首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
使用天然海水进行微生物培养并诱导碳酸钙沉淀(MICP)加固钙质砂试验,首先通过微生物的生长繁殖情况和脲酶活性的变化研究海水对微生物的影响。然后,根据MICP加固前后钙质砂渗透性和无侧限抗压强度(UCS)的变化评价海水对MICP加固效果的影响。最后,利用SEM和XRD测试分析海水影响MICP加固钙质砂效果的机制。结果表明:(1)天然海水使微生物的生长出现滞后期,但稳定期的微生物数量和脲酶活性与淡水环境下相差不大;(2)使用海水MICP加固钙质砂的效果与淡水条件下相比差别较小,钙质砂的渗透系数可降低一个数量级,UCS值可达1.7 MPa;(3)海水条件下MICP过程受到海水成分、微生物、钙离子浓度、尿素浓度和p H值等因素的调控,主要沉积的碳酸钙晶型为方解石,方解石填充了粒间孔隙,使砂颗粒胶结为整体,这是钙质砂力学性能提高的主要原因。  相似文献   

2.
为了将海水作为原料利用于微生物诱导碳酸钙(MICP)加固岛礁地基,进行了海水浓缩试验以及将浓缩海水作为钙源溶液的MICP砂土加固试验,研究细菌固定方式、细菌注入批次、胶结液中尿素浓度以及胶结液注入流速对加固效果的影响。研究表明,在不析出钙离子的条件下,将海水进行浓缩的最高倍数为3倍,此时钙离子含量约为0.033mol/L;尿素添加量宜为浓缩海水中钙离子含量的3倍,可有效利用胶结液中钙离子产生沉淀;使用2 mL/min的胶结液注入流速对5 cm砂柱进行加固可以得到最佳加固效果;加固后砂柱无侧限抗压强度达653 kPa,耗时4.5 d;增加细菌注入批次无法对砂柱加固效果进行有效改善。  相似文献   

3.
钙质砂广泛分布于热带海岸地区,其抗剪强度较低,在较高应力条件下极易破碎。因此,对以钙质砂为主要原料的地基材料进行加固,是海洋岩土工程领域的研究热点。基于尿素水解过程的碳酸钙成矿技术(MICP)是近年来地基材料加固领域的一项新技术。目前广泛使用的生物强化法实现MICP存在成本昂贵及环境适应性差等问题,制约了其大规模工程应用。研究采用原位生物激发MICP法对钙质砂进行加固,并对加固后试样开展直剪和一维压缩试验。结果表明:原位生物激发MICP方法可以在钙质砂中形成有效胶结,胶结水平最大可达6.26%。采用高浓度胶结溶液或增加注射次数可提高胶结水平。同时,加固后钙质砂的最大应力比、最大剪胀角以及残余内摩擦角均随胶结水平增加而显著增大,但竖向应力水平增大会抑制这些力学指标的增大。随胶结水平升高,试样压缩性显著减小;压缩后的原位激发MICP加固钙质砂中,细颗粒与粗颗粒的比例均随胶结水平的增加而增大。  相似文献   

4.
微生物诱导碳酸盐沉积(MICP)技术主要利用微生物生命活动与环境反应形成的碳酸盐来修复岩土体。为了研究该技术改善含裂隙岩石防渗性能和强度的效果,利用巴氏芽孢杆菌开展了裂隙黄砂岩的修复试验,并对修复后的裂隙黄砂岩进行了无侧限抗压、核磁共振和电镜扫描(SEM)等测试,分析了巴氏芽孢杆菌对裂隙黄砂岩的修复效果和修复机制。研究表明:巴氏芽孢杆菌对裂隙黄砂岩具有较好的修复效果;修复时间越长,巴氏芽孢杆菌的修复效果越好。修复42d后,裂隙黄砂岩的孔隙率下降36.41%,防渗性能提升94.62%,抗压强度增加30.52%。巴氏芽孢杆菌具有较好修复效果原因在于,其诱导产生的碳酸钙能够胶结填充物与试样,大幅降低试样的孔隙率,改善其内部孔隙结构的均质性。  相似文献   

