首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Volcanogenic massive sulfide (VMS) deposits are one of the most important base–metal deposit types in China, are major sources of Zn, Cu, Pb, Ag, and Au, and significant sources for Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga, and Ge. They typically occur at or near the seafloor in submarine volcanic environments, and are classified according to base metal content, gold content, or host-rock lithology. The spatial distribution of the deposits is determined by the different geological settings, with VMS deposits concentrated in the Sanjiang, Qilian and Altai metallogenic provinces. VMS deposits in China range in age from Archaean to Mesozoic, and have three epochs of large scale mineralization of Proterozoic, Palaeozoic and Mesozoic. Only Hongtoushan Cu–Zn deposit has been recognized so far in an Archaean greenstone belt, at the north margin of the North China Platform. The Proterozoic era was one of the important metallogenic periods for the formation of VMS mineralization, mainly in the Early and Late Proterozoic periods. VMS-type Cu–Fe and Cu–Zn deposits related to submarine volcanic-sedimentary rocks, were formed in the Aulacogens and rifts in the interior and along both sides of the North China Platform, and the southern margin of the Yangtze Platform. More than half of the VMS deposits formed in the Palaeozoic, and three important VMS–metallogenic provinces have been recognized, they are Altai–Junggar (i.e. Ashele Cu–Pb–Zn deposit), Sanjiang (i.e. Laochang Zn–Pb–Cu deposit) and Qilian (i.e. Baiyinchang Cu–Zn deposit). The Triassic is a significant tectonic and metallogenic period for China. In the Sanjiang Palaeo–Tethys, the Late Triassic Yidun arc is the latest arc–basin system, in which the Gacun-style VMS Pb–Zn–Cu–Ag deposits developed in the intra-arc rift basins, with bimodal volcanic suites at the northern segment of the arc.  相似文献   

2.
闽西南地区大地构造演化和矿床时空分布规律   总被引:5,自引:1,他引:4  
张振杰  左仁广 《岩石学报》2015,31(1):217-229
在充分吸收前人工作成果的基础上,讨论了闽西南地区的主要矿床类型及其特征,将闽西南地区的矿床划分为三个矿床成矿系列:晋宁期与海相火山作用有关的铅、锌、银多金属块状硫化物矿床成矿系列;海西-印支期与火成岩有关的铁、铜、铅、锌多金属矿床成矿系列;燕山期与中酸性火成岩有关的铁、铜、铅、锌、钼、钨、锡、金、银、铀等多金属矿床成矿系列。其中,与燕山期有关的矿床成矿系列可进一步划分为侏罗纪早期与壳幔混合源I型花岗闪长岩有关的铁、铜、铅、锌矿床成矿亚系列;侏罗纪晚期与壳源S型花岗质岩体有关的钨、锡、钼、铋多金属矿床成矿亚系列;早白垩世与壳源型中酸性侵入岩有关的层控矽卡岩型铁、铜、铅、锌、钼多金属矿床成矿亚系列;早白垩世与壳幔混合源型中酸性侵入岩-次火山作用有关的金、银、铜、钼、铅、锌、铀等多金属矿床成矿亚系列。总结研究提出了各成矿(亚)系列的形成背景、时空分布规律,初步认为晋宁期VMS型多金属矿床形成于华南联合陆块拉张裂解形成的政和-大埔海底双峰式火山盆地环境,海西-印支期岩浆热液-斑岩型金属矿床形成于陆内伸展与挤压环境交替出现的岩浆侵入过程中,而燕山期成矿(亚)系列则形成于太平洋构造域时期的陆内伸展与挤压环境交替出现的岩浆侵入与火山喷发的过程中。  相似文献   

