首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sahara–Umm Adawi pluton is a Late Neoproterozoic postcollisional A-type granitoid pluton in Sinai segment of the Arabian–Nubian Shield that was emplaced within voluminous calc-alkaline I-type granite host rocks during the waning stages of the Pan-African orogeny and termination of a tectonomagmatic compressive cycle. The western part of the pluton is downthrown by clysmic faults and buried beneath the Suez rift valley sedimentary fill, while the exposed part is dissected by later Tertiary basaltic dykes and crosscut along with its host rocks by a series of NNE-trending faults. This A-type granite pluton is made up wholly of hypersolvus alkali feldspar granite and is composed of perthite, quartz, alkali amphibole, plagioclase, Fe-rich red biotite, accessory zircon, apatite, and allanite. The pluton rocks are highly evolved ferroan, alkaline, and peralkaline to mildly peraluminous A-type granites, displaying the typical geochemical characteristics of A-type granites with high SiO2, Na2O + K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce, and rare earth elements (REE) and low CaO, MgO, Ba, and Sr. Their trace and REE characteristics along with the use of various discrimination schemes revealed their correspondence to magmas derived from crustal sources that has gone through a continent–continent collision (postorogenic or postcollisional), with minor contribution from mantle source similar to ocean island basalt. The assumption of crustal source derivation and postcollisional setting is substantiated by highly evolved nature of this pluton and the absence of any syenitic or more primitive coeval mafic rocks in association with it. The slight mantle signature in the source material of these A-type granites is owed to the juvenile Pan-African Arabian–Nubian Shield (ANS) crust (I-type calc-alkaline) which was acted as a source by partial melting of its rocks and which itself of presumably large mantle source. The extremely high Rb/Sr ratios combined with the obvious Sr, Ba, P, Ti, and Eu depletions clearly indicate that these A-type granites were highly evolved and require advanced fractional crystallization in upper crustal conditions. Crystallization temperature values inferred average around 929°C which is in consistency with the presumably high temperatures of A-type magmas, whereas the estimated depth of emplacement ranges between 20 and 30 km (upper-middle crustal levels within the 40 km relatively thick ANS crust). The geochronologically preceding Pan-African calc-alkaline I-type continental arc granitoids (the Egyptian old and younger granites) associated with these rocks are thought to be the crustal source of f this A-type granite pluton and others in the Arabian–Nubian Shield by partial melting caused by crustal thickening due to continental collision at termination of the compressive orogeny in the Arabian–Nubian Shield.  相似文献   

2.
张宏飞  骆庭川 《现代地质》1994,8(4):453-458
扬子克拉通北缘的铁船山岩体形成于新元古代,其岩石类型为霓石-钠铁门石花岗岩,岩石富碱质、St、Fe、REE和高场强元素,而贫Al、Ca、Mg、Sr、Ba、Co、Ni等组分,δEu=0.20,A/KNC=0.85,K2O+Na2O/Al2O3=1.09,A·R=9.28,岩石属典型的A型花岗岩,Nd、Sr和O同位素示踪反映其成岩物质来自于壳幔混合源区。根据区域地质背景的综合分析,岩体形成于活动陆缘的张裂构造环境,属活动板块边缘拉张型花岗岩。  相似文献   

3.
Geological, petrological and geochemical studies indicated that there are two distinct types of granitoid rocks: older quartz diorites to granodiorite assemblage and younger granitoids, the latter occurring in two phases. The older granitoids have a meta-aluminous chemistry and a calc-alkaline character, with high MgO, Fe2O3, TiO2, CaO, P2O5, Sr and low SiO2, K2O, and Rb. Their major and trace elements data, together with low 87Sr/ 86Sr ratios (0.7029±0.0008) are indicative of I-type affinities. The second-...  相似文献   

