首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
高速地铁列车是一种运行速度可达160 km/h远高于普通地铁最高速度80 km/h的新型地铁列车。其车辆力学特性与高铁列车基本相同,其轨道运行条件与普速列车轨道运行条基本相同。地铁列车竖向振动影响列车上部结构供电及受力性能,目前高铁及普速列车在各自轨道上运行时列车的振动特性研究较为成熟,但高铁列车在普速铁路上运行时的振动特性的研究尚属空白。聚焦高速地铁列车在普速轨道上运行时的车辆振动特性,基于OpenSees软件建立普速及高速地铁列车的车-轮-轨二维有限元模型;利用我国普速轨道谱考虑其频谱特征随机生成20个440 m长轨道不平顺样本;通过有限元法分析了普速和高速地铁列车在不同运行速度及不同平顺程度下的竖向位移响应及统计参数,研究了高速及普速地铁列车竖向振动随运行速度的变化规律。研究表明:高速地铁列车与普速地铁列车的不平顺轨道振动远大于平顺轨道振动。高速列车与普速列车在竖向振动随速度变化特性上存在差异,高速列车的竖向振动位移幅值远小于普速列车,相较于普速列车振动更加稳定。  相似文献   

2.
高科技厂房结构微振响应分析   总被引:1,自引:1,他引:1  
高科技精密仪器厂房,对环境微振动非常敏感,要求控制结构的振动位移和速度。本文利用Kanai-Tajim i功率谱密度函数,模拟由交通工具引起的地面扰动,对某洁净室框架结构进行模态分析和微振谱分析。通过计算结构的振动特性和基频以及响应功率谱,得出振幅范围,从而获得结构在环境微振下的响应。为了研究结构微振的影响因素,分析了各种梁柱截面尺寸的振动响应,通过与微振动通用标准BBN-VC比较,评价了结构微振性能,为结构抗微振设计提供参考依据。  相似文献   

3.
肖慧娟  董尘 《地震工程学报》2021,43(6):1419-1428
为研究高速列车作用下,层状地基中空沟对场地振动的隔振效果,基于车辆-轨道耦合动力学理论及有限元法,对建立完善高速车辆-无砟轨道-地基耦合系统动力学模型进行仿真计算,分析设置空沟对场地振动的影响,并探讨了空沟的深度、位置、宽度以及列车速度的影响。结果表明:设置空沟加强了沟前场地的振动,但可使空沟后方地基的竖向和水平振动水平大幅减小,但在特定位置存在振动放大区,引起隔振效果减弱;过浅或过深的空沟均不能达到最优隔振效果;对于在线路旁需要特殊隔振的场地,存在一个适用于其本身的空沟最佳位置;空沟的宽度对隔振效果无明显影响;空沟对更高速度运行列车引起场地竖向和横向振动的隔振效果更明显。  相似文献   

4.
假定软土地区海底沉管隧道地基土为Kelvin模型,车辆荷载是随时间变化的波动荷载形式,引入黏弹性地基梁模型,利用模态叠加法给出三种情况下沉管隧道的竖向位移、弯矩和地基反力的解答。结合天津海河沉管隧道工程实例,分析车辆速度、地基土模量对沉管隧道竖向位移及弯矩的影响。研究结果表明:车辆荷载引起的管段中点振动振幅达5mm左右,振动周期为0.25s;引起的管段中点弯矩为15 500kN·m左右,且车速越大,管段振动一个周期所需时间越短,振动越剧烈,但对振动幅度及弯矩影响不大;地基土模量越大,振动幅度和弯矩越小,但对周期影响不大。  相似文献   

5.
为满足精密仪器振速控制要求,提出“群桩基础+隔振排桩”与空气弹簧的两级组合隔振措施。主要研究路面移动车辆荷载经过时,第一级隔振中排桩的隔振效果。实测土体小应变动力参数,通过编写车辆-路面耦合单元(VRI)子程序引入路面不平顺,并基于三维有限元法建立了道路-排桩-地基动力模型。将模拟振速经1/3倍频程滤波与实测进行对比,并对隔振排桩进行了参数分析。研究结果表明:两级隔振体系可满足VC-E微振动控制要求;排桩的间距、桩长和排数是影响隔振效果的主要因素,且竖向隔振效果较水平向好。研究成果可为今后环境微振动工程的设计与施工提供有益参考。  相似文献   

