首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tidal currents observed in a surface layer overlying deep water in Sagami and Suruga Bays frequently have large amplitude in summer and fall. Numerical experiments show that the current amplitude due to the surface tides is below 1.0 cm sec–1 for the semidiurnal and diurnal constituents in the inner region of the two bays. The observed current amplitudes are larger than the calculated ones due to the surface tides. Therefore, the observed tidal currents are indicated to be due mainly to the internal tides. In addition, the semidiurnal currents dominate the diurnal currents in Sagami Bay, while the opposite occurs in Suruga Bay. These results suggest that the prevailing periods of the internal tides differ between the two bays,i.e., the internal tide has a semidiurnal period in Sagami Bay and a diurnal period in Suruga Bay.  相似文献   

2.
Current measurements carried out at the depth of 4 m above the sea bottom near the northern edge of the Suruga Trough in the early fall of 1985 indicated the existence of strong semidiurnal tidal currents, which were considered to be associated with internal tides. In order to examine the spatial structure of the bottom intensified tidal flow, more detailed current observations were carried out at three or four depths at two stations along the main axis of the Suruga Trough during about 70 days from August to October 1988. We obtained the following results: (1) the variations of the current velocity caused by the semidiurnal and diurnal internal tides are evident in all of the records, and the orientation of the major axis of each tidal ellipse nearly coincides with that of the main axis of the trough; (2) the semidiurnal internal tide is dominant over the diurnal internal tide at 4 m above the sea bottom at both stations; (3) at the northern station the semidiurnal internal tide is dominant over the diurnal internal tide, whereas they are nearly equal at the southern station except at 4 m above the sea bottom; (4) the biharmonic internal tides with 1/3 day and 1/4 day periods, are found near the sea bottom and the major axis of the tidal ellipse is perpendicular to the orientation of the main axis of the Suruga Trough.  相似文献   

3.
Numerical experiments were performed to explain the observed results of the internal tides in Uchiura Bay. The experiments for the generation of the internal tides in Suruga Bay indicate that the internal tides, generated at the slopes in the bay, are not as large an amplitude as those observed in Uchiura Bay. However, when the semidiurnal internal tides incident through the mouth of Suruga Bay are considered, they are amplified. The amplitude at the head of Uchiura Bay is 6–12 times larger than that at the mouth of Suruga Bay under the summer density structure. Under the fall density structure, the amplitude ratio is approximately 4–6. The amplification of the semidiurnal internal tides in Uchiura Bay is considered to be due to resonance of the longitudinal internal seiche of Uchiura Bay. On the other hand, the calculated diurnal internal tides are not as large as those observed. Therefore, the diurnal internal tides are thought to already have these large amplitudes at the mouth of Suruga Bay. Therefore, from the observations and numerical experiments, it is concluded that the internal tides observed in Uchiura Bay are mostly the internal tides originating from the outer region of Suruga Bay, and the semidiurnal tides are the internal seiche which is resonantly amplified.  相似文献   

4.
南海东沙岛西南大陆坡内潮特征   总被引:2,自引:0,他引:2  
2008年4月-10月,在南海东沙岛西南大陆坡底部布放了1套全剖面锚系,同时沿大陆坡底部布放了3套近底锚系,应用谱分析和调和分析方法分析温度和海流连续观测资料,进而研究该海域的内潮特征.结果表明,东沙岛西南大陆坡存在强内潮现象,大陆坡底部温度变化受到内潮波的影响,上层海洋存在强日潮周期的内潮波振动;正压潮和斜压潮均以O...  相似文献   