4.
Palaeozoic rapakivi granites occur in the western segment of the China Central Orogenic System. Exhibiting typical rapakivi texture, these granites contain magmatic microgranular enclaves of intermediate compositions. SHRIMP zircon U–Pb ages for the granites and enclaves are 433 ± 5 Ma and 433 ± 3 Ma, respectively. The rapakivi granites are magnesian to ferroan, calc-alkalic to alkalic, and are characterized by high FeOt/(FeOt + MgO) (0.74–0.91) and Ga/Al ratios, and SiO2, Na2O + K2O and rare earth element (apart from Eu) contents, but low CaO, Ba, and Sr contents. These are typical A-type granite geochemical features. The granites and enclaves exhibit a uniform decrease in TiO2, CaO, Na2O, K2O, FeO, and MgO with increasing SiO2, and both lithologies have similar trace element patterns. Whole-rock ?Nd(t) values vary from??9.2 to??8.7 for the granites and from??9.0 to??8.4 for the enclaves, but zircon ?Hf(t) values vary more widely from??5.8 to??0.2 and??4.6 to +5.1, respectively. Our data suggest that the granites and enclaves have crystallized from different magmas. The granites appear to have been derived from old continental crust, whereas the enclaves required a source having a juvenile component. The spherical shape and undeformed nature of the granites and their geochemical characteristics, coupled with the (ultra)-high pressure metamorphism and evolution of Palaeozoic granitoid magmatism in the North Qaidam orogen, indicate that the rapakivi granites were generated in a post-collisional setting. These rocks are therefore an example of Palaeozoic rapakivi granites emplaced in a post-collisional, extensional orogenic setting.  相似文献   

5.
Early Ordovician A-type granites in the northeastern (NE) Songnen Block NE China were studied to better understand the geodynamic settings in this region. This research presents new zircon U–Pb ages and whole-rock geochemical data for the Early Ordovician granites in the NE Songnen Block. Zircon U–Pb dating indicates that the granite in the Cuibei, Hongxing, and Meixi areas in the NE Songnen Block formed in the Early Ordovician with ages of 471–479 Ma. The granites show geochemical characteristics of high SiO2 and K2O compositions and low FeOT, MgO, CaO, and P2O5 compositions. They belong to a high K calc-alkaline series and display a weak peraluminous feature with A/CNK values of 0.98–1.14. The rocks have a ∑REE composition of 249.98–423.94 ppm, and are enriched in LREE with (La/Yb)N values of 2.87–9.87, and display obvious Eu anomalies (δEu?=?0.01–0.29). Trace elements of the studied granites are characterized by enrichment in Rb, Th, U, Pb, Hf, and Sm, and depletion of Ba, Nb, Ta, and Sr. They display geochemical features of high Zr?+?Y?+?Nb?+?Ce values (324–795 ppm) and Ga/Al ratios consistent with A-type granites. Based on particular geochemical features, such as high Rb/Nb (7.98–24.19) and Y/Nb (1.07–3.43), the studied A-type granites can be further classified as an A2-type subgroup. This research indicates that the Early Ordovician A-type granites were formed by the partial melting of ancient crust in an extensional setting. Lower Sr/Y and (Ho/Yb)N ratios indicate that plagioclase and amphibole are residual in the source, and garnet is absent, implying that the magma was generated at low levels of pressure. By contrast, the contemporaneous granites in the SE Xing’an Block suggest a subduction-related tectonic setting, and its adakitic property indicates a thickened continental crust. We suggest that the Paleo-Asian Ocean plate between the Xing’an and Songnen blocks subducted northward during the Early Ordovician. Meanwhile, the NE Songnen Block was exposed to a passive continental margin tectonic setting.  相似文献   

6.
A mass of granitoid and dioritic intrusions are distributed in the southern Yidun Arc, among which the representative Indosinian intrusions include the Dongco and Maxionggou granitoid intrusions in Daocheng County and hypabyssal intrusions intruding into arc volcanic rocks near the Xiangcheng town. The Dongco and Maxionggou granitoid intrusions consist mainly of porphyraceous monzogranites, megacryst monzogranites and aplite granites. The Xiangcheng hypabyssal intrusions are composed dominantly of dioritic porphyries. SHRIMP zircon ages of 224±3 Ma and 222±3 Ma have been obtained for the Dongco granitoid intrusion and the Xiangcheng dioritic porphyries, respectively. The Xiongcheng dioritic porphyries show a cak-alkaline geochemical feature, and are characterized by higher Sr/Y ratios, depletive Nb, Ta, P and Ti, enriched LILEs, and lower εNd (t) (= -3.27), suggesting that they might be derived from mantle source magmas that were obviously contaminated by continent crustal materials. However, the Dongco and Maxionggou granitoids belong to high-potassium calc alkaline series with a per-metaluminous feature, and are characterized by higher CaO/(∑FeO+MgO) and Al2O3/(∑FeO+ MgO) ratios, lower (La/Yb)n and Sr/Y ratios, depletive Nb, Ta, Sr, P and Ti, enriched LILEs, and very low εNd (t) (= -8.10), indicating that the granitoids might be derived from partial melting of continental crust materials mainly of graywacke. Petrogenesis of Dongco and Maxionggou granitoids implies that there was an oceanic crust between the Zongza continental block (ZCB) and western margin of the Yangtze Craton (WMYZC). And the oceanic crust slab subducted westward during the Indosinian Epoch, producing an Andes-type continent marginal arc and a back arc basin at the WMSCC. Then the oceanic basin closed and a sinistrally lateral collision occurred at ca. 224 Ma-222 Ma between the ZCB and the WMYZC, causing partial melting of sediments in the back-arc basin to generate granitoid magmas of the Dongco and Maxionggou intrusions.  相似文献   