5.
MICP联合纤维加筋改性钙质砂的动力特性研究   总被引:1,自引:0,他引:1  
王瑞  泮晓华  唐朝生  吕超  王殿龙  董志浩  施斌 《岩土力学》2022,43(10):2643-2654
为了提高我国南海钙质砂地基的抗液化性能,提出利用微生物诱导碳酸钙沉积(MICP)技术联合纤维加筋技术对钙质砂进行改性处理。通过开展动三轴试验,对比分析了改性前后钙质砂试样的动应变、动孔压、应力−应变滞回曲线以及动弹性模量的发展规律和演化特征,并结合扫描电镜(SEM)试验探究了MICP和纤维加筋技术对钙质砂的联合改性机制。研究结果表明:(1)MICP技术可以明显改善钙质砂试样的抗变形与抗液化性能,相比于未胶结处理试样,仅MICP处理试样的动应变和动孔压分别降低了95.74% 和 92.46%;(2)纤维的掺入进一步提升了MICP的改性效果,相比于仅MICP处理试样,MICP和纤维加筋联合处理试样的动应变和动孔压分别降低了 74.32%和 74.18%;(3)MICP 和纤维加筋技术通过减轻试样在循环荷载作用下的循环活动强度和能量耗散、提高试样的动弹性模量和减小动弹性模量的衰减速率,从而实现试样抗变形与抗液化性能的显著提高;(4)SEM 试验分析结果表明,MICP 与纤维对钙质砂动力特性的改善具有协同作用。纤维的掺入为细菌提供了更多的附着场所,促进了碳酸钙晶体的生成量,该部分碳酸钙不仅增加了颗粒间的胶结强度,同时也将纤维固定在砂颗粒上增强了纤维网的约束作用。  相似文献   

6.
低温条件下微生物诱导沉淀产率低,制约着微生物诱导固化(MICP)技术的实际工程应用。通过控制不同温度和pH值,对比分析巴氏芽孢杆菌和巨大芽孢杆菌的生长繁殖特征和脲酶活性,同时在胶凝液中添加营养物质和控制尿素浓度和钙离子浓度,研究提高沉淀产率的方法,利用XRD测试分析沉淀晶型。进行渗透性试验和无侧限抗压强度试验,对比分析了不同菌种的砂土固化效果,结果表明,低温条件下巨大芽孢杆菌生长繁殖比巴氏芽孢杆菌快,脲酶活性更高,且巨大芽孢杆菌最适宜p H=8,更适合于碱性环境;可以通过在胶凝液中添加营养物质,控制尿素浓度为1.5 M和醋酸钙浓度为0.5 M增加碳酸钙沉淀产率;低温条件下巨大芽孢杆菌沉淀产率总高于巴氏芽孢杆菌,沉淀晶型为更稳定的方解石;采用巨大芽孢杆菌固化的试样渗透性可降低3~4个数量级,而巴氏芽孢杆菌固化的砂柱渗透性只降低2~3个数量级,其中颗粒粒径越小,渗透性降低越明显,且同等条件下巨大芽孢杆菌固化的砂柱试样强度也大于巴氏芽孢杆菌固化试样。因此,低温条件下巨大芽孢杆菌更适合进行实际工程应用。  相似文献   

