首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
Abstract: The Paleoproterozoic Lüliang Metamorphic Complex (PLMC) is situated in the middle segment of the western margin of the Trans-North China Orogen (TNCO), North China Craton (NCC). As the most important lithological assemblages in the southern part of the PLMC, Guandishan granitoids consist of early gneissic tonalities, granodiorites and gneissic monzogranites, and younger gneissic to massive monzogranites. Petrochemical features reveal that the early gneissic tonalities and granodiorites belong to the medium-K calc-alkaline series; the early gneissic monzogranites are transitional from high-K calc-alkaline to the shoshonite series; the younger gneissic to massive monzogranites belong to the high-k calc-alkaline series, and all rocks are characterized by right-declined REE patterns and negative Nb, Ta, Sr, P, and Ti anomalies in the primitive mantle normalized spidergrams. SHRIMP zircon U–Pb isotopic dating reveals that the early gneissic tonalities and granodiorites formed at ~2.17 Ga, the early gneissic monzogranites at ~2.06 Ga, and the younger gneissic to massive monzogranites at ~1.84 Ga. Sm–Nd isotopic data show that the early gneissic tonalities and granodiorites have εNd(t) values of +0.48 to ?3.19 with Nd-depleted mantle model ages (TDM) of 2.76–2.47 Ga, and early gneissic monzogranites have εNd(t) values of ?0.53 to ?2.51 with TDM of 2.61–2.43 Ga, and the younger gneissic monzogranites have εNd(t) values of ?6.41 to ?2.78 with a TDM of 2.69–2.52 Ga.These geochemical and isotopic data indicate that the early gneissic tonalities, granodiorites, and monzogranites were derived from the partial melting of metamorphosed basaltic and pelitic rocks, respectively, in a continental arc setting. The younger gneissic to massive monzogranites were derived by partial melting of metamorphosed greywackes within the continental crust. Combined with previously regional data, we suggest that the Paleoproterozoic granitoid magmatism in the Guandishan granitoids of the PLMC may provide the best geological signature for the complete spectrum of Paleoproterozoic geodynamic processes in the Trans-North China Orogen from oceanic subduction, through collisional orogenesis, to post-orogenic extension and uplift.  相似文献   

2.
The Paleoproterozoic Liiliang Metamorphic Complex(PLMC)is situated in the middle segment of the western margin of the Trans-North China Orogen(TNCO),North China Craton(NCC). As the most important Iithological assemblages in the southern part of the PLMC,Guandishan granitoids consist of early gneissic tonalities,granodiorites and gneissic monzogranites,and younger gneissic to massive monzogranites.Petrochemical features reveal that the early gneissic tonalities and granodiorites belong to the medium-K calc-alkaline series;the early gneissic monzogranites are transitional from high-K caic-alkaline to the shoshonite series;the younger gneissic to massive monzogranites belong to the high-k calc-alkaline series,and all rocks are characterized by right-declined REE patterns and negative Nb,Ta,Sr,P,and Ti anomalies in the primitive mantle normalized spidergrams.SHRIMP zircon U-Pb isotopic dating reveal that the early gneissic tonalities and granodiorites formed at ~2.17 Ga,the early gneissic monzogranites at ~2.06 Ga,and the younger gneissic to massive monzogranites at ~1.84 Ga.Sm-Nd isotopic data show that the early gneissic tonalities and granodiorites have εNd(t) values of +0.48 to -3.19 with Nd-depleted mantle model ages (TDM)of 2.76-2.47 Ga,and early gneissic monzogranites have εNd(t) values of -0.53 to -2.51 with TDM of 2.61-2.43 Ga,and the younger gneissic monzogranites have εNd(t) values of -6.41 to -2.78 with a TDM of 2.69-2.52 Ga.These geochemical and isotopic data indicate that the early gneissic tonalities,granodiorites,and monzogranites were derived from the partial melting of metamorphosed basaltic and pelitic rocks,respectively,in a continental arc setting.The younger gneissic to massive monzogranites were derived by partial melting of metamorphosed greywackes within the continental crust.Combined with previously regional data,we suggest that the PaleOproterOzOic granitoid magmatism in the Guandishan granitoids of the PLMC may provide the best geologicaI signature for the complete spectrum of Paleoproterozoic geodynamic processes in the Trans-North China Orogen from oceanic subduction.through collisional orogenesis,to post-orogenic extension and uplift.  相似文献   