3.
基于GIS空间分析技术,对云南澜沧江中南段多金属矿床的赋矿地层时间谱系、容矿构造空间谱系和矿床成因谱系进行了较系统的分析.研究表明,下-中元古界、三叠系、泥盆系、二叠系是本区最重要的赋矿层位,有两个聚矿期和多个时代地层含矿的特点,不同时代地层的含矿性具有多样性和专属型特征,元古宙火山沉积为主的建造是铁-铜、钨-锡矿为主的赋矿层位,晚古生代-中生代早期是沉积、裂谷火山活动强烈时期,金、铜、铅、锌、银、汞、锑、钨、锡多金属矿床高度聚集.自东向西为中生代坳陷区金、铜、镍成矿带,思茅-龙洞河晚古生代-三叠纪沉积盆地铜、铅、锌、银成矿带,岩浆弧地块钨、锡、铅-锌、铁成矿带,浅变质岩基底铅-锌-银、铁成矿带,被动边缘活动带金、铅-锌-银、锡成矿区和保山-镇康微地块铅-锌、铜、铁、汞成矿带,构成了容矿构造空间谱系.全区多金属矿床有沉积、沉积改造、岩浆-变质热液、火山沉积-火山热液四大成矿谱系,14种成矿类型,铜多金属、铅-锌-银、锡-钨矿床是研究区最具找矿前景的优势矿种.  相似文献   

4.
以中国内蒙古狼山一渣尔泰山中元古代SEDEX型铅.锌成矿带为例,研究了该区从太古代到中元古代地壳岩石的铅锌含量和变化关系以及与成矿的关系。研究发现,从早到晚,岩石SiO2和K2O含量升高,铅含量也与二者同步增加;FeO、MgO、CaO及Na20含量呈下降趋势,锌含量也同步降低。在太古代时,岩石的Zn/Pb比值一般〉8,中元古代时这一比值降低为2~4。矿石的Zn/Pb比值与基底岩石Zn/Pb比值具有很好的一致性。铅锌这种随时间的变化与中元古代铅的暴发性成矿及大规模铅锌共生矿床的形成是同步的,说明基底岩石中的铅和锌是该成矿带SEDEX矿床成矿的物质基础。  相似文献   

5.
四川攀西地区重要共伴生矿产特征及综合利用研究   总被引:5,自引:0,他引:5  
攀西地区地质构造复杂,矿产资源丰富,是四川矿产资源“聚宝盆”;重要共生矿产主要有铁、铜、铅、锌、钒、钛、镍、铂族、金锡、铌、钽、锆和稀有~稀土,伴生矿产主要赋存于铁矿床、铜矿床、铅锌矿床、金矿床、稀有一稀土矿床中约50余种;与铁、铜、铅锌、稀有-稀土矿有关的共伴生矿产4类21种类型。研究以上共伴生矿产类型与特征,加大共伴生矿产勘查与综合评价,建立综合评价指标体系,引进研发高效节能分离提取工艺、冶炼技术,是综合利用矿产资源的主要途径。  相似文献   

6.
Mesozoic mineral deposits in South China include world-class deposits of W, Sn and Sb and those that provide the major sources of Ta, Cu, Hg, As, Tl, Pb, Zn, Au and Ag for the entire country. These deposits can be classified into polymetallic hydrothermal systems closely related to felsic intrusive rocks (Sn–W –Mo granites, Cu porphyries, polymetallic and Fe skarns, and polymetallic vein deposits) and low-temperature hydrothermal systems with no direct connection to igneous activities (MVT deposits, epithermal Au and Sb deposits). Recent studies have shown that they formed in the Triassic (Indosinian), Jurassic–Cretaceous (Early Yanshanian), and Cretaceous (Late Yanshanian) stages. Indosinian deposits include major MVT (Pb–Zn–Ag) deposits and granite-related W–Sn deposits. Early Yanshanian deposits are low-temperature Sb–Au and high-temperature W–Sn and Cu porphyry types. Many Late Yanshanian deposits are low-temperature Au–As–Sb–Hg and U deposits, and also include high-temperature W–Sn polymetallic deposits. The formation of these deposits is linked with a specific tectonothermal evolution and igneous activities. This special issue brings together some of the latest information in eight papers that deal with the origins and tectonic environments of mineral deposits formed in these stages. We anticipate that this issue will stimulate more interests in these ore deposits in South China.  相似文献   