7.
The intrusion of granitoids into the Eastern Sierras Pampeanas in the Early Carboniferous took place after a long period of mainly compressional deformation that included the Famatinian (Ordovician) and Achalian (Devonian) orogenies. These granitoids occur as small scattered plutons emplaced in a dominant extensional setting, within older metamorphic and igneous rocks, and many of them are arranged along a reactivated large shear zone. A set of 46 samples from different granitic rocks: Huaco granitic complex, San Blas pluton, and the La Chinchilla stock from the Sierra de Velasco, Zapata granitic complex from Sierra de Zapata, and the Los Árboles pluton from Sierra de Fiambalá, display high and restricted SiO2 contents between 69.2 and 76.4 wt.%. On both FeO/(FeO + MgO) vs. SiO2 and [(Na2O + K2O) ? CaO] vs. SiO2 plots the samples plot in the ferroan and alkaline-calcic to calco-alkaline fields (FeO/(FeO + MgO) = 0.88–1.0%;[(Na2O + K2O) ? CaO] = 6.3–8.3%), thus showing an A-type granitoid signature. The high concentrations for the High Field Strength Elements (HSFE), such as Y, Nb, Ga, Ta, U, Th, etc. and flat REE patterns showing significant negative Eu anomalies are also typical features of A-type granites. Our petrogenetic model supports progressive fractional crystallization with dominant fractionation of feldspar and a source mineral assemblage enriched in plagioclase. Biotites have distinctive compositions with high FeO/MgO ratios (7.8–61.5), F (360–5610 ppm), and Cl (120–1050 ppm). The FeO/MgO ratios together with the F and Cl content of igneous biotites seem to reflect the nature of their parental host magmas and may be useful in identifying A-type granitoids. The isotopic data (Rb–Sr and Sm–Nd) confirm that the A-type granites represent variable mixtures of asthenospheric mantle and continental crust and different mixtures lead to different subtypes of A-type granite (illustrating the lack of consensus about A-type magma origin). We conclude that prominent shear zones play an important role in providing suitable conduits for ascending asthenospheric material and heat influx in the crust, a hypothesis that is in accord with other recent work on A-type granites.  相似文献   

8.
余海军  李文昌 《岩石学报》2016,32(8):2265-2280
本文首次在格咱岛弧休瓦促Mo-W矿区识别出印支晚期似斑状黑云母花岗岩,并确定其结晶年龄为200.93±0.65Ma,同时获得燕山晚期二长花岗岩结晶年龄83.57±0.32Ma;即首次在休瓦促Mo-W矿区内厘定出印支晚期和燕山晚期两期花岗岩浆叠加活动,而Mo-W成矿作用与燕山晚期二长花岗岩具有成因关系。岩石地球化学显示燕山晚期二长花岗岩具有较高的SiO_2和全碱含量及较低的Fe、Mg、Ca和P含量,呈准铝质-弱过铝质;富集Rb、Th、U、Nb、Zr和轻稀土元素,亏损Ba、Sr、P、Eu,具有高分异I型花岗岩特征;其形成于与拉萨-羌塘板块碰撞相关的陆内伸展环境,主要来自中-基性下地壳物质的部分熔融,为Mo-W成矿作用提供了重要的物质基础。相对于二长花岗岩,印支晚期似斑状黑云母花岗岩具有较低的SiO_2、Na_2O+K_2O含量和A/CNK比值,较高的Mg、Ca和P含量;富集Th、U、Rb和轻稀土元素,强烈亏损Nb、Ta、Zr、Hf等高场强元素,为准铝质高钾钙碱性具有岛弧岩浆性质的花岗岩,可能形成于甘孜-理塘洋壳俯冲作用结束后,松潘-甘孜地块和义敦岛弧碰撞后伸展环境,为俯冲期改造后形成的下地壳部分熔融的产物。  相似文献   

