首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
地震土压力的评价是土力学和岩土工程领域的基本研究课题之一。以往的研究结果表明,挡墙的位移量和位移模式对于地震土压力大小和分布具有显著影响。实际工程中,地震荷载下挡土墙后填土通常处于主动和被动状态之间。经典的物部-冈部公式只能计算主动和被动极限状态下的地震土压力,未考虑填土的侧向变形对于土压力的影响。文中基于拟静力法和曲面中间滑楔体的概念,给出了挡墙平动模式时,任意侧向变形条件下的被动侧地震土压力计算方法。在此基础上采用所提方法对一典型的挡土墙系统的被动侧地震土压力进行了计算,给出了地震土压力系数的计算图表,并与基于平面滑动面假定的计算结果进行了对比,讨论了平面滑动面所导致的误差。  相似文献   

2.
为了研究轻量土的主动土压力特性,通过开展大比尺刚性挡土墙模型试验,采用人工控制挡土墙位移的方式,分析轻量土作为墙后填土时的主动土压力分布规律。结果表明:轻量土的侧向土压力随着挡墙位移量的增加先降低后逐渐趋于稳定,侧向土压力在挡墙位移量为3 mm时初步达到稳定状态,对比发现轻量土的主动土压力显著小于重塑黄土,这表明轻量土可以有效降低墙背主动土压力。轻量土的主动土压力系数处于0~0.16之间,沿着挡墙分布较为稳定,而重塑黄土主动土压力系数介于0~0.57之间,显著大于轻量土的主动土压力系数。经朗肯理论值与模型试验值对比分析,发现轻量土的朗肯主动土压力小于试验值,理论值与试验值之间的绝对误差处于0~6.32 kPa之间,其在实际工程中可以忽略不计。鉴于模型试验中墙背与填土之间存在一定的摩擦,朗肯理论在计算轻量土的主动土压力时仍较为准确。通过模型试验研究和传统理论分析,揭示了轻量土的主动土压力特性,对于完善轻量土土压力理论具有重要意义。  相似文献   

3.
土质场地重力式挡土墙地震土压力振动台实验研究   总被引:3,自引:0,他引:3  
汶川震区路基挡土墙震害表明,地震动荷载作用下重力式挡墙的位移、破坏与基础场地形式有关,除岩质场地和土质场地挡墙所共有的外倾形式,土质地基挡土墙还表现有整体推移及下部向外推移的倾转变形等复杂模式,因此地震土压力大小及分布也将受到这种复杂土-结相互作用的影响。基于碎石土及风化花岗岩填料的土质场地重力式挡土墙大型振动台模型实验,对挡土墙地震土压力及变形模式开展了对比研究,发现在强震作用下,土质地基挡墙因基础约束较弱而产生位移,并伴随明显的墙—土分离现象,致使实测地震土压力较之抗震设计规范计算值偏小(0.4g峰值加速度下约小6%~15%),但作用点高度变化不大。由实验结果与现行抗震规范计算值的安全系数对比,认为对土质场地挡墙的地震土压力计算,按现行国内抗震设计规范基本能满足实际工程抗震设计需要;对于地震区挡墙设计,在允许挡墙发生少量容许位移的前提下可采用内摩擦角较大、自稳能力更好的墙背填料以减少地震土压力。  相似文献   

4.
针对黄土地区现有的地震荷载作用下挡土墙土压力计算方法中的不足,进行了4个含水量和3个围压的平面应变试验,首次建立了平面应变强度参数与结构性的关系,扩展了被动状态下考虑应力主轴偏转的粘性土侧土压力系数计算公式,采用水平微分层分析方法,提出了一种地震作用下同时考虑黄土结构性和主应力轴偏转的挡土墙被动土压力计算方法。参数分析结果表明平面应变条件下地震被动土压力均大于三轴条件下,结构性土地震被动土压力大于无结构性土,墙土面有摩擦时地震被动土压力大于墙土面光滑时;地震被动土压力随水平和竖向地震加速度系数的增大而减小、随摩擦角、均布荷载、墙土摩擦角、粘聚力、构度指标的增大而增大。黄土地区地震被动土压力计算应综合考虑平面应变强度参数、结构性和墙土摩擦效应的影响。  相似文献   