7.
Some Au deposits in southern Anhui Province have recently been found to be closely associated with Late Mesozoic intrusions. Typical examples include the Huashan Au (Sb) deposit and Au deposits at Zhaojialing, Wuxi, and Liaojia. In order to understand the mechanisms that led the formation of these Au deposits, we make detailed reviews on the geological characteristics of these Au deposits. Specifically, we present new LA-ICP-MS zircon U–Pb dating, along with elemental and Hf isotopic data from the Huashan Au (Sb) deposit. Our data suggests that the Huashan ore-related intrusions were emplaced during the Late Jurassic and Early Cretaceous periods (144–148 Ma). They are characterized by arc-magma features and high oxygen fugacity and are rich in inherited zircons. Zircon U–Pb ages and Lu–Hf isotopes from intrusions suggest that Proterozoic juvenile lithosphere is the main source of these intrusions. The regional geological history implies that lithosphere beneath southern Anhui was produced during a Proterozoic subduction and was fertilized with Au (Cu) in the process. Integrated with the results of previous studies, we inferred that Late Mesozoic intrusions formed by the remelting of the lithosphere could provide the metal endowment for the Au-rich deposits in southern Anhui.  相似文献   

8.
The northwestern corner of New South Wales consists of the paratectonic Late Proterozoic to Early Cambrian Adelaide Fold Belt and older rocks, which represent basement inliers in this fold belt. The rest of the state is built by the composite Late Proterozoic to Triassic Tasman Fold Belt System or Tasmanides.In New South Wales the Tasman Fold Belt System includes three fold belts: (1) the Late Proterozoic to Early Palaeozoic Kanmantoo Fold Belt; (2) the Early to Middle Palaeozoic Lachlan Fold Belt; and (3) the Early Palaeozoic to Triassic New England Fold Belt. The Late Palaeozoic to Triassic Sydney—Bowen Basin represents the foredeep of the New England Fold Belt.The Tasmanides developed in an active plate margin setting through the interaction of East Gondwanaland with the Ur-(Precambrian) and Palaeo-Pacific plates. The Tasmanides are characterized by a polyphase terrane accretion history: during the Late Proterozoic to Triassic the Tasmanides experienced three major episodes of terrane dispersal (Late Proterozoic—Cambrian, Silurian—Devonian, and Late Carboniferous—Permian) and six terrane accretionary events (Cambrian—Ordovician, Late Ordovician—Early Silurian, Middle Devonian, Carboniferous, Middle-Late Permian, and Triassic). The individual fold belts resulted from one or more accretionary events.The Kanmantoo Fold Belt has a very restricted range of mineralization and is characterized by stratabound copper deposits, whereas the Lachlan and New England Fold Belts have a great variety of metallogenic environments associated with both accretionary and dispersive tectonic episodes.The earliest deposits in the Lachlan Fold Belt are stratabound Cu and Mn deposits of Cambro-Ordovician age. In the Ordovician Cu deposits were formed in a volcanic are. In the Silurian porphyry Cu---Au deposits were formed during the late stages of development of the same volcanic are. Post-accretionary porphyry Cu---Au deposits were emplaced in the Early Devonian on the sites of the accreted volcanic arc. In the Middle to Late Silurian and Early Devonian a large number of base metal deposits originated as a result of rifting and felsic volcanism. In the Silurian and Early Devonian numerous Sn---W, Mo and base metal—Au granitoid related deposits were formed. A younger group of Mo---W and Sn deposits resulted from Early—Middle Carboniferous granitic plutonism in the eastern part of the Lachlan Fold Belt. In the Middle Devonian epithermal Au was associated with rifting and bimodal volcanism in the extreme eastern part of the Lachlan Fold Belt.In the New England Fold Belt pre-accretionary deposits comprise stratabound Cu and Mn deposits (pre-Early Devonian): stratabound Cu and Mn and ?exhalite Au deposits (Late Devonian to Early Carboniferous); and stratabound Cu, exhalite Au, and quartz—magnetite (?Late Carboniferous). S-type magmatism in the Late Carboniferous—Early Permian was responsible for vein Sn and possibly Au---As---Ag---Sb deposits. Volcanogenic base metals, when compared with the Lachlan Fold Belt, are only poorly represented, and were formed in the Early Permian. The metallogenesis of the New England Fold Belt is dominated by granitoid-related mineralization of Middle Permian to Triassic age, including Sn---W, Mo---W, and Au---Ag---As Sb deposits. Also in the Middle Permian epithermal Au---Ag mineralization was developed. During the above period of post-orogenic magmatism sizeable metahydrothermal Sb---Au(---W) and Au deposits were emplaced in major fracture and shear zones in central and eastern New England. The occurrence of antimony provides an additional distinguishing factor between the New England and Lachlan Fold Belts. In the New England Fold Belt antimony deposits are abundant whereas they are rare in the Lachlan Fold Belt. This may suggest fundamental crustal differences.  相似文献   