9.
黄陵岩基A型花岗岩的厘定   总被引:1,自引:0,他引:1  
黄陵岩基A型花岗岩为钾长-二长花岗岩,为准铝质、富SiO2、高碱、低CaO和MgO、高FeO*/MgO;明显亏损Ba、Sr、P、Ti、Eu,富Nb、Th、Zr、Y等高场强元素,Ga/Al比值高。这些特征与该区I型花岗岩有明显的区别,是一种典型的A2型花岗岩。黄陵岩基A型花岗岩形成时代为800~770Ma,表明扬子地块北缘在新元古代处于拉张阶段,可能与Rodinia超大陆的裂解背景有关。  相似文献   

10.
U–Pb zircon geochronological, geochemical, and whole-rock Sr–Nd isotopic analyses are reported for a suite of Karamay A-type granites from the Central Asian Orogenic Belt (CAOB) in the western Junggar region of northern Xinjiang, Northwest China, with the aim of investigating the sources and petrogenesis of A-type granites. The Karamay pluton includes monzogranite and syenogranite. Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating yielded a concordant weighted mean 206Pb/238U age of 304 ± 5 Ma (n = 11), defining a late Carboniferous magmatic event. Geochemically, the rock suite is characterized by high SiO2, FeOt/MgO, total alkalies (K2O + Na2O), Zr, Nb, Y, Ta, Ga/Al, and rare earth elements (REEs) (except for Eu), and low contents of MgO, CaO, and P2O5, with negative Ba, Sr, P, Eu, and Ti anomalies. These features indicate an A-type affinity for the Karamay granitic intrusions. Isotopically, they display consistently depleted Sr–Nd isotopic compositions (initial 87Sr/86Sr = 0.7014–0.7022, ?Nd(t) = +5.6–+7.0). Geochronological, geochemical, and isotopic data suggest that the Karamay A-type granites were derived from remelting juvenile lower crust, followed by fractional crystallization. The Karamay A-type granites as well as widespread late Carboniferous magmatism in the western Junggar region of the southwestern CAOB may have been related to ridge subduction and a resultant slab window. This further demonstrates the importance of the late Palaeozoic granitic magmatism in terms of vertical crustal growth in northern Xinjiang.  相似文献   

11.
Summary Three distinctive metaluminous granitic suites have been identified from the Pan-African belt of the Kab Amiri area, Eastern Desert, Egypt. These are: 1) a trondhjemite-tonalite suite, 2) a calc-alkaline granodiorite suite, and 3) an alkali leucogranite suite. The trondhjemite-tonalite and the granodiorite suites resemble I-type granitoids whereas the alkali leucogranites display A-type characteristics. Geochemical attributes and field aspects indicate that three independent magmas, at different tectonic stages of the Pan-African crustal growth, are required to explain the origin of these granitoid suites. Rocks of the trondhjemite-tonalite suite correspond to granites of the arc stage and possess a narrow range of SiO2 with low K2O, Sr, Rb, Ba, Nb and Zr. Its composition is consistent with 20–30% partial melting of a primitive low-K tholeiitic source, similar to the early formed tholeiitic metavolcanics of the Egyptian basement. The granodiorite suite belongs to the collision stage and displays higher K2O, Rb, Ba, and Sr. Its magma was derived by 30–40% partial melting of LILE-enriched mafic island arc crust. The presence of abundant microdiorite enclaves in the trondhjemite-tonalite and the granodiorite suites suggests that mantle-derived mafic magma played an important role in their petrogenesis, acting as a heat source for melting via underplating and/or intrusion. The A-type leucogranites are post-collision highly fractionated granites. They exhibit low Al2O3, MgO, CaO, TiO2, Sr, and Ba and high Rb, Nb, Y. The wide chemical variations within this suite are consistent with its evolution by fractional crystallization of plagioclase, K-feldspar, amphibole, Fe–Ti oxides, and apatite from a mafic magma. The parent magma was originated in the upper mantle due to crustal attenuation associated with extension in the late stage of the Pan-African crustal evolution. Received September 13, 2000; revised version accepted May 4, 2001  相似文献   