3.
Tin polymetallic deposits are the most important type of tin deposit in the Nanling region. Manyresearchers both at home and abroad consider this type of tin deposit to be the product of differentiation andevolution of granite magmas resulting from anatexis of continental crust and to be genetically related to thetransformation-type (S-type) granitoids. In this paper, on the basis of the geological settings, petrology, REEgeochemistry and strontium and oxygen isotopic compositions of 6 granite intrusions associaied with tinpolymetallic deposits in the Nanling region, the authors suggest that the ore-bearing granites of this type areprobably the products of differentiation and evolution of acid magmas resulting from 40-50‰ fractionalcrystallization of magmas formed by partial melting of the pre-existing intermediate-basic volcanic rocks ofmantle origin in the lower crust and a small amount of sialic material and belong to crust-mantle-derivedgranitoids (approaching I-type of B. W. Chappell and A.J.R. White, but being evidently different from theS-type granitoid related to W, Sn, Nb, Ta and REE deposits).  相似文献   

4.
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U–Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb)N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of ?8.79 to ?5.38, depleted mantle Nd model ages (TDM) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios (87Sr/86Sr)i from 0.7061 to 0.7082, indicating a possible Meso- to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher (87Sr/86Sr)i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.  相似文献   

5.
South Qinling Tectonic Belt (SQTB) is located between the Shangzhou-Danfeng and Mianxian-Lueyang sutures. There are a lot of early Mesozoic granitoid plutons in its middle segment, comprising the Dongjiangkou-Zhashui granitoid plutons at the northeast, Huayang-Wulong-Laocheng granitoid plutons at the central part, Xiba granitoid pluton at the northwest and Guangtoushan-Liuba granitoid plutons at the southwest. These Indonisian granitoids contain a mass of various scale mafic enclaves, which show sometimes clear boundaries and sometimes transitional boundaries with their host granitoids. These granitoids also exhibit metaluminous to peraluminous series, commonly higher Mg# and a wide range of petrochemistry from low-K tholeiite series, through mid-K and high-K calc-alkaline series to shoshonite series and predominated samples are attributed to mid-K and high-K calc-alkaline series. Detailed analyses in Sr-Nd isotopic systematics and petrochemistry reveal that there may be regionally initial granitoid magma of the Indonisian granitoid plutons, comprising Dongjiangkou-Zhashui, Huayang-Wulong-Laocheng, Xiba, and Guangtoushan-Liuba granitoid plutons, which were produced by hybrids of magmas in various degrees, and the initial magmas were derived from both the mantle and the lower continental crust (LCC) sources in the SQTB. The initial granitoid magma further did the magma hybrid with the magmas from the LCC, crystallization fractionation, and assimilation with upper crustal materials during their emplacement to produce these granitoid plutons in the SQTB. These magmatism processes are most likely to occur under continent marginal arc and syn-collision to post-collision tectonic backgrounds.  相似文献   