9.
北山地区植被属戈壁荒漠植被类型,主要植物群落为红沙,红沙中多数元素特别是成矿元素及其伴生元素的含量和变化系数矿区大于背景区,元素含量背景区呈对数正态分布,矿区呈偏对数正态或多峰分布,红沙中的元素组合分类背景区为Au,Cu,Pb,Zn,As,Sb,Mo,V,Mn和Ag,Sn,Sr,Ba及Ti,Cr,Co,Ni,金矿区为Au,Ag,As,Sb,Mo,Mn,Sr和Cu,Pb,Zn,Sn,Ba及Co,Ni,Ti,V,Cr,铜矿区为Cu,Pb,Zn,Mo,Au,Ag,Ba和As,Sb,Sn,Mn及Ti,V,Cr,Co,Ni,Sr,矿区红沙中浓集系数较大的元素多数在矿区岩石中的浓集系统亦较大,金,铜矿床红沙和岩石中的特征元素分别都有Au,Ag,Ag,Sb,Mo,(Mn)和Cu,Pb,(Ba,Ti,Cr)。在金,铜矿床(体上方分别发育有良好的Au和Cu的生物地球化学异常和元素组合及分带,根据红沙的地球化学特征能,判断金或铜矿种类型,并能对掩埋,隐伏金,铜矿床(体)进行定位预测。  相似文献   

10.
广东中生代与壳幔岩浆活动有关的成矿作用十分强烈,多期成矿作用明显.在前人工作的基础上,根据矿床的成矿时代、成矿地质构造环境、主要成矿作用及形成的矿床组合,将中生代与岩浆作用有关的矿床厘定为6个矿床成矿系列:1)云开与印支期岩浆活动有关的铌、钽、磷、铁矿床成矿系列;2)粤北与燕山期花岗岩有关的有色金属、稀有金属、贵金属、非金属、铀矿床成矿系列;3)深大断裂带与燕山期基性-中酸性侵入岩有关的铜、铅、锌、金、铁、钼、钨、水晶、砷、硫铁、钒、钛矿床成矿系列;4)深变质带与区域变质、动力变质及燕山期花岗岩类有关的金、银矿床成矿系列;5)沿海与燕山期火山-侵入活动有关的铁、铜、金、银、铅、锌、钨、锡、钼、铌、钽、硫铁、水晶、萤石、叶蜡石、重晶石矿床成矿系列;6)阳春-罗定与燕山晚期壳源花岗岩类侵入活动有关的锡、钨、钼、铜、铁、铅、锌、银矿床成矿系列.论述了各成矿系列的基本特征,并对成矿系列形成的构造背景和成矿作用的时空分布及演化规律进行了探讨.  相似文献   