5.
地震诱发的海啸对沿海围护结构的破坏具有强度大的特点。滨水挡土墙作为重要的围护结构,海啸与地震的联合作用极易造成其发生绕墙踵的被动破坏。采用条分法,将土楔体分割成无数平行于破裂面的刚性土条,并建立绕墙踵转动的挡墙与刚性土条之间的速度容许场。基于极限上限理论,依据外力做功功率等于其内能耗散功率,推导了地震加速度系数的表达式。与经典极限平衡理论相比,该方法考虑了挡墙的位移模式,且无需假设地震土压力的作用位置。分析了浪高与海平面高度之比,内摩擦角φ及墙土摩擦角δ对滨水挡土墙稳定性的影响。  相似文献   

6.
地基条件和墙高是影响挡土墙地震响应特征的重要因素。建立不同地基条件的仰斜式挡土墙有限元时程分析模型,以墙身外倾最大危险状态为最不利时刻,研究地基条件和墙高对挡墙动力响应及墙-土相互作用的影响特征,并以满足力学检算和墙身位移限值为出发点,提出同时考虑地基条件和地震峰值加速度PGA的仰斜式挡墙墙高控制建议。结果表明:岩质地基挡墙墙背动土压力沿墙高呈中部大、上下小的凸形分布,大震下土压力较中震时有小幅减小;基底反力呈墙踵为0、墙趾集中的三角形图式,且随PGA和墙高的增加踵部脱空趋势更为明显;土质地基挡墙因墙底地基土变形对墙后填土的牵连作用,填土跟随墙身运动的趋势加剧,墙背动土压力与PGA呈正相关并沿墙高近似呈线性分布,于墙底处最大;墙身往复摆动使踵趾端地基土体塑性变形较基底中部明显,基底反力峰值向中部转移;根据最不利时刻稳定性、承载力检算,考虑对墙身位移合理限制,提出地震区仰斜式挡墙的允许墙高在设防PGA不超过0.2g时为8 m, 0.4g大震下硬质岩地基挡墙可达8 m,软质岩地基挡墙不宜超过6 m,碎石土、砂质黏土地基挡墙不宜超过4 m。  相似文献   

7.
中国是一个地震多发国家,特别是在中西部地区。地震的发生为偶然事件,发生频率并不大,但一旦发生所造成的破坏却是灾难性的,对于高等级公路也不例外。在以前的研究中,很少涉及路基填土的动力学特性以及路基结构在地震荷载作用下的稳定性,现行《公路工程抗震设计规范》对地震动力荷载作用主要是以区域地震烈度作为惟一的参考依据,没有考虑地震振动频率和地震持续时间等特性,因此无法真实反映路基结构在地震作用时的特性。针对以上问题,对路基结构的动力稳定性通过拟静力方法进行研究,对路基结构动力稳定性计算的拟静力公式进行了改进。对于挡土墙在地震荷载作用下挡墙加速度受到影响,在计算挡土墙土压力时考虑地震加速度分布系数的影响;对于路基通过引入加速度分布系数对地震惯性力进行了改进,并对路基边坡拟静力稳定计算的公式进行了改进。  相似文献   

8.
中国是一个地震多发国家,特别是在中西部地区。地震的发生为偶然事件,发生频率并不大,但一旦发生所造成的破坏却是灾难性的,对于高等级公路也不例外。在以前的研究中,很少涉及路基填土的动力学特性以及路基结构在地震荷载作用下的稳定性,现行《公路工程抗震设计规范》对地震动力荷载作用主要是以区域地震烈度作为惟一的参考依据,没有考虑地震振动频率和地震持续时间等特性,因此无法真实反映路基结构在地震作用时的特性。针对以上问题,对路基结构的动力稳定性通过拟静力方法进行研究,对路基结构动力稳定性计算的拟静力公式进行了改进。对于挡土墙在地震荷载作用下挡墙加速度受到影响,在计算挡土墙土压力时考虑地震加速度分布系数的影响;对于路基通过引入加速度分布系数对地震惯性力进行了改进,并对路基边坡拟静力稳定计算的公式进行了改进。  相似文献   

9.
挡土墙地震被动土压力的拟动力分析   总被引:5,自引:0,他引:5  
杨剑 《地震学刊》2012,(3):365-371
对地震土压力的研究是地震区挡土墙安全设计的一项重要课题。地震条件下,目前的研究主要是给出了土压力的近似拟静力解析解。本文采用可考虑动力荷载下的周期和纵波及横波效应的拟动力方法,对挡土墙后的地震被动土压力进行分析。在挡土墙后平面滑裂面假设的基础上,考虑了水平和垂直向地震加速度、纵波速度、横波速度、挡土墙摩擦角、填土内摩擦角、填土坡角对地震被动土压力的影响。与Mononobe-Okabe理论的拟静力法不同的是,用本方法得出了沿墙身地震被动土压力是非线性变化的结果,这更符合地震条件下土压力的变化规律。  相似文献   

