首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在野外地质调查、平衡剖面分析的基础上, 结合区域构造演化, 采用岩石声发射法对雪峰隆起西南缘的最大古应力进行了恢复, 并探讨了古应力大小与油气成藏破坏的关系。研究结果表明, 研究区共经历了5期不同强度的重要构造变革运动。在早古生代末期和印支期构造运动较弱, 声发射法的测量表明古应力值分别为13.3 MPa和24 MPa, 对应于麻江古油藏的主要成藏期。构造运动次数较多或者古应力值较大的时期, 主要对应于麻江古油藏储集层的发育期和油藏大规模破坏期。晚古生代末期构造活动次数较少, 但恢复地古应力值较大, 为92.6 MPa; 燕山期和喜马拉雅期经历了多期构造活动, 恢复地古应力值为23.3~74.4 MPa。   相似文献   

2.
辽北张强地区晚侏罗世以来经历了4期主要构造运动:燕山早中、晚中、晚期和喜马拉雅晚期,通过声发射(AE)法测得相应4期的最大主应力值分别为106.2MPa、87.3MPa、57.1MPa、33.4MPa,同时还测得现今地应力最大主应力值为17.4~23.3MPa。发现有岩浆活动的构造运动期古应国在主应力值偏大。测量田内含油构造和出油井现今地应力最大主应力值偏低。本区油气成藏期古应力状态的最大主应力值  相似文献   

3.
武夷山西南缘构造应力场演化及其与成矿的关系   总被引:2,自引:0,他引:2  
武夷山西南缘及邻区地处华南特提斯与环太平洋构造域交接地带,自元古宙以来历经了多期次的构造演化,形成了相应的构造应力场。通过对主要古构造运动应力值大小的测定和3个主要构造演化阶段构造应力场数值模拟,得出古应力值自早到晚总体上有增大的趋势,到中生代古应力值强度大且持续时间较长。重要的成矿阶段主要对应区域拉张构造应力场。不同阶段构造应力场模拟结果表明,自前泥盆纪至燕山期,该区主构造线方向从EW—NEE向NE—NNE向转变,与主构造应力场的变化相对应。同时不同时代构造应力的分布为多金属矿产的形成创造了良好的成矿地质条件。  相似文献   

4.
测定岩石经历的最高古应力状态实验研究   总被引:9,自引:1,他引:8  
丁原辰  邵兆刚 《地球科学》2001,26(1):99-104
当前国内外尚无测定三维古构造应力场的理想方法.提出了一种新方法: 从待测地点取大岩心或新鲜石块, 从6个以上方向取岩石试样, 每方向至少10个试样, 以声发射的广义抹录不净现象, 测定岩石经历的各主要构造运动期的最大主应力值.而后, 统计出岩石记忆的最高古应力状态的最大主应力值σmt.由于岩石对最高古应力状态在各取样方向的正应力σmn尚有记忆, 只不过隐藏于各期较低古应力状态的最大主应力值之间, 不易区分, 故以σmt为目标, 通过“AE反演搜索法”, 则可将隐藏的各σmn搜索出来, 从而计算出岩石经历的最高古应力状态.以准平面应力状态模拟实验检验了该新方法的可行性.   相似文献   

5.
李勇  邓虎成  何建华  马若龙 《地质学报》2023,97(8):2633-2644
川西坳陷三叠纪以来多期构造应力场演化控制了该区古隆起的迁移和裂缝-岩溶型储层的形成,从而对该区油气富集具有十分重要的控制作用,而目前对该区古构造应力场的量化评价研究程度较弱。通过野外露头、钻井岩芯、薄片及裂缝充填物以及声发射测试资料,重点对川西坳陷彭州地区雷口坡组沉积后期的古应力方向、大小及演化期次进行了研究。结果表明该区域存在4期应力,印支期应力为NW向;燕山早中期应力为SN向;燕山晚期应力为NW向;喜山期应力为EW向。对应的最大水平应力值分别为25.81MPa、66.03MPa、41.27MPa以及50.85MPa。结合区内构造演化,印支期区域平缓抬升使得古隆起及彭县断裂雏形形成,雷口坡组暴露地表形成岩溶性储层,成为后续的油气富集地;在燕山期两期应力控制下,研究区北部地层最先抬升,古隆起继续发育;喜山期强烈构挤压下使全区北西向地层抬升,古隆起最终定型,燕山晚期-喜山期形成的裂缝和断层对早期油气运移进行调整起到关键作用。该研究可为彭州地区的构造演化、裂缝预测以及进一步的勘探开发提供依据。  相似文献   