7.
钙质砂是中国南海岛礁工程建设的主要建筑材料和地基土成份,其具有高孔隙、易破碎和强度低等不良工程地质特性。为改善钙质砂力学性能,提高其工程可靠性,提出利用微生物诱导碳酸钙沉积(MICP)协同纤维加筋改性钙质砂。文章通过开展无侧限抗压试验以及扫描电镜测试,对比分析不同纤维掺量下MICP固化钙质砂的力学响应特性及微观破坏机理。结果表明:(1)MICP技术能够有效固化钙质砂,并提升其力学强度;(2)纤维能够增加细菌定殖面积,提升碳酸钙沉积量,并由此提升试样延性和韧性,降低刚度;(3)应力应变曲线呈阶梯状多峰特征。在应力上升阶段,砂颗粒和碳酸钙会发生局部破碎;在峰后应力下降阶段,碳酸钙、砂颗粒、纤维的胶结作用增强了纤维的抗拔性能,限制了破坏面的发展;(4)碳酸钙、砂颗粒、纤维的耦合胶结作用是纤维加筋改善试样韧性、延性的根本原因。  相似文献   

8.
作为一种特殊的岩土介质材料,钙质砂具有在低压下易破碎的性质。微生物诱导方解石沉淀(MICP)技术得到了广泛的关注和认可,可用来改善钙质砂的破碎特性。文章从室内试验和离散元模拟两个角度分别对钙质砂颗粒MICP固化前后进行单颗粒压碎试验,通过Weibull分布和SEM扫描等探究了MICP对钙质砂颗粒破碎行为的影响。结果表明:离散元模拟得到的生存概率曲线及Weibull模量m值与试验结果均吻合较好,验证了该数值模型的有效性。与室内试验相比,数值模拟可以精确地反映颗粒的裂纹分布及破碎过程,且可以研究同一颗粒MICP固化前后的情形,弥补了室内实验的不足,但其取决于模型参数的选取;经过MICP固化后的钙质砂颗粒表面有明显的方解石结晶生成,颗粒表面及内孔隙分别得到一定程度的包裹和填充,导致颗粒破碎强度有明显的增强且离散性大大降低,破碎模式由“多峰型”向“单峰型”转变,局部裂纹减少,多以表面磨损和直接产生贯穿裂纹为主。  相似文献   

9.
微生物矿化是近年来在土体改良工程发展起来的一个新分支,主要研究微生物活性在改善土体颗粒特性方面的应用。微生物诱导碳酸盐沉积(MICP)是实现土体生物胶结最常用的方法之一,该技术借助脲酶菌的代谢行为诱导碳酸钙,将松散的砂颗粒胶结成整体,从而提高了土体的力学性能。文章系统性地介绍了MICP研究中的脲酶菌矿化机理、相关处理方法、影响因素、衍生新工艺脲酶诱导碳酸盐沉积EICP及MICP技术在岩土领域的相关现场试验,并对MICP的实用性进行了总结,最后简要讨论了现研究阶段MICP工程应用所面临的挑战和潜在解决方案。  相似文献   

10.
为了探讨水泥掺量Ps、水灰比W/C(W为水质量,C为水泥质量)、含水率ω等因素对水泥胶结钙质砂导热系数λ的影响规律,基于热探针法测定了不同试验条件下水泥胶结钙质砂的导热系数,分析了各因素影响下导热系数的变化规律,运用电镜扫描技术阐释了上述变化趋势发生的微观机制;在此基础上,提出了考虑水泥掺量、水灰比、含水率3个因素共同影响的水泥胶结钙质砂导热系数计算模型。试验结果表明:(1)水泥胶结钙质砂的导热系数λ显著大于天然钙质砂的λ值,随着水泥掺量Ps的增加,λ值递增,但增长幅度依次递减;(2)水泥胶结钙质砂导热系数λ随含水率ω的增加而递增,呈正相关关系;水灰比W/C越大,λ反而越小;(3)水泥胶结钙质砂内微孔隙大小、数量的变化从本质上决定了其宏观热传导特性,凝胶状水化产物连续填充其内部孔隙,引起其孔隙率降低,改善砂样内部传热,宏观表现为其导热系数λ随着胶结程度的增加而递增;(4)综合考虑Ps、ω、W/C的3个因素共同影响的水泥胶结钙质砂导热系数计算模型具有很好的适用性,相关系数R~2=0.916 4。  相似文献   