11.
Duobaoshan is the largest porphyry-related Cu-Mo-Au orefield in northeastern(NE)Asia,and hosts a number of large-medium porphyry Cu(PCDs),epithermal Au and Fe-Cu skarn deposits.Formation ages of these deposits,from the oldest(Ordovician)to youngest(Jurassic),have spanned across over 300 Ma.No similar orefields of such size and geological complexity are found in NE Asia,which reflects its metallogenic uniqueness in forming and preserving porphyry-related deposits.In this study,we explore the actual number and timing of magmatic/mineralization phases,their respective magma genesis,fertility,and regional tectonic connection,together with the preservation of PCDs.We present new data on the magmatic/mineralization ages(LA-ICP-MS zircon U-Pb,pyrite and molybdenite Re-Os dating),whole-rock geochemistry,and zircon trace element compositions on four representative deposits in the Duobaoshan orefield,i.e.,Duobaoshan PCD,Tongshan PCD,Sankuanggou Fe-Cu skarn,and Zhengguang epithermal Au deposits,and compiled published ones from these and other mineral occurrences in the orefield.In terms of geochronology,we have newly summarized seven magmatic phases in the orefield:(1)Middle-Late Cambrian(506-491 Ma),(2)Early and Middle Ordovician(485-471 Ma and~462 Ma),(3)Late Ordovician(450-447 Ma),(4)Early Carboniferous and Late-Carboniferous to Early Permian(351-345 and 323-291 Ma),(5)Middle-Late Triassic(244-223 Ma),(6)Early-Middle and Late Jurassic(178-168 Ma and~150 Ma),and(7)Early Cretaceous(~112 Ma).Three of these seven major magmatic phases were coeval with ore formation,including(1)Early Ordovician(485-473 Ma)porphyry-type Cu-Mo-(Au),(2)Early-Middle Triassic(246-229 Ma)porphyry-related epithermal Au-(Cu-Mo),and(3)Early Jurassic(177-173 Ma)Fe-Cu skarn mineralization.Some deposits in the orefield,notably Tongshan and Zhengguang,were likely formed by more than one mineralization events.In terms of geochemistry,ore-causative granitoids in the orefield exhibit adakite-like or adakite-normal arc transitional signatures,but those forming the porphyry-/epithermal-type Cu-Mo-Au mineralization are largely confined to the former.The varying but high Sr/Y,Sm/Yb and La/Yb ratios suggest that the ore-forming magmas were mainly crustal sourced and formed at different depths(clinopyroxene-/amphibole-/garnet-stability fields).The adakite-like suites may have formed by partial melting of the thickened lower crust at 35-40 km(for the Early Ordovician arc)and>40 km(for the Middle-Late Triassic arc)depths.The Early Jurassic Fe-Cu skarn orecausative granitoids show an adakitic-normal arc transitional geochemical affinity.These granitoids were likely formed by partial melting of the juvenile lower crust(35-40 km depth),and subsequently modified by assimilation and fractional crystallization(AFC)processes.In light of the geological,geochronological and geochemical information,we proposed the following tectonometallogenic model for the Duobaoshan orefield.The Ordovician Duobaoshan may have been in a continental arc setting during the subduction of the Paleo-Asian Ocean,and formed the porphyry-related deposits at Duobaoshan,Tongshan and Zhengguang.Subduction may have ceased in the latest Ordovician,and the regional tectonics passed into long subsidence and extension till the latest Carboniferous.This extensional tectonic regime and the Silurian terrestrial-shallow marine sedimentation had likely buried and preserved the Ordovician Duobaoshan magmatic-hydrothermal system.The south-dipping Mongol-Okhotsk Ocean subduction from north of the orefield had generated the Middle-Late Triassic continental arc magmatism and the associated Tongshan PCD and Zhengguang epithermal Au mineralization(which superimposed on the Ordovician PCD system).The Middle Jurassic closure of Mongol-Okhotsk Ocean in the northwestern Amuria block(Erguna terrane),and the accompanying Siberia-Amuria collision,may have placed the Paleo-Pacific subduction system in NE China(including the orefield)under compression,and formed the granodiorite-tonalite and Fe-Cu skarn deposits at Sankuanggou and Xiaoduobaoshan.From the Middle Jurassic,the consecutive accretion of Paleo-Pacific arc terranes(e.g.,Sikhote-Alin and Nadanhada)onto the NE Asian continental margin may have gradually distant the Duobaoshan orefield from the subduction front,and consequently arc-type magmatism and the related mineralization faded.The minor Late Jurassic and Cretaceous unmineralized magmatism in the orefield may have triggered mainly by the far-field extension led by the post-collisional(Siberia-Amuria)gravitational collapse and/or Paleo-Pacific backarc-basin opening.  相似文献   

12.
涂怀奎 《地质与资源》1998,7(4):281-287
勉略宁区(即略阳-勉县-宁强地区)金矿分布在北、中、南三带:北带钍铁-金-镍(钴)带;中带金-多金属矿带;南带金-铜与砂金-砂铂矿带.垂直分带:上部铁锰矿与铀矿带,分布在沉积岩和火山沉积岩中;中部铅锌-金矿带,下部金-铜矿带,分布在火山岩和火山碎屑岩中."勉略宁"区对金成矿有利,找矿前景乐观.  相似文献   

