为7,当尿素浓度在1.0~1.5 mol/L时最优pH值为8。脲酶是沉淀反应的催化剂,脲酶浓度越高,反应越完全,碳酸钙沉淀率越高;尿素与钙溶液则主要通过掺入量影响碳酸钙沉淀量,掺量比例宜为1:1,且二者浓度与pH值可通过影响脲酶活性来影响碳酸钙的沉淀情况;不同钙源对碳酸钙沉淀量的影响幅度不大。不同钙源沉淀碳酸钙晶体的成分与密度基本相同,但晶体结构差异较大,氯化钙沉淀碳酸钙晶体以块状为主,表面分布球状、类球状晶体,胶结面大,可作为EICP技术中较为理想的钙源。基于黄豆脲酶和氯化钙钙源固化砂的无侧限抗压强度约为掺粉煤灰砂样的6倍,通过SEM图像可发现,沉淀碳酸钙晶体包裹并黏结砂粒成为整体,固化效果非常理想。  相似文献   

19.
肖维民  林馨  钟建敏  李双  朱占元 《岩土力学》2023,(10):2798-2808
微生物诱导碳酸钙沉积技术(microbially induced calcite precipitation,MICP)在土体加固中应用广泛,但在岩体封堵领域的研究成果还不多见。为了研究岩石节理MICP封堵机制,以透明树脂模拟粗糙岩石节理试件为研究对象,考虑MICP反应影响因素,开展了6种不同工况下的岩石节理MICP封堵室内试验,得到了MICP封堵过程中岩石节理导水系数和水力隙宽变化规律以及相应的碳酸钙时空分布图像。试验结果表明:MICP封堵过程中岩石节理水力隙宽随灌注轮次大致呈线性减小趋势,且水力隙宽减小速率与岩石节理中碳酸钙分布情况密切相关,而MICP反应过程中碳酸钙分布又受灌注速率、固定液、菌液和反应液灌注时长、静置时长等因素影响;6种工况中灌注速率较大、先灌注菌液和固定液静置一段时间再灌注菌液和反应液、灌注和静置时间最长的工况4封堵效率和效果最佳,在仅灌注2轮的情况下可将岩石节理导水系数由40.51×10–6m2/s减小至0.52×10–6m2/s,降幅达98.72%,对应的水力隙宽值由0....  相似文献   

20.
通过选取3种不同颗粒尺寸的砂样进行微生物诱导碳酸钙(MICP)注浆试验,对同一尺寸试验组分别进行8、10、12次胶结液灌注,结合细菌吸附率、流出液Ca2+浓度、试样渗透系数、碳酸钙含量、孔隙结构和最终加固效果等数据,探讨了颗粒尺寸对MICP加固砂土的影响。试验结果表明,细菌吸附率与颗粒尺寸间存在一定联系,颗粒尺寸越大,细菌吸附量相对越少;同时颗粒尺寸会影响试样固化过程及孔隙结构的发展,颗粒尺寸较小的试样能留住更多的营养物质;固化过程中,颗粒尺寸较小的砂样由于孔隙较小、渗透系数小等原因,试样上部易形成淤堵,从而导致试样加固效果不均;大颗粒尺寸的试样,孔隙较大、持水能力弱,产生的碳酸钙含量偏低并在试样下部堆积,从而导致加固效果较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号