12.
《International Geology Review》2012,54(12):1103-1120
The Malani Igneous Suite is characterized by discontinuous, ring-shaped outcrops of peralkaline granite associated with minor exposures of volcanic rocks around Barmer town in southwestern Rajasthan, India. These granites are defined as peralkaline, within plate, and A-type based on their bulk rock compositions. The most distinctive geochemical characteristics of these A-type granites are enrichments in Na2O + K2O, Fe/Mg, Zr, Nb, Y, depletions in Al2O3, CaO, Sr, and low-absolute abundances of incompatible trace elements compared to granites from adjoining areas. The igneous activity is considered as a reflection of the ‘Pan-African Event’. The correlative mineralogy, chemical characteristics, and tectonic setting of the peralkaline granites from the study area, and comparison with data from adjoining areas, suggest their generation under a common thermal event.  相似文献   

13.
皖南及邻区早白垩世中—晚期酸性岩浆岩产于扬子陆块江南古隆起东段,岩体类型为花岗岩、碱长花岗岩及钾长花岗岩。岩体含有丰富的锆石、富F的萤石及富含稀土的磷钇矿、独居石、褐帘石等矿物。主量元素具较高含量的SiO2和K2O,较低含量的TiO2、MgO、CaO,高(Na2O+K2O)/Al2O3值,高FeOT/MgO比;富集REE(Eu亏损),HREE亏损不严重,稀土配分模式表现为海鸥型;明显富集Zr、Nb、Rb、Ta、Y、Yb,显著亏损Cr、Co、Ni、V、Ba、Sr。地化特征分析认为早白垩世中—晚期花岗岩为A2型花岗岩,产生于造山后的伸展环境,是正常安山质地壳在皖南印支期加厚地壳熔融结束之后继续受地幔物质底侵部分熔融所形成。  相似文献   

14.
Comprehensive geochemical and geochronological studies were carried out for two-mica granites of the Biryusa block of the Siberian craton basement. U-Pb zircon dating of the granites yielded an age of 1874 ± 14 Ma. The rocks of the Biryusa massif correspond in chemical composition to normally alkaline and moderately alkaline high-alumina leucogranites. By mineral and petrogeochemical compositions, they are assigned to S-type granites. The low CaO/Na2O ratios (< 0.3), K2O - 5 wt.%, CaO < 1 wt.%, and high Rb/Ba (0.7-1.9) and Rb/Sr (3.9-6.8) ratios indicate that the two-mica granites resulted from the melting of a metapelitic source (possibly, the Archean metasedimentary rocks of the Biryusa block, similar to the granites in £Nd(t) value) in the absence of an additional fluid phase. The granite formation proceeded at 740-800 °C (zircon saturation temperature). The age of the S-type two-mica granites agrees with the estimated ages of I- and A-type granitoids present in the Biryusa block. Altogether, these granitoids form a magmatic belt stretching along the zone of junction of the Biryusa block with the Paleoproterozoic Urik-Iya terrane and Tunguska superterrane. The granitoids are high-temperature rocks, which evidences that they formed within a high-temperature collision structure. It is admitted that the intrusion of granitoids took place within the thickened crust in collision setting at the stage of postcollisional extension in the Paleoproterozoic. This geodynamic setting was the result of the unification of the Neoarchean Biryusa continental block, Paleoproterozoic Urik-Iya terrane, and Archean Tunguska superterrane into the Siberian craton.  相似文献   