6.
Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.  相似文献   

7.
The East Kunlun Orogenic Belt(EKOB) provides an important link to reconstruct the evolution of the Proto-Tethys and Paleo-Tethys realm. The EKOB is marked by widespread Early Paleozoic magmatism.Here we report the petrology, bulk geochemistry, zircon Ue Pb dating and, Lue Hf and SreN d isotopic data of the Early Paleozoic granitic rocks in Zhiyu area of the southern EKOB. Based on the zircon U-Pb dating, these granitoids, consisting of diorite, granodiorite and monzogranite, were formed during 450 -430 Ma the Late Ordovician to Middle Silurian. The diorite and granodiorite are high Sr/Y ratio as adakitic affinities, and the monzogranite belongs to highly fractionated I-type. Their(~(87)Sr/~(86)Sr)ivalues range from 0.7059 to 0.7085, εNd(t) values from -1.6 to -6.0 and the zircon εHf(t) values show large variations from +9.1 to -8.6 with Hf model ages(T_(DM2)) about 848 Ma and 1970 Ma. The large variations of whole-rock Nd and zircon Hf isotopes demonstrate strong isotopic heterogeneity of the source regions which probably resulted from multi-phase underplating of mantle-derived magmas. Geochemical and isotopic studies proved that the diorite and granodiorite had been derived from partial melting of heterogeneous crustal source with variable contributions from ancient continental crust and juvenile components, and the monzogranites were representing fractional crystallization and crustal contamination for arc magma. The Early Paleozoic adakitic rocks and high-K calc-alkaline granitoids in the southern EKOB were likely emplaced in a continental marginal arc setting possibly linked to the southwards subduction of the Paleo Kunlun Ocean and the magma generation is linked to partial melting of thickened continental crust induced by underplating of mantle-derived magmas.  相似文献   

8.
The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton.  相似文献   

9.
The granitoids of the continental crust transformation series in South China may be divided into threetypes: (1) synorogenic migmatic and magmatic type. (2) anorogenic continental crust anatexis type, and (3)syncollision type. Based on the results of Sr and Nd isotopic determinations, the source material compositionof the three types of granitoids is calculated with crust-mantle binary mixing simulation. The calculations indi-cate that the granitoids of the first type consist of 78.6-89.7% upper crust endmember materials and15.0-10.3% depleted mantle endmember materials, the granitoids of the second type are composed of 63.7%upper crust endmember materials and 36.3% depleted mantle endmember materials, and those of the third type100% upper crust endmember materials. Hence. the source material composition of the granitoids of all thethree types is dominated by upper crust endmembers.  相似文献   

10.
The distribution of Neogene felsic porphyries intruding in earlier granitic batholiths was mainly controlled by north-south-tending rifting zones and normal faults. The main rock types of the felsic porphyries include granodiorite-porphyry, monzonitic granite-porphyry and quartz monzonitic porphyry. The porphyries are characterized by high SiO2 ((?)64.26%) and Al2O3 (>15% at 70% SiO2), low Y and HREE (Yb) contents, strong enrichment of LILE and LERR, especially K and ST. Geochemical features of the porphyries show distinct adakitic magma affinity. Nd, Sr and Pb isotopic compositions of the porphyries form a linear alignment from MORB to EM2, suggesting a mixing of the MORB reservoir with the metasomatized mantle reservoir. Considering also the geochemical characteristics of the porphyries and the sequence of observable structural-thermal-magmatic events at Gangdise, it is thought that the Neogene porphyries were formed by partial melting of dead subducted oceanic crust in a post-collision setting. K-enr  相似文献   