5.
Observations of tidal waves between the East and South China Seas (ECS and SCS) over the Taiwan Strait (TS) suggest that the diurnal tides simply appear as one southward-propagating wave from the ECS to the SCS through the TS. The semidiurnal tides, however, behave differently in that they appear as a southward-propagating Kelvin wave in the western TS and a nearly standing wave in the eastern TS, and then diminish rapidly over the shallow shoal in the southern TS. A smaller-domain model, with sea-level boundary conditions derived from a larger-domain tidal model, was first used to simulate tides in the TS to an overall percentage of accuracy of about 90%. Subsequent numerical experiments and theoretical analysis revealed that the southward-propagating semidiurnal tides to be impeded and then reflected as they arrive at an abrupt, deepened step in the topography of the southern TS. This reflection enhances the amplitudes of the incident semidiurnal tides and contributes to the formation of a nearly standing wave in the eastern TS. The southward-propagating diurnal tides in the TS are connected by the diurnal tides in the northern SCS when the amplitudes of the two tide systems are comparable and their phases nearly equal at the step. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Current measurements were conducted 10 m below the sea surface near the head of Suruga Bay intermittently from 1970 to 1978. The circulation pattern is usually counterclockwise; northward along the east coast (off Heda and at the mouth of Uchiura Inlet), westward along the north coast (off Fuji), and southwestward along the west coast (off Shimizu). The amplitudes of the four major tidal constituents of current variation, M2, S2, K1 and O1, are much larger than those expected from sea level variations along the coast. The amplitudes of the diurnal constituents of current variation are much larger than those of the semidiurnal constituents, while the amplitudes of the semidiurnal constituents of sea level variation are much larger than those of the diurnal constituents. The observed amplitude of the predominant diurnal constituents exhibit large seasonal changes and tend to increase with the development of the stratification of the upper part of the water in Suruga Bay. These facts strongly suggest that the observed current variations are mainly associated with internal tides in Suruga Bay.  相似文献   

7.
应用MIKE数值模拟软件,采用无结构三角形网格,建立一套计算区域包括整个渤海、黄海、东海以及东海大陆架和琉球群岛的高分辨率数值模型,考虑了实际水深和岸线,外海开边界采用西北太平洋大模型结果的潮位提供,模拟了东中国海潮波的波动过程,对潮波垂直运动过程进行调和分析,得到了渤海、黄海、东海的M2,S2,K1,O1以及N2,K2,P1,Q1八个主要分潮的传播和分布特征。利用中国沿海14个潮位站的调和常数对模型结果进行了验证,验证结果显示模型较为准确可靠。研究结果表明:4个主要半日潮(全日潮)在渤、黄、东海的传播情形基本相似,即潮波在渤海、黄海、东海沿岸的传播性质上类似沿岸开尔文波的传播形态,并且成功再现了计算海域的4个半日分潮无潮点和2个全日分潮无潮点。全日潮振幅各无潮点附近振幅最小,而海湾的波腹区振幅最大,东海潮差呈现近岸方向振幅大、离岸方向振幅小,浙闽沿海振幅也较大,黄海振幅相对较小,渤海振幅在辽东湾和渤海湾顶最大,两个无潮点周边振幅较小。  相似文献   

8.
利用实测资料分析重构了大亚湾和大鹏湾潮汐水位“双峰”现象,确定了浅水分潮的异常增长是潮位“双峰”现象的主要成因,其中四分之一日分潮和六分之一日分潮起着至关重要的作用。通过SCHISM模型构建大亚湾和大鹏湾附近海域高分辨率水动力模型,模拟结果表明近岸海域,在大亚湾以东,潮汐类型为不规则全日潮,以西为不规则半日潮,在两个海湾内均为不规则半日潮;研究海域的潮流均表现为不规则半日潮流。四分之一日分潮和六分之一日分潮在大亚湾和大鹏湾的不同变形过程是造成两个相邻海湾水文差异的直接原因。通过构建不同底摩擦强度、消除水底地形以及改变海湾水深的数值实验研究表明,分潮传播方向与水深变浅方向是否一致,是导致两个海湾潮波浅水变形不同的根本原因。  相似文献   

9.
内潮耗散与自吸-负荷潮对南海潮波影响的数值研究   总被引:1,自引:0,他引:1  
利用非结构三角形网格的FVCOM海洋数值模式,在其传统二维潮波方程中加入参数化的内潮耗散项和自吸-负荷潮项,计算了南海及其周边海域的M_2、S_2、K_1和O_1分潮的分布。与实测值的比较表明,引入这两项对模拟准确度的提高有明显效果。根据模式结果本文计算分析了研究海域的潮能输入和耗散。能量输入计算表明,能通量是潮能输入的最主要构成部分,通过吕宋海峡断面进入南海的M_2和K_1分潮能通量分别为38和29GW;半日周期的自吸-负荷潮能量输入以负值居多,而全日周期的自吸-负荷潮能量输入以正值居多,因而自吸-负荷潮减弱了南海的半日潮,并加强了南海的全日潮。引潮力的作用也减弱了半日潮而加强了全日潮,但其作用要小于自吸-负荷潮。潮能耗散的分析显示底摩擦耗散在沿岸浅水区域起主导作用,内潮耗散则主要发生在深水区域。内潮耗散的最大值出现在吕宋海峡,且位于南海之外的海峡东部的耗散量大于位于南海之内的海峡西部的耗散量。对M_2和K_1分潮吕宋海峡的内潮耗散总值分别达到16和23GW。  相似文献   