6.
青藏高原西部日土-普兰一带古构造应力值的估算   总被引:3,自引:0,他引:3  
本文用超显微构造的位错密度法,估算了该地区6次构造事件的古构造应力值。尽管从现在的构造形变特征来看,不同构造事件都是沿近南北方向的伸展或挤压,但其形变强度各不相同,印支运动(晚三叠世)最强,平均差应力值达201MPa,四川运动(白垩纪—早第三纪早期)次之,为183MPa,其它各次构造运动均较弱,阿森特运动(前寒武纪末期)为101MPa,海西运动(早二叠世晚期)为121MPa,燕山运动(晚侏罗世)为130Mpa,喜马拉雅运动(中新世末期以来)为110MPa,加里东运动在本区大部分地方较弱,我们未采集到能反映其构造应力状态的样品。  相似文献   

7.
在区域上广泛分布并具有一致方位的节理,可用来恢复区域构造应力场的状态及其演化过程。通过对乌江构皮滩水电站坝区地层中所发育节理系统的方位、几何样式、充填情况、序列关系等特征的详细观察和分析,发现坝区的节理系统具有三组优势方位:走向NNE。倾向NWW(第一组)、走向NWW。倾向NNE(第二组)、走向NWW,倾向SSW(第三组);而且第一组节理形成最早,第三组节理形成其次,第二组节理形成最晚。根据节理系统与应力的各种关系,结合研究区的区域构造演化,认为NNE向节理主要为燕山运动期的产物,并且在后期构造运动中有多次活动,而NWW向节理主要为喜山运动期和新构造运动期的产物。通过对节理系统中方解石脉e双晶的统计,求得燕山早期坝区古应力为111~142MPa。燕山中期坝区古应力为50-83MPa,燕山晚期或喜山早期坝区古应力为52~77MPa。节理系统的发育特征反映了燕山运动以来区域构造应力场主要以近NNW-E-W向的挤压为主,而古应力的变化则反映了燕山运动以来构造活动逐渐减弱。  相似文献   

8.
在地震剖面地质构造解释的基础上,深入分析了塔里木盆地断裂系统在中央隆起带的形成演化及塔里木海相克拉通盆地演化过程中的作用.研究表明,塔里木盆地中央隆起带主要发育中加里东I幕(早奥陶世末)、II幕(晚奥陶世末)和喜马拉雅运动中晚期(中新世末以来)共3期大规模断裂系统.这些断裂系统的活动控制了中央隆起带构造演化过程和隆坳格局的变迁,其中巴楚隆起经历了加里东中晚期隆后斜坡和海西-燕山期前隆,至喜马拉雅运动中晚期最终定型为挤压断隆.塔中隆起形成于中加里东I幕构造运动,至中加里东II幕构造运动定型,而塔东隆起则形成于中加里东II幕构造运动并基本定型;将塔里木古生代海相克拉通盆地的演化过程划分为海相克拉通盆地的形成、解体和消亡(即陆内前陆和挤压坳陷形成)3个演化阶段,认为中加里东两期断裂系统的形成是塔里木海相克拉通解体的重要原因.   相似文献   

9.
杨光龙 《地质与资源》2013,22(2):164-168
为探讨黔北松林穹隆的形成机制和构造形迹演化,对松林穹隆各部位测量的节理进行分期配套和应力场分析,认为松林穹隆雏形为早期形成的一个古基底隆起,历次构造运动使古隆起经历了不断隆升→沉降→隆升的复杂过程,而燕山运动时受到的两期应力,即早期南东方向朝北西方向的挤压应力和晚期北西和南东方向的挤压应力,是松林穹隆得以强化并趋向复杂化的最根本的地应力因素,并对该区构造的发生、发展有着一定的影响和控制作用.  相似文献   