15.
《Gondwana Research》2014,26(4):1570-1598
Granitic rocks are commonly used as means to study chemical evolution of continental crust, particularly, their isotopic compositions, which reflect the relative contributions of mantle and crustal components in their genesis. New SIMS and K–Ar geochronology, isotope, geochemical, and mineral chemistry data are presented for the granitoid rocks located in and around Gabal Dara in the Northern Eastern Desert of Egypt. The granitoid suite comprises quartz diorites, Muscovite (Mus) trondhjemites, and granodiorites intruded by biotite-hornblende (BH) granites and alkali feldspar (AF) granites. Mus trondhjemite, granodiorite and BH granite exhibit I-type calc alkaline affinities. Mus trondhjemite and granodiorite show medium-K calc-alkaline and metaluminous/mildy peraluminous affinities, whereas BH granites have high-K calc-alkaline and metaluminous character. Concordant 206Pb/238U weighted mean ages together with geochemical peculiarities suggest that Mus trondhjemites (741 Ma) followed by granodiorites (720 Ma) are genetically unrelated, and formed in subduction-related regime by partial melting of lower oceanic crust together with a significant proportion of mantle melt. The genesis of Mus trondhjemites is correlated with the main event in the evolution of the Eastern Desert, called “~750 Ma crust forming event”.The field and geochemical criteria together with age data assign the high-K calc-alkaline BH granites (608–590 Ma) and alkaline AF granites (600–592 Ma) as post-collisional granites. The differences in geochemical traits, e.g. high-K calc-alkaline versus alkaline/peralkaline affinities respectively, suggest that BH granites and AF granites are genetically unrelated. The age overlap indicating coeval generation of calc-alkaline and alkaline melts, which in turn suggests that magma genesis was controlled by local composition of the source. The high-K calc-alkaline BH granites are most likely generated from lithospheric mantle melt which have been hybridized by crustal melts produced by underplating process. AF granites exhibit enrichment in K2O, Rb, Nb, Y, and Th, and depletion in Al2O3, TiO2, MgO, CaO, FeO, P2O5, Sr, and Ba as well as alkaline/peralkaline affinity. These geochemical criteria combined with the moderately fractionated rare earth elements pattern (LaN/YbN = 9–14) suggest that AF granite magma might have been generated by partial melting of Arabian–Nubian Shield (ANS) arc crust in response of upwelling of hot asthenospheric mantle melts, which became in direct contact with lower ANS continental crust material due to delamination. Furthermore, a minor role of crystal fractionation of plagioclase, amphibole, biotite, zircon, and titanomagnetite in the evolution of AF granites is also suggested. The low initial 87Sr/86Sr ratios (0.7033–0.7037) and positive εNd(T) values (+ 2.32 to + 4.71) clearly reflect a significant involvement of depleted mantle source in the generation of the post-collision granites and a juvenile nature for the ANS.  相似文献   

16.
The Palaeoproterozoic Luoling granites occur along the southern margin of the North China Craton. They are rich in silica and total alkalis with SiO2 contents ranging from 65.18 to 72.72 wt.%, K2O from 4.68 to 6.62 wt.%, and Na2O from 1.35 to 4.88 wt.%. They have high Fe*[FeOt/(FeOt + MgO)] ranging from 0.84 to 0.95 wt.% and low MnO (0.03–0.09 wt.%), MgO (0.27–1.55 wt.%), CaO (0.36–2.04 wt.%), TiO2 (0.4–1.12 wt.%), and P2O5 (0.04–0.36 wt.%). Geochemically, they show typical characteristics of A-type granites, such as high contents of alkalis (i.e. high K2O + Na2O, with K2O/Na2O > 1), Rb, Y, Nb, and REEs (except for Eu); high FeOt/MgO and Ga/Al ratios; and low CaO, Al2O3, and Sr contents. New secondary ion mass spectroscopy (SIMS) zircon U–Pb ages reveal that the Luoling granites were emplaced at 1786 ± 7 Ma and thus were approximately coeval with Xiong'er volcanic rocks in the area. Their negative bulk-rock initial Nd and zircon initial Hf isotopic ratios suggest that they have affinities to EM-I-type mantle and both are the products of Xiong'er magmatism during the Palaeoproterozoic. We regard them as produced under a continental rift setting during the Palaeoproterozoic, genetically related to the break-up of the Columbia supercontinent.  相似文献   

17.
A Paleoproterozoic A—type Rhyolite   总被引:3,自引:0,他引:3  
The rhyolites in the upper Lueliang Group of Shanxi,China,are Paleoproterozoic weakly alkaline volcanic rocks.They are characterized by high,SiO2,NaO K2O,Zr,Nd,Ga,Y and REE contents and large FeO^*/MgO,Rb/Sr and Ga/Al ratios,and low CaO,Sr and Eu contents,and share much in common with the A-type granitic rocks.They erupted in the rift setting at the continental margin.Chemical features and isotope data,as well as high Nd and low initial Sr ratios,suggest that the original granitic magma was derived from partial melting of Late Archean metamorphic rocks in the lower crust due to the influence of basaltic magma and hot fluid in response to rifting.The A-type rhyolites were finally formed after the fractional crystallization of the dominant mineral feldspar.  相似文献   