10.
An array of three bottom-mounted ADCP moorings was deployed on the prevailing propagation path of strong internal tides for nearly 1 year across the continental slope in the northern South China Sea. These velocity measurements are used to study the intra-annual variability of diurnal and semidiurnal internal tidal energy in the region. A numerical model, the Luzon Strait Ocean Nowcast/Forecast System developed at the U.S. Naval Research Laboratory that covers the northern South China Sea and the Kuroshio, is used to interpret the observed variation of internal tidal energy on the Dongsha slope. Internal tides are generated primarily at the two submarine ridges in the Luzon Strait. At the western ridge generation site, the westward energy flux of the diurnal internal tide is sensitive to the stratification and isopycnal slope associated with the Kuroshio. The horizontal shear at the Kuroshio front does not modify the propagation path of either diurnal or semidiurnal tides because the relative vorticity of the Kuroshio in Luzon Strait is not strong enough to increase the effective inertial frequency to the intrinsic frequency of the internal tides. The variation of internal tidal energy on the continental slope and Dongsha plateau can be attributed to the variation in tidal beam propagation in the northern South China Sea.  相似文献   

11.
Time series of velocity and water temperature were measured at three stations on the continental shelf, on the shelf margin and on the slope off the northwest Tokunoshima in December 1980 to study influences of the slope on tides.Tidal currents with semidiurnal periods were dominant at the stations on the shelf and shelf margin. However, semidiurnal components in temperature fluctuations were dominant at the stations on the shelf margin and the slope. We estimated horizontal currents due to semidiurnal internal tides from the vertical distribution of water density and temperature, assuming that the temperature fluctuations were caused by the vertical displacement of water particles due to semidiurnal internal tides. The tidal ellipses at the station on the shelf and the phase relation of the tidal currents between the two stations on the shelf and shelf margin indicated that the M2 surface tide on the shelf was a Sverdrup wave propagating to the northwest.Semidiurnal tidal currents on the slope were also caused by tides of surface and internal modes. Furthermore, the axis of the tidal ellipse was not perpendicular to the co-tidal line estimated by Ogura (1934) but rather parallel to the isobaths on the slope, which shows a striking effect of the bottom topography on the tidal currents.  相似文献   

12.
Long-term temperature measurements of the subsurface layer near Uchiura-Bay head were made in summer 1978 and 1979 to further investigate the characteristics of the internal tides in more detail. The temperature measurements indicate that the internal tides were present at all times during the observational period. The semidiurnal internal tides are usually dominant over the diurnal, but at times the diurnal internal tides have comparable amplitudes with the semidiurnal. When the semidiurnal internal tides are predominant, the fundamental period of the longitudinal internal seiche in Uchiura Bay estimated from the observed density structure is close to the semidiurnal period. However, the reason for the occasional amplification of the diurnal internal tides is not clear.  相似文献   

13.
The effects of tidal currents (i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutive southwest monsoon seasons (May, June, July and August of 2013 until 2015) is presented to reveal the role of the tidal currents to the temperature variability in the coastal shelf sea of the east coast of Peninsular Malaysia (ECPM), south of the South China Sea (SCS). The results of a spectral density and harmonic analysis demonstrate that the near-bottom temperature variability and the tidal currents are influenced by diurnal (O1 and K1) and semidiurnal (M2) tidal currents. The spectral density of residual currents (detided data) at 5, 10 and 16 m depth also shows significant peaks at the diurnal tidal frequency (K1) and small peaks at the semidiurnal tidal frequency (M2) indicating the existence of internal tides. The result of the horizontal kinetic energy (HKE) shows a strong intermittent energy of internal tides in the ECPM with the strongest energy is found at 16 m depth during a sporadic cooling event in June and July. A high horizontal cross-shore heat flux (16 m) also indicates strong intrusions of cooler water into the ECPM in June and July. During the short duration of cold pulse water observed in June and July, a cross-wavelet analysis also reveals the strong relationship between the near-bottom temperatures and the internal tidal currents at the diurnal tidal frequency. The intrusion of this cooler water is probably related to the monsoon-induced upwelling in June. It is loosely interpreted that the interaction between the strong barotropic tides and the steep slope in the central basin of the SCS under the stratified condition in southwest monsoon has generated these internal tides. The dissipation of internal tides from the slope area probably has driven the cold-upwelled water into the ECPM coastal shelf sea when the upwelling intensity is the highest in June and July.  相似文献   