6.
为研究CRH2动车组在无砟轨道段运行引起的场地加速度振动的频谱特性,本文对我国首条无砟轨道段(渝遂铁路二岩隧道—湾里头隧道段)动车组运行时的场地振动进行了现场实测;对实测竖向振动加速度时程进行1/3倍频谱分析表明:地面竖向振动加速度随着与振源距离的增大而明显衰减,随车速增大场地振动强度增强;应用正交HHT变换,对加速度时程进行了Hilbert谱分析,获得了地面竖向振动加速度的主频为10~120Hz、振动传播高频成分衰减较快等频谱特性;最后,将Hilbert边际谱与傅里叶谱进行了对比分析,得到了两种方法分析振动信号频谱特性表现出的差异性。  相似文献   

7.
水轮机流道压力脉动诱发厂房振动分析   总被引:2,自引:0,他引:2  
水轮机压力脉动是引起厂房内源振动的主要诱因,如何在振动系统中合理、准确地施加水力荷载的振源特性,是目前机组振动分析的主要难点.文中将压力脉动假定为简谐荷载,通过跟踪楼板的振动变化和共振校核确定机组的振源特性,采用有限元法精细模拟了水轮机流道压力脉动诱发的厂房振动问题,并结合电站特点提出振动控制标准的建议值,由此对振动进...  相似文献   

8.
三维隔震(振)支座的工程应用与现场测试   总被引:2,自引:0,他引:2  
首先介绍了一种新型三维隔震(振)支座,该支座由联接件、竖向隔振支座和水平隔震支座组成。竖向隔振支座和水平隔震支座具有较小刚度,采用该类型支座的隔震结构,其竖向基频和水平基频可远离地铁、铁路振动和地震的主频,从而实现竖向隔振和水平隔震作用。其次介绍了该三维隔震(振)支座在某一地铁平台上部结构中的应用情况,对该类型支座进行了竖向性能和水平性能试验。最后对三维隔震(振)结构与传统结构进行了地铁运行时结构振动的对比测试。测试结果表明:三维隔震(振)系统对振动的高频信号具有显著衰减效果。  相似文献   

9.
工业厂房中安装的动力设备易引发结构的振动,危害正常生产和结构安全。本文针对浮置平台隔振技术进行了相关研究,建立了两自由度隔振体系的力学模型,给出了考虑楼板刚度时振动的传递率,分析了不同隔振器刚度和楼板刚度对隔振效果的影响。对某实际工程进行了有限元建模分析,对比了隔振前后的楼板振动响应,隔振效果显著,且未改变动力设备振动的频谱特性,对设备的正常运行没有影响。对隔振后的厂房结构进行现场振动测试,楼面振动响应得到有效控制,满足相关规范要求,设备区域减振率达到70%~80%。  相似文献   

10.
为精确描述面内端部激励下拉索非线性振动机制,构建抽象端部激励下的拉索力学描述模型,分别推导了拉索拟静态振动和模态振动控制方程,基于有限差分法给出了拉索模态振动的数值求解方法。由于垂度效应的影响,在轴向、竖向以及轴向和竖向共同激励下拉索的拟静态索力与端部位移采用一个非线性方程予以表征。拉索拟静态振动可视作外部激励施加在拉索上,引起拉索的非线性模态振动,通过理论推导分别求得模态振动的控制方程和变形协调方程。在模态振动过程中,拉索的动力特性(如刚度和周期)不断变化,索力和拉索变形相互耦合,使得其求解非常复杂。采用有限差分法进行数值求解,并基于有限元方法验证了数值求解方法的准确性。重点讨论了拉索模态振动共振机制,结果表明,在轴向、竖向以及轴向和竖向激励下,拉索模态振动存在多个共振区域,包括小周期、0.5T1、T1和2T1等(T1为成桥状态下拉索基本振动周期);在共振区域内,拉索振动索力幅度较大,模态振动对总索力的贡献系数较高,超过0.4,在实际工程中不容忽视;拉索阻尼对模态振动的影响较大,增加拉索阻尼比将改...  相似文献   