11.
《International Geology Review》2012,54(17):2083-2099
ABSTRACT

The high Sr/Y geochemical feature of granitoids can be attributed to various mechanisms, and elucidating genesis of high Sr/Y granitoids provides insights into the material recycling and magmatic processes at depth. In southeastern Central Asian Orogenic Belt (CAOB), many Middle Permian granitoids exhibit high Sr/Y ratios, but their origins remain unclear, inhibiting a comprehensive understanding of the magmatic response to the final closure of the Palaeo-Asian ocean. Here we present new zircon U-Pb ages, Lu-Hf isotopes and whole-rock geochemical data for the Middle Permian high Sr/Y monzogranites from central Inner Mongolia, southeastern CAOB. LA-ICP-MS zircon U-Pb data shows that these high Sr/Y rocks were emplaced during 273–261 Ma. They are calc-alkaline, sodium-rich and metaluminous to weakly peraluminous, with enriched large-ion lithophile elements (Rb, Th, K and Pb) and depleted high field strength elements (Nb, Ta, P and Ti), suggesting a mafic lower crustal source rather than evolved potassic crustal materials. Their relatively low (Gd/Yb)N (1.1–2.0), (Dy/Yb)N (1.0–1.3), Nb/Ta (7.9–10.9) ratios and flat heavy rare earth element patterns are characteristics of derivation from a relatively shallow depth with amphibolite as dominant residue. They also have highly variable εHf(t) values (?8.2 to +10.0) and TDMC (1814 to 649 Ma), similar to those of the Early Palaeozoic high Sr/Y intrusions along the Bainaimiao arc belt. Combined with data from literatures, we suggest that the high Sr/Y monzogranites in this study were probably generated by reworking of the newly underplated juvenile high Sr/Y lower crust of the Bainaimiao arc belt. Moreover, taking into account the regional investigations, the sublinear distributed Middle Permian magmatic rocks in the southeastern CAOB were likely associated with the incipient slab break-off of the Palaeo-Asian oceanic lithosphere following initial collision between the North China craton and the South Mongolia terranes.  相似文献   

12.
This article reports new zircon laser ablation-multicollector-inductively coupled plasma-mass spectrometry U–Pb and Hf isotope, whole-rock major and trace element, and Sr–Nd isotope data for mineralized and barren intrusions associated with the Duolong porphyry–epithermal copper–(gold) deposit (DPCD, a mining camp containing several individual deposits) in the western Qiangtang Terrane (QT), central Tibet. These data are used to further our understanding of the geological evolution of this region. The mineralized and barren DPCD intrusions are typical I-type granitoids that were synchronously emplaced at ca. 112.6–125.9 Ma. These igneous rocks show arc affinities that are characterized by enrichments in the light rare earth elements (LaN/YbN = 4.08–15.23) and the light ion lithophile elements (Rb, Th, U, K, and Pb), and depletions in the high field strength elements (Nb, Ta, and Ti). They have 87Sr/86Sr(i) values of 0.7046–0.7079, Nd(t) values of –6.0 to +1.1, and two-stage Nd model ages of ca. 823–1410 Ma. Zircons from these intrusive rocks have variable but generally positive εHf(t) values (–2.7 to +13.7) and relatively young zircon Hf crustal model ages of 335–1351 Ma. Combining these data with geochemical data reported in recent studies, we infer that the mineralized and barren DPCD intrusions formed in a continental marginal arc setting and likely originated from a common parental magma that was result of magma mixing of juvenile crust-derived basaltic melts and old lower crust-derived melts. The formation of the DPCD intrusions indicates that the Bangongco–Nujiang oceanic lithosphere was still undergoing northward subduction beneath the western QT at ca. 112.6–125.9 Ma, suggesting in turn that the oceanic basin have not closed completely during the Early Cretaceous. These new data also indicate that the processes that occur during the subduction of oceanic crust in continental marginal arc settings produce and preserve juvenile crustal material, leading to net continental crust vertical growth and thickening.  相似文献   