18.
Petrochemical studies on acid plutonic (granite, microgranite) and volcanic (rhyolite, trachyte) rocks occurring in the Siner area of the Siwana Ring Complex, Malani Igneous Suite have been carried out. These rocks are characterized by high concentrations of SiO2, Na2O, K2O, Zr, Nb, Y and REE (except Eu) but low in MgO, Fe2O3(t), CaO, Cr, Ni, Sr; indicating their A-type affinity. Field studies in conjunction with the geochemical characteristic indicate that the magmatism in the Siner area is generally represented by peralkaline suite of rocks which are formed due to rift tectonics. It is also suggested that these acidic rocks could have been derived by low degree partial melting of crustal material. Characteristics of certain pathfinder elements such as Rb, Ba, Sr, K, Zr, Nb, REE and the ratios of K/Rb, Zr/Rb, Ba/Rb along with the multi elemental primitive mantle normalized spidergrams suggest that the Siner peralkaline granites and microgranites have the potential for rare metal and rare earth mineralizations.  相似文献   

19.
【研究目的】 辽宁丹东地区发育着一期A型花岗岩,因其特殊的成因演化,特定的构造背景及其重要的地球动力学意义而备受关注。【研究方法】 本文通过对辽宁丹东凤凰山岩体SHRIMP锆石U-Pb年代学、岩石地球化学特征的分析,探讨了该岩体形成时代、岩石成因及地球动力学背景。【研究结果】 辽东凤凰山黑云母正长花岗岩锆石U-Pb年龄分别为(122.3±1.7)Ma、(125.0±1.7)Ma、 (122±2)Ma,代表岩浆结晶年龄,凤凰山正长花岗岩侵位时代属于早白垩世。地球化学分析结果显示,SiO2含量为65.65%~73.62%,K2O为3.52%~5.76%,Na2O为3.64%~4.26%,Al2O3为13.4%~15.49%,A/CNK值1.02~1.46,属铝过饱和型。碱度率AR在2.71~5.13,基本在铝质A型花岗岩AR值范围内,FeOt/MgO比值为4.69~18.05,表现为A型花岗岩的A1和A2过渡类型。Rb/Nb比值为6.02~8.64,明显高于大陆壳的Rb/Nb比值2.2~4.7,说明陆壳物质对岩体成岩影响较大,从而导致Rb的含量增加。相对富集大离子亲石元素Rb、Th, Zr、Hf,亏损Sr、P、Ba、Ti、Nb。稀土总量较高,轻重稀土之间的分馏不明显,Eu具明显的负异常。【结论】 综上,凤凰山正长花岗岩可能产生于陆内剪切相关的伸展环境,应为自中侏罗世开始由板块俯冲引起的东亚大陆边缘构造过程的响应。  相似文献   

20.
北山柳园地区分布有大量的早中古生代花岗岩类岩石.柳园双峰山岩体具有高硅、高碱(AR=3.99~5.05,NK/A>0.85)、高FeOT/MgO比值和10 000×Ga/Al值、低Al2O3、贫CaO和MgO的特征,显示出准铝质、碱质花岗岩的特点;∑REE较高,LREE略富集,轻重稀土元素分馏不十分明显,Eu负异常明显;相对富集Rb、K、Pb等大离子亲石元素(LILE),强烈亏损Ba、Sr、P、Eu、Ti,弱亏损Ta、Nb等元素;同时具有较高的Rb/Nb和Y/Nb比值,显示了A2型铝质花岗岩的特征.采用LA-ICP-MS锆石U-Pb定年方法,获得双峰山岩体的206Pb/238U年龄为415±3 Ma(MSWD=1.5),代表该岩体的形成年龄,即双峰山岩体形成于早泥盆世.地球化学及Nd同位素特征综合分析显示,该岩体可能由幔源岩浆底侵导致上覆地壳物质(可能由洋壳和岛弧建造组成)部分熔融形成的花岗闪长质岩浆经进一步结晶分异作用形成,为该区较早的钙碱性花岗岩演化到后期的产物.岩体特征、年代学、地球化学和地质背景综合分析结果表明,该岩体形成于后造山或造山作用演化晚期阶段.双峰山早泥盆世A型花岗岩为目前北山地区发现的最老的A型花岗岩,这对探讨古生代花岗岩成因类型及岩浆演化具有重要的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号