10.
被动状态下位移预测是挡墙地震工程设计中的关键,而岸墙后回填土的孔隙水压力对墙体运动具有一定影响。采用拟静力法计算墙后部分浸水土体的被动动土压力,根据静力水压力理论近似计算土颗粒里的动水压力;同时考虑地震荷载和海啸力的作用,根据力矩极限平衡确定旋转门槛加速度系数,采用旋转块体方法计算岸墙被动旋转运动下的地震位移。探讨回填砂土内摩擦角、墙体与土间摩擦角、地震加速度系数、回填土地下水位、海啸波浪高度等参数对旋转位移的影响。  相似文献   

11.
In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.  相似文献   

12.
In the design procedure for a retaining wall, the pseudo-static method has been widely used and dynamic earth pressure is calculated by the Mononobe–Okabe method, which is an extension of Coulomb’s earth pressure theory computed by force equilibrium. However, there is no clear empirical basis for treating the seismic force as a static force, and recent experimental research has shown that the Mononobe–Okabe method is quite conservative, and there exists a discrepancy between the assumed conditions and real seismic behavior during an earthquake. Two dynamic centrifuge tests were designed and conducted to reexamine the Mononobe–Okabe method and to evaluate the seismic lateral earth pressure on an inverted T-shape flexible retaining wall with a dry medium sand backfill. Results from two sets of dynamic centrifuge experiments show that inertial force has a significant impact on the seismic behavior on the flexible retaining wall. The dynamic earth pressure at the time of maximum moment during the earthquake was not synchronized and almost zero. The relationship between the back-calculated dynamic earth pressure coefficient at the time of maximum dynamic wall moment and the peak ground acceleration obtained from the wall base peak ground acceleration indicates that the seismic earth pressure on flexible cantilever retaining walls can be neglected at accelerations below 0.4 g. These results suggest that a wall designed with a static factor of safety should be able to resist seismic loads up to 0.3–0.4 g.  相似文献   

13.
The M–O (Mononobe–Okabe) theory is used as a standard method to determine the seismic earth pressure. However, the M–O theory does not consider the influence of soil cohesion, and it cannot determine the nonlinear distribution of the seismic earth pressure. This paper presents a general solution for the nonlinear distribution of the seismic active earth pressure of cohesive-frictional soil using the slice analysis method. A new method is proposed to determine the critical failure angle of the backfill wedge under complex conditions, and an iterative calculation method is presented to determine the tension crack depth of the seismic active earth pressure. The considered parameters in the proposed method include the horizontal and vertical seismic coefficients, wall inclination angle, backfill inclination angle, soil friction angle, wall friction angle, soil cohesion, wall adhesion and uniform surcharge. The classical methods of the M–O and Rankine theories can be regarded as special cases of the proposed method. Furthermore, the proposed method is compared with the test results and previously existing solutions to validate the correctness of the results. Additionally, the parameters׳ effect on the critical failure angle, the resultant force, the application-point position, the tension crack depth and the nonlinear distribution of seismic active earth pressure are studied in graphical form.  相似文献   

14.
为研究卵石土场地地震反应特征,基于四川成都典型卵石土场地,通过振动台模型试验研究卵石土场地在不同地震波、不同地震强度激励下的加速度峰值放大系数、加速度频谱反应及动土压力反应,并且对其场地地震反应非线性效应及土体动剪应力-动剪应变关系进行分析。结果表明:卵石土场地表层土层对地震波具有明显的放大效应,加速度峰值放大系数介于1~1.4之间,下部土层放大效应较小,加速度峰值放大系数介于0.9~1.2之间。卵石土场地对地震波具有低频放大,高频滤波的作用,滤波频率上、下限随激励强度的增大逐渐向低频方向移动。激励强度较小时,土体尚未破坏,动土压力在地震过程中逐渐增大;随着激励强度的增大,动土压力反应明显增大,表现出骤减后逐渐增大的现象。在激励强度较小时(SN1),中部土体最先进入非线性反应阶段,地震波在中部土层能量损耗最大;激励强度较大时(EL3),土体均发生了较大变形,土体最大动剪应变达到1.7%,此时卵石土场地对地震波的放大作用明显减弱。  相似文献   