14.
Remarkable tidal currents associated with temperature fluctuations in the subsurface layer have been observed in Uchiura Bay. In order to study the characteristics of these tidal currents, we carried out current measurements in November 1972 and October 1974. It was confirmed from the first set of observations in 1972 that the tidal currents above and below the seasonal thermocline oscillate out of phase with each other and the tidal currents are associated with internal tides.In the second set of observations in 1974 not only current measurements but also serial BT lowerings were made. The phase of the thermocline displacements lagged behind the tidal currents by 81 for the semidiurnal constituent and by 83 for the diurnal constituent, and it is thus concluded that the internal tides in Uchiura Bay behave as standing waves.  相似文献   

15.
台湾海峡及其邻近海域潮汐数值计算   总被引:2,自引:0,他引:2  
建立二维潮波模式,模拟了台湾海峡及其邻近海域(18-30°N,110-130°E)八个主要分潮(M2、S2、K1、O1、P1、Q1、K2、N2),并利用中国大陆及环台湾岛20多个潮位站的实测资料进行验证,计算结果与实测值吻合良好.此外,给出了八个主要分潮的同潮图,并逐个讨论了潮汐特征.结果显示:⑴台湾海峡中的潮波运动是北部蜕化了的旋转潮波系统和南部的前进潮波系统共同作用的结果.⑵半日分潮南、北两支潮波在台湾海峽中部汇合,而全日分潮则在台湾海峽南部海域汇合后继续朝西南方向传播.⑶半日分潮振幅最高值发生在福建省湄洲湾—兴化湾一带,全日分潮最高值则出现在雷州半岛以东一带近岸海域.⑷N2、K2和O1、P1、Q1分潮的振幅、迟角分布分别同M2与K1分潮的整体分布趋势相似.  相似文献   

16.
胶州湾是我国沿海的一个重要港湾,长期以来对其进行了较多的调查研究工作。大港验潮站自1926年起开始观测(1936-1946年曾中断),目前已积累了44年的长期水位资料。山角底验潮站自1967年开始观测,也积累了16年的水位资料。我们还系统地搜集了我所1958-1959年在薛家岛、东洋嘴、团岛、麦岛、大公岛分别进行的四个月、两个月及半个月的观测资料,以及山东海洋学院1975年在红岛船厂(阴岛)、黄岛客运码头分别进行的三个月及两个月的水位观测资料和团岛湾、后岔湾、大石头等地的潮汐调和常数。此外,我们还搜集了胶州湾及其附近海区共二十三个测站的海流连续观测资料,其中十九个站的资料是由我所在1957-1959年观测的,三个站是1982年“全国海岸带调查”中测得的,另一个站是华东水利学院提供的资料。这些测站,除六个站为一昼夜连续观测外,其余十七个站均为二昼夜以上连续观测(有一个站为十五昼夜连续观测)。观测站位见图1。 我们把搜集到的这些潮汐、潮流资料进行了调和分析,得到了各主要分潮的调和常数及潮汐、潮流特征值。本文以此为基础,结合实测资料,分析了胶州湾潮汐、潮流的基本特征。  相似文献   

17.
象山港潮波响应和变形研究──Ⅰ.观测和分析   总被引:4,自引:1,他引:3  
利用实测资料分析了象山港海湾对潮波的响应和湾内潮波变形.结果说明象山港对外海传入的半日潮波的振幅有明显的放大作用.M4和MS4两个浅水分潮在湾内快速增长造成了潮波变形和潮不对称性.潮波非线性的沿程变化和不同区域的潮能耗散说明湖滩与潮波变形关系不大,而湖波非线性在牛鼻水道中的增强对湾内潮波变形是重要的,1/4日分潮在湾内的共振作用也对M4和MS4两个浅水分潮起了放大作用.  相似文献   