13.
李壮  郎兴海  章奇志  何亮 《岩石学报》2019,35(3):737-759
浦桑果矿床位于拉萨地块冈底斯成矿带中段,为侵入岩体与钙质围岩接触带内形成的矽卡岩型高品位铜多金属矿床(Cu@1. 42%,Pb+Zn@2. 83%),是冈底斯成矿带目前唯一一个大型富铜铅锌(钴镍)矿床。本文以浦桑果矿床相关中酸性侵入岩体(黑云母花岗闪长岩和闪长玢岩)为主要研究对象,开展LA-ICP-MS锆石U-Pb年代学、全岩主微量元素、全岩SrNd-Pb及锆石Lu-Hf同位素研究,旨在厘定侵入岩体的形成时代、岩石成因及成岩成矿的动力学背景。LA-ICP-MS锆石U-Pb定年结果表明,黑云母花岗闪长岩和闪长玢岩侵位年龄分别为13. 6~14. 4Ma和13. 6~14. 6Ma,岩体形成时代均属中新世。岩石地球化学特征表明,闪长玢岩和黑云母花岗闪长岩均属高钾钙碱性I型花岗质岩石;岩石普遍具高Sr含量(599×10~(-6)~1616×10~(-6))、高Sr/Y(48. 2~132. 3)和高(La/Yb)N(19. 6~25. 4)比值特征,具低Y(10. 38×10~(-6)~12. 70×10~(-6))和Yb含量(0. 79×10~(-6)~1. 17×10~(-6))特征,表现出埃达克质岩的地球化学属性。全岩稀土元素表现为明显富集轻稀土元素(LREEs)和大离子亲石元素(LILEs),而相对亏损重稀土元素(HREEs)和高场强元素Nb、Ta、P、Ti等(HFSE)。全岩Sr-Nd-Pb及锆石Hf同位素分析结果表明,浦桑果矿床相关中酸性岩石与冈底斯成矿带中新世大多斑岩-矽卡岩矿床紧密相关的埃达克质侵入岩体具相似的同位素组成特征,指示岩石具同源岩浆特征且埃达克质岩浆主要起源于拉萨地块加厚新生下地壳。浦桑果矿床中酸性岩体主要形成于后碰撞伸展的构造背景,因碰撞挤压向后碰撞伸展背景的构造转换,引起印度大陆岩石圈发生拆沉(42~25Ma)及拉萨地块中富集岩石圈地幔发生部分熔融,从而形成富含Cu、Co等基性岩浆熔体底侵加厚新生下地壳(25~18Ma),导致拉萨地块加厚新生下地壳中部分石榴子石角闪岩相发生部分熔融,最终形成闪长质熔体于浦桑果矿区有利构造部位形成具埃达克质属性的中酸性侵入岩体(13~14Ma)和矽卡岩型铜多金属矿体。  相似文献   

14.
扬子克拉通西缘康定杂岩中的片麻状花岗岩主要由英云闪长岩、花岗闪长岩、灰白色细粒二长花岗岩和少量的粉红色粗粒二长花岗岩组成.其中英云闪长岩和花岗闪长岩形成于797~795Ma,灰白色细粒二长花岗岩SHRIMP锆石定年产生一个206Pb/238U权重平均767±24Ma,被解释为该期花岗质岩浆的结晶年龄.英云闪长岩、花岗闪长岩和灰白色细粒二长花岗岩和其中的闪长岩包体表现为右斜式稀土配分模式,具有很高的(La/Yb)N比值,无Eu异常,在原始地幔标准化的多元素蜘蛛网状图上表现了明显的Nh、Ta、P和Ti负异常.而粉红色粗粒二长花岗岩却表现了平坦的稀土配分模式,具有强烈的负Eu异常和强烈的Nh、Ta、sr、P和Ti负异常,但是富集大离子亲石元素.所有这些片麻状花岗岩具有εNd(t)=-0.57~+5.67,绝大部分样品εNd(t)>0.结合地质学、岩石学、地球化学和Sm-Nd同位素特征,康定杂岩中英云闪长岩、花岗闪长岩和灰白色细粒二长花岗岩形成于来自亏损地幔的初生地壳玄武质岩石和相关的杂砂岩在高压条件下的部分熔融,而粉红色粗粒二长花岗岩的岩浆导源于表壳岩低压条件下的部分熔融.结合这些片麻状花岗岩的岩石成因和构造鉴别,表明扬子克拉通西缘康定杂岩中新元古代片麻状花岗岩形成于安第斯型活动大陆边缘.  相似文献   