13.
吉林珲春-汪清地区已发现的有色金属、贵金属、稀有金属、放射性金属和黑色金属矿产计11种.这些矿产与下古生界五道沟群地层,中生代火山岩系,华力西-燕山期中酸性侵入岩、次火山岩,东西向、南北向构造及火山构造密切相关  相似文献   

14.
Many metallic ore deposits of the Late Cretaceous to Early Tertiary periods are distributed in the Gyeongsang Basin. Previous and newly analyzed sulfur isotope data of 309 sulfide samples from 56 ore deposits were reviewed to discuss the genetic characteristics in relation to granitoid rocks. The metallogenic provinces of the Gyeongsang Basin are divided into the Au–Ag(–Cu–Pb–Zn) province in the western basin where the sedimentary rocks of the Shindong and Hayang groups are distributed, Pb–Zn(–Au–Ag–Cu), Cu–Pb–Zn(–Au–Ag), and Fe–W(–Mo) province in the central basin where the volcanic rocks of the Yucheon Group are dominant, and Cu(–Mo–W–Fe) province in the southeastern basin where both sedimentary rocks of the Hayang Group and Tertiary volcanic rocks are present. Average sulfur isotope compositions of the ore deposits show high tendencies ranging from 2.2 to 11.7‰ (average 5.4‰) in the Pb–Zn(–Au–Ag–Cu) province, ?0.7 to 11.5‰ (average 4.6‰) in the Cu–Pb–Zn(–Au–Ag) province, and 3.7 to 11.4‰ (average 7.5‰) in the Fe–W(–Mo) province in relation to magnetite‐series granitoids, whereas they are low in the Au–Ag(–Cu–Pb–Zn) province in relation to ilmenite‐series granitoids, ranging from ?2.9 to 5.7‰ (average 1.7‰). In the Cu(–Mo–W–Fe) province δ34S values are intermediate ranging from 0.3 to 7.7‰ (average 3.6‰) and locally high δ34S values are likely attributable to sulfur derived from the Tertiary volcanic rocks during hydrothermal alteration through faults commonly developed in this region. Magma originated by the partial melting of the 34S‐enriched oceanic plate intruded into the volcanic rocks and formed magnetite‐series granitoids in the central basin, which contributed to high δ34S values of the metallic deposits. Conversely, ilmenite‐series granitoids were formed by assimilation of sedimentary rocks rich in organic sulfur that influenced the low δ34S values of the deposits in the western and southeastern provinces.  相似文献   