11.
This paper presents an experimental study, while a companion paper addresses an analytical study, to explore the possibility of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion. A three‐storey building model and a hybrid platform model are designed and manufactured. The hybrid platform is mounted on the building floor through passive mounts composed of leaf springs and oil dampers and controlled actively by an electromagnetic actuator with velocity feedback control strategy. The passive mounts are designed in such a way that the stiffness and damping ratio of the platform can be changed. A series of shaking table tests are then performed on the building model without the platform, with the passive platform of different parameters, and with the hybrid platform. The experimental results demonstrate that the hybrid platform is very effective in reducing the velocity response of a batch of high‐tech equipment in the building subject to nearby traffic‐induced ground motion if dynamic properties of the platform and control feedback gain are selected appropriately. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The experimental results of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion have been presented and discussed in the companion paper. Based on the identified dynamic properties of both the building and the platform, this paper first establishes an analytical model for hybrid control of the building‐platform system subject to ground motion in terms of the absolute co‐ordinate to facilitate the absolute velocity feedback control strategy used in the experiment. The traffic‐induced ground motion used in the experiment is then employed as input to the analytical model to compute the dynamic response of the building‐platform system. The computed results are compared with the measured results, and the comparison is found to be satisfactory. Based on the verified analytical model, coupling effects between the building and platform are then investigated. A parametric study is finally conducted to further assess the performance of both passive and hybrid platforms at microvibration level. The analytical study shows that the dynamic interaction between the building and platform should be taken into consideration. The hybrid control is effective in reducing both velocity response and drift of the platform/high‐tech equipment at microvibration level with reasonable control force. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A hybrid control platform is investigated in this paper to mitigate microvibrations to a group of vibration-sensitive equipment installed in a microelectronics facility subject to nearby road vehicle-induced horizontal and vertical ground motions. The hybrid control platform, on which microelectronics equipment is installed, is mounted on a building floor through a series of passive mounts and controlled by hydraulic actuators in both horizontal and vertical directions. The control platform is an elastic body with significant bending modes of vibration, and a sub-optimal control algorithm is used to manipulate the hydraulic actuators with actuator dynamics included. The finite element model and the equations of motion of the coupled platform-building system are then established in the absolute coordinate to facilitate the feedback control and performance evaluation of the platform. The horizontal and vertical ground vibrations at the base of the building induced by nearby moving road vehicles are assumed to be stationary random processes. A typical three-story microelectronics building is selected as a case study. The case study shows that the vertical vibration of the microelectronics building is higher than the horizontal. The use of a hybrid control platform can effectively reduce both horizontal and vertical microvibrations of the microelectronics equipment to the level which satisfies the stringent microscale velocity requirement specified in the Bolt Beranek & Newman (BBN) criteria.  相似文献   