11.
针对微生物诱导碳酸钙沉积 (MICP)固化钙质砂脆性强、抗拉强度低等问题,通过制备“8”字形MICP固化钙质砂试样并开展直接拉伸试验,对纤维加筋的改善作用、纤维-MICP联合加固机理及纤维掺量、纤维长度等影响因素进行了研究。结果表明:纤维加筋能够显著提高抗拉强度、峰值位移和残余强度,减轻峰值强度点的脆性破坏现象,但受纤掺量和长度的影响,总的来说,抗拉强度随纤维掺量的增加和长度的加长呈先增后减的趋势。相比无纤维试样,添加最优纤维掺量(0.6%)时,试样的抗拉强度增长了172.4%,峰值变形提升了158.1%。机理可解释为纤维增加了微生物的吸附量,促进碳酸钙在纤维与钙质砂之间以及纤维表面的沉积,增大纤维与钙质砂之间的界面作用力,整体提升钙质砂的抗拉强度特性。纤维的添加能够显著改变试样的变形特征,无纤维添加试样曲线仅有初始误差阶段和弹性阶段两个阶段,添加纤维后曲线表现为四个阶段包括初始误差阶段、弹性阶段、损伤破坏阶段和残余阶段。纤维掺量影响的内因是纤维与钙质砂的界面作用力和纤维空间分布状态随纤维掺量的变化而变化,纤维长度的影响主要和破坏面附近纤维数量和单位长度所能承担的拉应力相关。研究成果对以钙质砂为地基的岛礁工程的稳定性、安全性具有一定的指导意义。  相似文献   

12.
沙漠微生物矿化覆膜及其稳定性的现场试验研究   总被引:2,自引:0,他引:2  
李驰  王硕  王燕星  高瑜  斯日古楞 《岩土力学》2019,40(4):1291-1298
将微生物诱导矿化技术应用于原位沙漠覆膜的形成,使得流动沙丘经结皮固定而成为半固定、固定沙丘,从根本上阻断沙尘暴的源头。在内蒙古乌兰布和沙漠腹地选择两个微生物矿化试验区域(TP1和TP3),分别用于两种不同矿化菌种诱导生成碳酸钙覆膜。研究沙漠微生物矿化覆膜的现场试验方法及工艺,对原位矿化覆膜的强度及其在沙漠环境中的长期稳定性进行跟踪检测。采用沙漠土中自行提取的葡萄球菌和传统的巴氏芽孢杆菌两种不同的微生物矿化菌种,通过现场贯入试验检测7、14、28、60、210 d后矿化覆膜沿深度发展的贯入阻力,并将覆膜厚度为2 cm处的平均贯入阻力换算成覆膜层强度,总结覆膜强度随时间的发展变化规律。现场观测结果显示,不同微生物菌种诱导生成的矿化覆膜均在试验的第4天开始形成,到第7天覆膜层具有稳定的强度和厚度,现场检测覆膜的平均厚度为2.0~2.5 cm,经自源葡萄球菌诱导生成的矿化覆膜(TP1)的强度是巴氏芽孢杆菌诱导生成的矿化覆膜(TP3)强度的1.05倍。当经历冬春交替后覆膜层强度都有不同程度的降低,明显地TP3较TP1区域表面剥落更为严重,第210天检测TP3的平均厚度为0.7~1.0 cm,覆膜强度较第7天时降低19%,覆膜内碳酸钙含量较第7天检测时降低15%~30%。而TP1在第210天时的强度较第7天时强度降低仅2%。因此,微生物诱导矿化技术可以应用于沙漠原位覆膜的形成,且沙漠自源葡萄球菌经诱导生成的矿化覆膜层具有更好的强度表现和稳定性。  相似文献   