15.
在皖赣沿江地区分布着大量中生代侵入岩体及其岩石包体和相关的夕卡岩矿床。本文在综合整理作者研究团队近30年来所获得的区内大部分侵入岩体及其岩石包体和夕卡岩矿床研究资料的基础上,聚焦区域中生代壳幔相互作用与多成因夕卡岩成矿过程分析,为发展壳幔成矿学打下一定基础。基性侵入岩和镁铁质岩石包体的同位素年代学和岩石地球化学资料表明,皖赣沿江地区在中生代发生了碰撞后(145~135 Ma)富铜金和造山后(130~120 Ma)富铁金幔源岩浆底侵作用和相应的壳幔混源岩浆作用。壳幔混源岩浆作用主要包括结晶分异作用、同化混染作用、岩浆混合作用和岩浆熔离作用。夕卡岩矿床地质调研和镜下观察结果显示,两期壳幔混源岩浆侵入晚古生代到早中生代围岩地层后引发了多成因夕卡岩成矿作用,形成了接触交代、层控、岩浆和复合叠加等多成因夕卡岩矿床。接触交代、层控、岩浆和复合叠加夕卡岩矿床分别以热液交代、沉积+热液交代、岩浆结晶+热液交代和沉积+岩浆结晶+热液交代矿物组合和结构构造为特征。在碰撞后酸性-中酸性侵入岩体中产有富Cu和Zn等成矿物质的元古宙变质岩包体,表明碰撞后富铜金的底侵玄武岩浆或其演化岩浆在浅位岩浆房中同化了元古宙变质基底成矿物质(铜锌等)储库导致铜进一步富集,从而形成更富铜的酸性-中酸性岩浆。在碰撞后中基性-基性侵入岩体中产有含大量Cu-Fe硫化物(黄铜矿和磁黄铁矿)和氧化物包裹体的深位和浅位堆积岩,表明碰撞后富铜金的底侵玄武岩浆在深位岩浆房中和其演化岩浆在浅位岩浆房中发生了强烈的结晶分异作用导致铜铁亏损,形成更富金的中基性-基性岩浆。酸性-中酸性侵入岩体中夕卡岩包体和夕卡岩中辉长岩-夕卡岩过渡包体的存在表明,碰撞后富铜金的底侵玄武岩浆在侵位处同化晚古生代含铜铁矿源层的碳酸盐地层导致铜进一步富集,形成更富铜的夕卡岩岩浆。更富铜的酸性-中酸性岩浆、更富金的中基性-基性岩浆和更富铜的夕卡岩岩浆是形成碰撞后时期接触交代和层控夕卡岩铜矿、接触交代夕卡岩金矿和岩浆夕卡岩铜矿的最重要控制因素。在造山后中基性-基性侵入岩体中产有含大量Cu-Fe硫化物(黄铜矿和磁黄铁矿)和氧化物包裹体的堆积岩,表明造山后富铁金的底侵玄武岩浆在深位岩浆房中发生了强烈的结晶分异作用导致铜铁亏损,从而形成更富金的中基性-基性岩浆。造山后富铁金的底侵玄武岩浆在侵位处同化晚古生代含铜铁矿源层的碳酸盐地层、早中生代铁矿源层或者早中生代铁硅矿源层,导致铁、铁和铁硅的进一步富集,分别形成更富铁的夕卡岩岩浆、基性岩浆和中基性岩浆。更富金的中基性-基性岩浆及更富铁的夕卡岩岩浆、基性岩浆和中基性岩浆是形成造山后时期接触交代夕卡岩金矿、岩浆夕卡岩铁矿、矿浆型铁矿和接触交代夕卡岩铁矿的关键控制因素。  相似文献   

16.
The results of study of the Bobruisk ring structure (Republic of Belarus) containing ~80 rare rockforming and accessory minerals are reported. Among them are native (Fe, Cu, Sn, Zn, Pb, Ag, Mo, W, Al) and intermetallic (Fe, Cr, Ni, Mo, B, N, C, Si) compounds, natural alloys (Fe–Cr, Fe–Cr–Mo–W–B; brass (Cu–Zn–Pb); and bronze (Sn–Pb–Zn–Cu)). They are observed as segregations of various shapes and sizes, as well as their aggregates. The formation of mineralization is controlled by reduced mantle fluids enriched in H2, CH4, CO, Si, N, and O and stimulating accumulation of rare elements as native and intermetallic phases, alloys, rather than isomorphic impurities in minerals.  相似文献   

17.
赵善仁  吴悦斌 《现代地质》1996,10(4):478-484
五台山—恒山绿岩带Au、Ag、Cu矿床可分为二大类型:(1)再生型金银铜矿,产在包括岩浆岩在内的各类岩石断裂构造中,与岩浆期后热液有关;(2)变生型金银铜矿,产于各类变质岩中,具有层控特征(即绿岩型金矿)。在地球化学特征上,再生型矿床与变生型矿床相比,矿体及围岩中Mo、Ag、Pb、Zn、Cd等成矿及伴生元素明显富集;K2O、Rb、Sr、Ba、Th、U也明显富集,是后期岩浆热液作用的结果;Hg、F的明显富集则与后期构造活动有关;Zn/Cd比值较低,说明受到后期岩浆侵入影响;Th/U比值低,可能指示富钙的酸性岩环境。再生型Au矿化的元素组合为Cd、As、Ni、Ag、Sb、Au、Hg(Bi),再生型Ag矿化的元素组合为As、Sb、Ag、Cd、Cu、Ni(Mo、Pb、Zn、Bi),变生型Au矿化的元素组合较简单,只为Au、Hg、As或Au、Cu。上述地球化学特征不仅可以有效地区分矿化类型,而且可以作为地球化学找矿和评价的指标  相似文献   