10.
开展储层裂缝预测研究,首先必须认识构造裂缝形成的期次及其古应力状态。通过上三叠统延长组长61储层岩石声发射实验得出的古构造历史有效最大主应力记忆出现率,厘定鄂尔多斯盆地沿河湾探区长61储层构造裂缝形成时最大主应力介于79.12~89.99 MPa之间。通过岩石古应力分期、裂缝充填物包裹体测温和期次测定,结合区域构造应力场演化分析,确定延长组储层构造裂缝主要形成期为燕山期。通过露头区地层和覆盖区定向岩心共轭裂缝或节理应变测量,恢复了沿河湾地区燕山期构造运动三轴应力状态,即最大主应力(δ1)方向为NW-SE向,优势方位129°∠10°,最小主应力(δ3)优势方位36°∠7°,中间主应力(δ2)近于垂直。裂缝主要形成期及其古应力状态研究成果为沿河湾探区长61低渗储层构造裂缝分布和发育规律定量预测研究提供了地质依据。  相似文献   

11.
GEODYNAMICS OF THE PAMIRS—HIMALAYA REGION  相似文献   

12.
声发射法古应力测量问题讨论   总被引:15,自引:2,他引:13  
本文针对声发射法古应力测量的地质应用,归纳为14个问题,给出回答和讨论。重点阐述声发射法古应力测量在地质应用方面的创新性、可行性、局限性、实用性和可持续发展性。   相似文献   

13.
Paleostress orientations were calculated from fault populations at 24 sites along the SW–NE segment and five sites along the E–W, Yasin segment of the Karakoram–Kohistan Suture Zone in NW Pakistan. They demonstrate the importance of combined thrusting and strike-slip faulting. However, several paleostress tensor directions are distinguished: a dominant NW–SE compression and a minor E–W compression are compatible with the recent evolution of this part of the Hindu Kush. From the lack of both systematic overprinting-relationships and spatial trend (the two tensors were obtained at different locations) we conclude that in each location any of these two shortening directions can dominate. Heterogeneously distributed extension is found in some places and is likely due to local conditions. These paleostress tensors substantiate a transpressional regime due to far-field Himalayan compression and document the long-term background of the seismogenic deformation in this region.  相似文献   

14.
We document the structure and kinematics of the southeastern part of the fold-and-thrust belt of the Pakistani Himalaya. Field analysis documents the importance of strike–slip faulting associated with folding. Accordingly, a transpression regime is inferred to be responsible for variable amounts of shortening, from fault block to fault block. The analysis of fault populations that affect the Mesozoic to early Miocene sediments allows distinguishing two paleostress tensor directions: a dominant NW–SE compression and a minor E–W compression are compatible with buckling around the N–S axis of the near-by Hazara-Kashmir syntaxis. From the lack of both systematic overprinting-relationships and spatial trend (the two tensors were obtained at different locations) we conclude that in each location any of these two shortening directions can dominate. The distribution of the paleostress tensors substantiates a transpressional regime due to far-field Himalayan compression and a lateral escape component of the allochthonous fold-and-thrust belt away from the growing Hazara-Kashmir anticline.  相似文献   

15.
依据区域构造层次划分,采用构造筛分法,层层深入,层层筛分,确定发生于各个不同时代地层/岩层内的断裂活动的同期及叠加的应力场特征。综合所有的同期应力场特征及辅以叠加的应力场特征来验证,从而确定了一个连续的、完整的断裂活动的应力场演化序列;结合区域构造变形特征分析,阐明郯庐断裂带(安徽段)的构造演化。应力场分析显示:晚三叠-早侏罗世应力场为北北西—南南东或近南北向挤压,属古特提斯构造域,断裂发生同造山走滑;早白垩世早期,应力场为北西—南东向挤压,断裂发生左行走滑运动,中国东部处于西环太平洋构造域;早白垩世晚期—古新世(始新世),区域发生北西—南东向伸展作用,断裂处于伸展断陷作用阶段;新生代,受区域上近东西向的挤压作用影响,断裂发生挤压逆冲兼右行走滑作用。  相似文献   