15.
The Yangchang granite‐hosted Mo deposit is typical of the Xilamulun metallogenic belt, which is one of the important Mo–Pb–Zn–Ag producers in China. A combination of major and trace element, Sr, Nd and Pb isotope, and zircon U–Pb age data are reported for the Yangchang batholith to constrain its petrogenesis and Mo mineralization. Zircon LA‐ICPMS U–Pb dating yields mean ages of 138 ± 2 and 132 ± 2 Ma for monzogranite and granite porphyry, respectively. The monzogranites and granite porphyries are calc‐alkaline with K2O/Na2O ratios of 0.75–0.92 and 1.75–4.42, respectively. They are all enriched in large‐ion lithophile elements (LILEs) and depleted in high‐field‐strength elements (HFSEs) with negative Nb and Ta anomalies in primitive‐mantle‐normalized trace element diagrams. The monzogranites have relatively high Sr (380–499 ppm) and Y (14–18 ppm) concentrations, and the granite porphyries have lower Sr (31–71 ppm) and Y (5–11 ppm) concentrations than those of monzogranites. The monzogranites and granite porphyries have relatively low initial Sr isotope ratios of 0.704573–0.705627 and 0.704281, respectively, and similar 206Pb/204Pb ratios of 18.75–18.98 and 18.48–18.71, respectively. In contrast, the εNd(t) value (−3.7) of granite porphyry is lower than those of monzogranites (−1.5 to −2.7) with Nd model ages of about 1.0 Ga. These geochemical features suggest that the monzogranite and granite porphyries were derived from juvenile crustal rocks related to subduction of the Paleo‐Pacific plate under east China. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The Archean to Paleoproterozoic Central Zone of the North China Craton is situated between the Eastern and Western Archean continental blocks and contains two contrasting series of Neoarchean granitoids: the 2523–2486 Ma tonalite−trondhjemite–granodiorite (TTG) gneisses in the Fuping Complex, and the 2555–2525 Ma calc-alkaline granitoids (tonalite, granodiorite, granite and monzogranite) in the Wutai Complex. The Fuping TTG gneisses most likely formed from partial melting of 2.7 Ga basalts at >50 km, with an involvement of 3.0 Ga crustal material. The Wutai granitoids have higher K2O, LILE and Rb/Sr, but lower Sr/Y and LaN/YbN than the Fuping TTG gneisses, are characterized by Nd TDM from 2.5 to 2.8 Ga and Nd(t) from 0.49 to 3.34, and are derived from partial melting of a juvenile source at <37 km.The geochemistry of these two contrasting series of Neoarchean granitoids provides further evidence that the Wutai Complex originated and evolved separately from the Fuping Complex. The Wutai Complex most likely formed as an oceanic island arc with volcanism and synvolcanic granitoid intrusions at 2555–2525 Ma. The Wutai Complex was subsequently accreted onto the Eastern Archean Continental Block, and was probably responsible for crustal thickening and TTG magmatism at 2523–2486 Ma in the Fuping Complex (as part of the Taihangshan–Hengshan block), at the western margin of the Eastern Archean Continental Block.  相似文献   

17.
Nd and Sr isotope data were obtained for three plutonic suites (595–505 Ma) and distinct young granitoid intrusions (503 Ma), from the southern part of the Neoproterozoic Araçuaí Orogen. The Sr and Nd isotopes (87Sr/86Sr, eNd) and TDM values from the plutons and distinct basement rocks are used to constrain the magma genesis of the granitoid plutons. These isotopic parameters, with eNd values ranging from −4 to −24 and TDM ages from 1.3 to 2.8 Ga, for the granitoid suites, and −5 to −40 and 3.5 to 1.5 Ga, for the distinct Archean and Proterozoic basement complexes, suggest that the Jequitinhonha Complex metasediments are the main crustal source for most of these plutons, except for the youngest granitoid intrusions, which may have a protolith similar to the Mantiqueira and Guanhães complexes. Furthermore, the isotope data indicate a minor, but important, participation of Neoproterozoic oceanic lithosphere in the granite genesis, which corroborates with a confined orogenic model and a narrow oceanic consumption (B-subduction) for the Araçuaí Orogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号