18.
The pre-Sinian basement on the southwestern margin of the Yangtze paraplatform consists of threemetamorphic rock series of different ages. Being products of different tectonic events and environments, theydiffer markedly in original rock sequences, metamorphism. tectonic style and characteristics of granitoids andmineral deposits. The Late Archean Kangdian cration mainly comprises the Kangding and Julin Groups with ametamorphic age of nearly 2500 Ma. They are supracrustal rocks dominated by mafic volcanics enclosed introndhjemitic rocks The craton is believed to represent a granite-greenstone terrane of Late Archaean age.There occur mineral deposits such as graphite and kyanite deposits of metamorphic origin, muscovite depositsin pegmatites and gold quartz veins in gneissic granites, banded hornblende-magnetite mineralization and cop-per and zinc mineralizations related to felsic volcanics. Large V-Ti-bearing magnetite deposits were also formedin the mafic. ultramafic stratiform intrusions emplaced on the margins of the craton during the MiddleProterozoic. Copper and nickel deposits are found in several ultramafic intrusions. Extending in a north-southdirection, the Proterozoic mobile belt consists mainly of the Early Proterozoic Hekou Group and MiddleProterozoic Huili and Kunyang Groups. and they are thought to be accumulations in a Proterozoic rift troughor aulacogen. During the Early Proterozoic, the rift trough was characterized by intense volcanism and pres-ence of iron ore deposits of volcano-magmatic type, iron-copper deposits of exhalative-sedimentary type. TheMid-Late Proterozoic of the rift trough mainly witnessed the formation of sedimentary stratiform copper de-posits and submarine sedimentary iron deposits. In the wake of the emplacement of the Jinningian andChengjiangian granites in the Late Proterozoic, skarn-type tin and tin-iron ore deposits were formed.  相似文献   

19.
大兴安岭北部主要金属矿床成矿系列和区域矿床成矿谱系   总被引:10,自引:4,他引:6  
武广  王国瑞  刘军  周振华  李铁刚  吴昊 《矿床地质》2014,33(6):1127-1150
文章以大兴安岭北部内生金属矿床、海相火山岩型硫铁矿矿床和砂金矿床为研究对象,按照矿床成矿系列的学术思想将其划分为7个矿床成矿系列,即:多宝山地区与加里东期中酸性火山_侵入活动有关的铜、钼矿床成矿系列,呼玛地区与华力西期辉长岩和花岗岩有关的铁、钛、金矿床成矿系列,伊尔施_黑河地区与华力西期花岗岩和海相火山岩有关的铁、铜、锌、硫铁矿矿床成矿系列,牙克石地区与华力西期海相中基性火山岩有关的铁、锌、硫铁矿矿床成矿系列,得尔布干地区与印支期_燕山期中酸性火山_侵入活动有关的铅、锌、银、铜、钼、金矿床成矿系列,伊尔施_呼玛地区与燕山期中酸性火山_侵入活动有关的金、铁、锌、铜、钼、钨矿床成矿系列和黑龙江流域与第四纪冲积沉积作用有关的砂金矿床成矿系列。大兴安岭北部区域矿床成矿谱系表明,从奥陶纪到新生代该区不同构造单元经历了7个主要的构造演化及成矿时期,依次出现奥陶纪岛弧环境的斑岩型矿床、泥盆纪陆块边缘拉张环境的岩浆型和热液脉型矿床、泥盆纪—石炭纪俯冲_碰撞环境的海相火山岩型和矽卡岩型矿床、石炭纪弧后盆地环境的海相火山岩型矿床、晚三叠世—早白垩世俯冲_碰撞_后碰撞环境的斑岩型、热液脉型、浅成低温热液型和矽卡岩型矿床、早侏罗世—早白垩世俯冲环境的斑岩型、热液脉型、浅成低温热液型和矽卡岩型矿床和新生代地壳差异运动带砂金矿床。大兴安岭北部优势矿种为铜、钼、金、银、铅、锌,主攻矿床类型为斑岩型、热液脉型、低硫化浅成低温热液型、冲积型和海相火山岩型。  相似文献   

20.
秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨   总被引:22,自引:7,他引:22  
本文根据我国公路建设项目投资、融资体制改革的发展趋势,阐述了改进公路建设项目可行性研究财务评价工作的重要意义及改进财务评价方法的原则,提出改进财务评价方法的途径。针对当前公路建设项目可行性研究财务评价的现状,提出了财务评价工作应注意几个问题,供有关部门参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号