18.
The instantaneous sea level determined at two sites in the Murderkill Estuary, a tributary of Delaware Bay, results from the superposition of temporal variability operating over different time and spatial scales. Over the relatively short tidal time scales, the semidiurnal tides that represent the dominant tidal constituents in lower Delaware Bay show a modest increase in tidal amplitudes from the bay mouth (Lewes, Delaware), up to Bowers Beach (the mouth of the Murderkill Estuary). However, as the tides propagate into the Murderkill Estuary, the semidiurnal constituents undergo heavy attenuation, resulting in a 48% reduction in tidal amplitude from Bowers to Frederica (approximately the extent of saline intrusion). The diurnal tide, on the other hand, experiences only a 25% reduction in amplitude. The limited tidal asymmetry that is observed may be a result of interaction between flows in the tidal channel and the adjacent salt marsh. At longer time scales, the subtidal sea level experiences no attenuation. The Murderkill Estuary thus behaves like a low pass filter to preferentially damp out high frequency sea level forcing from lower Delaware Bay. The subtidal volume flux in the Murderkill is highly coherent with the time rate of change of sea level, indicating that the Murderkill basically co-oscillates with Delaware Bay in a standing wave fashion over the subtidal time scale. This remote coupling controls more than 90% of the variance in subtidal sea level in the estuary. The surface slopes in the lower bay and the Murderkill Estuary are closely correlated with winds along the orientation of the two waterways, consistent with the effect of local wind on subtidal sea level.  相似文献   

19.
The generation of tides in the Japan Sea is investigated with relation to the tidal volume fluxes at the attached straits, which are estimated with the observed tidal current data. After the tides are separated into the co-oscillating tides induced by the tidal volume fluxes and the independent tide by the tide-generating force, their contributions to the Japan Sea tides are clarified using a one-dimensional tidal model.For the semidiurnal tide, the co-oscillating tide by the Tusima Strait is dominated in all of the area except the gulf of Tartary, and those by the Tugaru and Soya Straits are not effective anywhere. In the gulf of Tartary, the amplitude of the independent tide is the same as that of the co-oscillating tide attributed to the Tusima Strait.For the diurnal tide, the independent tide is not effective anywhere. The co-oscillating tide by the Tusima Strait is largest and those by the Tugaru and Soya Straits are also influential. In particular, the shifting of the diurnal amphidromic point to the Korean side is caused by the latter.  相似文献   

20.
Semidiurnal tides, and especially the lunar tide M2, are dominant dynamics in the Bay of Biscay. Strong tidal currents are associated with the presence of a significant continental slope. By combining Newton's gravitation laws and Euler's equations, Laplace's equations contain the astronomical forcing responsible for the observed semidiurnal tides. In shallow waters, this direct forcing is often neglected. We study here its influence on the tidal dynamics over the continental slope through the development of a simple model describing the barotropic semidiurnal dynamics on a transect perpendicular to the slope. This new model results from the combination of two different models, i.e. the one developed by Rosenfeld and Beardsley (1987), which takes into account the tide-generating force, and that of Battisti and Clarke (1982), which neglects it. A first model is developed by neglecting the direct astronomical forcing in equations: it consists in solving a second-order homogeneous propagation equation for the barotropic semidiurnal tide and needs only coastal conditions as well as the knowledge of the along-slope wave number of the solution. For a mean slope typical of the South Brittany area, this non-forced model provides results in accordance with those of Battisti and Clarke and Le Cann (1990): in particular, in the upper part of the slope, it shows a polarization inversion of tidal ellipses characteristic of the tidal dynamics observed in this area. Then, the direct astronomical forcing is kept in equations. The simple model developed without this forcing is fitted in order to solve the resulting forced propagation equation for the barotropic tide. The solution of this second model is the sum of a forced wave responding to the direct astronomical forcing and of a free wave generated at the coastal boundary. Under the same boundary conditions, the results obtained with the influence of the tide-generating force are then compared with those obtained without it. This comparison allows one to apprehend the importance of the direct astronomical forcing on tidal dynamics across the slope: in particular, the main difference appears in deep waters where this forcing induces a phase-lag between the plain and the shelf for the sea-surface slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号