13.
微生物固化(microbial-induced calcite precipitation, 简称为MICP)技术是岩土工程领域新兴起的一种地基处理技术,利用微生物诱导产生的碳酸钙晶体胶结松散土颗粒,改善土体的力学特性。选用巴氏芽孢杆菌作为固化细菌,采用单一浓度(0.5、1.0 mol)和多浓度相结合(前期采用0.5 mol,后期采用1.0 mol)的化学处理方式注射胶结液(尿素/氯化钙混合液),研究化学处理方式对微生物固化砂土强度的影响。基于试验测试分析了固化砂土试样的强度、破坏模式以及碳酸钙含量。试验结果表明,化学处理方式对固化砂土试样的强度有显著影响,对破坏模式和碳酸钙含量无明显影响;多浓度相结合的化学处理方式能够以较少的灌浆次数获取较高强度的试样。最后,对化学处理方式对强度影响的机制进行深入分析。  相似文献   

14.
王绪民  郭伟  余飞  易朝  孙霖 《岩土力学》2016,37(Z2):363-368
采用2次注入菌液方式,制备不同浓度营养盐处理的微生物诱导碳酸钙沉淀(MICP)胶结砂样。通过固结排水三轴试验和碳酸钙定量化学试验测定试样强度参数及碳酸钙(CaCO3)含量,分析了营养盐浓度对胶结砂物理力学特性的影响及碳酸钙沉淀量试样强度指标间的关系。结果表明,同等反应时间、同等体积营养盐溶液条件下,随着营养盐浓度的提高试样强度逐渐升高,且达到一定峰值后再下降;碳酸钙晶体分布形态较好条件下,变形模量随着试样干密度的增加而增加;碳酸钙晶体分布形态和沉淀含量共同影响MICP试样强度的提高,试验中0.5 M试样强度提高效果最好,碳酸钙含量、黏聚力、内摩擦角分别为6.03%、46.9 kPa和41.31°。  相似文献   

15.
微生物诱导碳酸钙沉积(MICP)作用是一种新型的土体改良技术。钙源作为MICP反应中重要的反应物,对微生物诱导碳酸钙沉积的效果有重要的影响。目前应用最广泛的钙源——氯化钙(CaCl2),具有成本高,环境污染性大的缺点。为此,文章提出利用石灰石粉提取钙源,通过在石灰石粉中加入乙酸溶液,释放钙离子用于微生物固化土体。通过开展无侧限抗压强度试验以及微观结构的扫描电镜观测、碳酸钙含量测定等分析,验证利用石灰石粉提取的钙源用于微生物诱导碳酸钙沉积作用固化土体的可行性,同时与醋酸钙和氯化钙固化砂柱进行了对比分析。研究结果表明:(1)石灰石粉用于微生物固化土体具有可行性,固化后砂柱的强度和碳酸钙含量较高,结构完整性高;(2)不同钙源固化砂柱的力学特性不同但均呈典型的脆性破坏模式,其中醋酸钙固化砂柱的无侧限抗压强度略高于石灰石钙源固化砂柱,氯化钙固化砂柱的无侧限抗压强度则远低于前两者且表面更加粗糙,孔隙更多,破坏后的完整性更低;(3)不同钙源固化砂柱的碳酸钙含量不同。醋酸钙和石灰石钙源固化砂柱的碳酸钙含量相近,而氯化钙固化砂柱中碳酸钙含量较低。不同钙源固化砂柱的碳酸钙含量和无侧限抗压强度基本呈正相关关系;(4)醋酸钙和石灰石钙源固化砂柱中砂土颗粒的表面和接触点间均沉积大量碳酸钙,碳酸钙晶体主要为薄片状堆叠的方解石。氯化钙固化砂柱中碳酸钙沉积量低于前两者,碳酸钙晶体主要为六面体状的方解石;(5)不同钙源主要通过影响微生物成矿过程的晶型、晶貌、晶体含量、晶体分布及胶结特征来改变固化效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号