14.
This paper presents an experimental study to explore the possibility of using a hybrid platform to ensure the functionality of high‐tech equipment against microvibration and to protect high‐tech equipment from damage when an earthquake occurs. A three‐storey building model and a hybrid platform model were designed and manufactured. The two‐layer hybrid platform, on which the high‐tech equipment is placed, was installed on the first floor of the building to work as a passive platform aiming at abating acceleration response of the equipment during an earthquake and functioning as an actively controlled platform that intends to reduce velocity response of the equipment under a normal working condition. For the hybrid platform working as a passive platform, it was designed in such a way that its stiffness and damping ratio could be changed, whereas for the hybrid platform functioning as an active platform, a piezoelectric actuator with a sub‐optimal velocity feedback control algorithm was used. A series of shaking table tests, traffic‐induced vibration tests and impact tests were performed on the building with and without the platform to examine the performance of the hybrid platform. The experimental results demonstrate that the hybrid platform is feasible and effective for high‐tech equipment protection against earthquake and microvibration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
High‐tech equipments engaged in the production of ultra‐precision products have very stringent vibration criteria for their functionality in normal operation conditions and their safety during an earthquake. Most previous investigations were based on simplified planar models of building structures, despite the fact that real ground motions and structures are always three‐dimensional. This paper hence presents a three‐dimensional analytical study of a hybrid platform on which high‐tech equipments are mounted for their vibration mitigation. The design methodology of the hybrid platform proposed in this study is based on dual‐level performance objectives for high‐tech equipments: safety against seismic hazard and functionality against traffic‐induced microvibration. The passive devices (represented by springs and viscous dampers) and the active actuators are designed, respectively, to meet vibration criteria corresponding to safety level and functionality level. A prototype three‐story building with high‐tech equipments installed on the second floor is selected in the case study to evaluate the effectiveness of the hybrid platform. The optimal location of the platform on the second building floor is determined during the design procedure in terms of the minimal H 2 cost function of absolute velocity response. The simulation of the coupled actuator‐platform‐building system subjected to three‐dimensional ground motions indicates that the optimally designed hybrid platform can well achieve the dual target performance and effectively mitigate vibration at both ground motion levels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
To ensure the high quality of ultra‐precision products such as semiconductors and optical microscopes, high‐tech equipment used to make these products requires a normal working environment with extremely limited vibration. Some of high‐tech industry centres are also located in seismic zones: the safety of high‐tech equipment during an earthquake event becomes a critical issue. It is thus imperative to find an effective way to ensure the functionality of high‐tech equipment against microvibration and to protect high‐tech equipment from damage when earthquake events occur. This paper explores the possibility of using a hybrid platform to mitigate two types of vibration. The hybrid platform, on which high‐tech equipment is installed, is designed to work as a passive isolation platform to abate mainly acceleration response of high‐tech equipment during an earthquake and to function as an actively controlled platform to reduce mainly velocity response of high‐tech equipment under normal working condition. To examine the performance of the hybrid platform, the analytical model of a coupled hybrid platform and building system incorporating with magnetostrictive actuators is established. The simulation results obtained by applying the analytical model to a high‐tech facility indicate that the proposed hybrid platform is feasible and effective. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Structural vibration control using active or passive control strategy is a viable technology for enhancing structural functionality and safety against natural hazards such as strong earthquakes and high wind gusts. Both the active and passive control systems have their limitations. The passive control system has limited capability to control the structural response whereas the active control system depends on external power. The power requirement for active control of civil engineering structures is usually quite high. Thus, a hybrid control system is a viable solution to alleviate some of the limitations. In this paper a multi‐objective optimal design of a hybrid control system for seismically excited building structures has been proposed. A tuned mass damper (TMD) and an active mass driver (AMD) have been used as the passive and active control components of the hybrid control system, respectively. A fuzzy logic controller (FLC) has been used to drive the AMD as the FLC has inherent robustness and ability to handle the non‐linearities and uncertainties. The genetic algorithm has been used for the optimization of the control system. Peak acceleration and displacement responses non‐dimensionalized with respect to the uncontrolled peak acceleration and displacement responses, respectively, have been used as the two objectives of the multi‐objective optimization problem. The proposed design approach for an optimum hybrid mass damper (HMD) system, driven by FLC has been demonstrated with the help of a numerical example. It is shown that the optimum values of the design parameters of the hybrid control system can be determined without specifying the modes to be controlled. The proposed FLC driven HMD has been found to be very effective for vibration control of seismically excited buildings in comparison with the available results for the same example structure but with a different optimal absorber. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
针对民用高层建筑的多层钢-混凝土结构的抗震分析存在缩尺效应、环境限制等问题,本文基于纤维模型理论并采用PERFROM-3D软件建立有限元模型,给出大型混合结构的弹性动力时程分析和阻尼计算方程,并给出了一个17层的民用高层建筑算例。针对算例中的混合结构体,采用El-Centro地震动,输入不同的地震动模拟实际情况,探索不同地震工况对此类结构的影响,并给出该结构的抗震性能分析以及应对方法,具有较强的实践意义。  相似文献   

19.
新型索承网壳结构非线性地震反应特性和参数分析   总被引:2,自引:0,他引:2  
本文根据新型大跨空间杂交结构———索承网壳结构的受力特点,选用梁元、杆元和索元的混合有限元模型,给出了一种有效的适用于该类结构的非线性动力响应的增量、迭代有限元计算方法。以K8型索承网壳结构为研究对象,进行了时域内的三向地震作用下的非线性反应分析。计算结果表明,该结构具有良好的抗震性能。文中针对地震响应的主要影响参数,对其地震响应规律作了系统的研究,得出矢跨比和撑杆长度是抗震设计的主要控制参数等有应用价值的结论。  相似文献   

20.
The concept of the hybrid passive control system is studied analytically by investigating the seismic response of steel frame structures. Hybrid control systems consist of two different passive elements combined into a single device or system. The hybrid systems investigated in this research consist of a rate‐dependent damping device paired with a rate‐independent energy dissipation element. The innovative configurations exploit individual element strengths and offset their weaknesses through multiphased behavior. A nine‐story, five‐bay steel moment‐frame was used for the analysis. Six different seismic resisting systems were analyzed and compared. The conventional systems included a special moment‐resisting frame (SMRF) and a dual SMRF–buckling‐restrained brace (BRB) system. The final four configurations are hybrid passive systems. The different hybrid configurations utilize a BRB and either a high‐damping rubber damper or viscous fluid damper. The analyses were run in the form of an incremental dynamic analysis. Several damage measures were calculated, including maximum roof drift, base shear, and total roof acceleration. The results demonstrate the capability of hybrid passive control systems to improve structural response compared with conventional lateral systems and to be effective for performance‐based seismic design. Each hybrid configuration improved some aspect of structural response with some providing benefits for multiple damage measures. The multiphased nature provides improved response for frequent and severe seismic events. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号