16.
By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt,China,we concluded that it had experienced five tectonic stages:(1)the formation stage (T3x) of the miniature of Longmen Mountain, early Indosinian movement, and Anxian tectonic movement created the Longmen Mountain;(2)the stable tectonic stage(J1)where weaker tectonic movement resulted in the Longmen Mountain thrust belt being slightly uplifted and slightly subsiding the foreland basin;(3)the intense tectonic stage(J2-3),namely the early Yanshan movement;(4) continuous tectonic movement(K-E),namely the late Yaushan movement and early Himalayan movement;and(5)the formation of Longrnen Mountain(N-Q),namely the late Himalayan movement. During those tectonic deformation stages, the Anxian movement and Himalayan movement played important roles in the Longmen Mountain'S formation.The Himalayan movement affected Longmen Mountain the most;the strata thrust intensively and were eroded severely.There are some klippes in the middle part of the Longmen Mountain thrust belt because a few nappes were pushed southeastward in later tectonic deformation.  相似文献   

17.
By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt, China, we concluded that it had experienced five tectonic stages: (1) the formation stage (T3x) of the miniature of Longmen Mountain, early Indosinian movement, and Anxian tectonic movement created the Longmen Mountain; (2) the stable tectonic stage (J1) where weaker tectonic movement resulted in the Longmen Mountain thrust belt being slightly uplifted and slightly subsiding the foreland basin; (3) the intense tectonic stage (J2-3), namely the early Yanshan movement; (4) continuous tectonic movement (K–E), namely the late Yanshan movement and early Himalayan movement; and (5) the formation of Longmen Mountain (N–Q), namely the late Himalayan movement. During those tectonic deformation stages, the Anxian movement and Himalayan movement played important roles in the Longmen Mountain’s formation. The Himalayan movement affected Longmen Mountain the most; the strata thrust intensively and were eroded severely. There are some klippes in the middle part of the Longmen Mountain thrust belt because a few nappes were pushed southeastward in later tectonic deformation.  相似文献   

18.
基于野外实测和室内测试,计算分析及有限元模拟,对三峡工程库首区燕山期和喜山期的区域构造应力场以及狮子口重力滑动构造应力场进行研究。区域构造应力场的主要特征是:燕山主期σ1和σ1近水平,分别近S-N向和E-W向,σ2近直立,差异应力200MPa、变化范围150-250MPa;喜山主期σ1近水平,总体方向NNE70-SW250°,差异应力100MPa,变化范围80-120MPa,在空间变化上,前者表现为南部差异应力高于北部差异应力,后者的变化规律不太明显。狮子口重力滑动构造系统的应力场比较复杂,总体呈近E-W向的前缘挤压、后缘拉伸,而滑动系统内部叠置产出的三个滑块也分别表现出后缘拉伸、前缘挤压并交替出现的特点,反映了区域应力场背景下的局部构造应力场特征。  相似文献   

19.
A balanced cross-section along the Budhi-Gandaki River in central Nepal between the Main Central thrust, including displacement on that fault, and the Main Frontal thrust reveals a minimum total shortening of 400 km. Minimum displacement on major orogen-scale structures include 116 km on the Main Central thrust, 110 km on the Ramgarh thrust, 95 km on the Trishuli thrust, and 56 km in the Lesser Himalayan duplex. The balanced cross-section was also incrementally forward modeled assuming a generally forward-breaking sequence of thrusting, where early faults and hanging-wall structures are passively carried from the hinterland toward the foreland. The approximate correspondence of the forward modeled result to observe present day geometries suggest that the section interpretation is viable and admissible. In the balanced cross-section, the Trishuli thrust is the roof thrust for the Lesser Himalayan duplex. The forward model and reconstruction emphasize that the Lesser Himalayan duplex grew by incorporating rock from the footwall and transferring it to the hanging wall along the Main Himalayan thrust. As the duplex developed, the Lesser Himalayan ramp migrated southward. The movement of Lesser Himalayan thrust sheets over the ramp pushed the Lesser Himalayan rock and the overburdens of the Greater and Tibetan Himalayan rock toward the erosional surface. This vertical structural movement caused by footwall collapse and duplexing, in combination with erosion, exhumed the Lesser Himalaya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号