15.
An overview of past and recent developments on the subject of seismic earth pressures on yielding, gravity-type walls, retaining cohesionless backfill, is first presented, focusing on available data on the issue of phase difference that develops between the peak values of wall inertia and seismic earth thrust increment. The results of a FEM parametric study are next presented regarding the dependence on the resulting dynamic earth thrust reduction – acting on the time of peak wall inertia – on backfill rigidity, wall height, and shaking characteristics. The reliability of the numerical analyses was verified by modeling centrifuge tests reported by Nakamura [24] and successfully comparing measured vs. computed behavior. The results of the parametric analyses indicate that the seismic active earth thrust, acting on the wall at the time of maximum wall inertia, is significantly reduced (compared to its peak value) with increasing shaking intensity of backfill, increasing wall displacements, increasing wall height, and decreasing backfill rigidity. No systematic dependence on the ratio of input motion frequency to the natural frequency of the backfill (f/f1) was observed. The above findings: (1) verify earlier experimental and numerical results, (2) explain the reported lack of damage to retaining walls under strong ground shaking, and (3) indicate the need for revising the pertinent provisions of current seismic codes. Graphs summarizing the results of the numerical analyses are presented which may be used as a guide for selecting the magnitude of seismic active earth thrust that needs to be taken into account in the design of the examined type of earth retaining walls.  相似文献   

16.
针对西北黄土高原地区高填方减载明洞工程,明洞顶部铺设EPS板可以有效减小明洞周围土压力,保证结构安全。然而,由于填土的动力高敏感性,地震作用将会对已经稳定的回填土体产生扰动,导致明洞结构周围土压力发生较大变动,对明洞结构造成不利影响。因此,采用数值模拟方式,对地震作用下的高填减载明洞周围土压力变化特性及土拱效应进行研究。研究结果表明:地震作用下,由于减载作用产生的土拱效应始终存在,使得土拱高度降低和效应减弱;明洞顶部竖向动土压力时程曲线在距明洞中央0~5 m范围内变化趋势一致,在距中央5~7 m范围内变化趋势相反,当明洞顶竖向动土压力达到峰值时,平均竖向动土压力为平均竖向静土压力的1.14倍;明洞两侧水平动土压力时程曲线变化趋势呈“此消彼长”状态,当水平动土压力达到峰值时,平均水平动土压力为平均水平静土压力的2.89倍。  相似文献   

17.
Prediction of the seismic rotational displacements of retaining wall under passive condition is an important aspect of design in earthquake prone region. In this paper, the pseudo-dynamic method is used to compute the rotational displacements of rigid retaining wall supporting cohesionless backfill under seismic loading for the passive earth pressure condition. The proposed method considers time, phase difference and effect of amplification in shear and primary waves propagating through both the backfill and the retaining wall. The influence of ground motion characteristics on rotational displacement of the wall is evaluated. Also the effects of variation of parameters like wall friction angle, soil friction angle, amplification factor, shear wave velocity, primary wave velocity, period of lateral shaking, horizontal and vertical seismic accelerations on the rotational displacements are studied. The rotational displacement of the wall increases substantially with increase in amplification of both shear and primary waves, time of input motion, period of lateral shaking and decreases with increase in soil friction angle, wall friction angle. The rotational displacements of the wall also increase when the effect of wall inertia is taken into account. Results are provided in graphical form.  相似文献   

18.
The static and seismic sliding limit equilibrium condition of retaining walls is investigated, and analytical solutions for the angle of the active slip surface, the critical acceleration coefficient and the coefficient of active earth pressure are provided for different surcharge conditions. In particular, walls retaining a horizontal backfill without surcharge, walls supporting an extended uniform surcharge applied at different distances from the wall and walls supporting a limited uniform surcharge or linear uniform surcharge parallel to the wall are considered in the analysis.The solutions have been derived in the framework of the limit equilibrium approach, considering the effect of the wall through its weight, and accounting for the shear resistance at the base of the wall and the inertia force arising in the wall under seismic conditions.For the wall without surcharge the effect of the vertical component of the seismic acceleration as well as the effects of the inclination of the wall internal face and of the soil–wall friction were also investigated.The angle of the slip plane, the critical seismic acceleration coefficient and the coefficient of active earth pressure are given as functions of dimensionless parameters and the boundary conditions for the applicability of each solution are specified. The influence of soil weight, surcharge conditions and inertia forces on the active earth pressure coefficient is analysed.  相似文献   

19.
土工格栅加筋挡土墙是一种柔性挡土结构,目前尚未建立较严密的设计方法,作用在土工格栅加筋墙壁上的地震动土压力研究是抗震设计的重要内容之一。应用基于拉格朗日法的完全非线性动有限差分法研究整体面板式土工格栅加筋土挡壁在地震作用下各设计参数对挡壁动土压力的影响。采用弹塑性模型模拟填土,采用耦合弹性参数描述格栅与土接触界面特性,参数包括加筋间距、长度、刚度、地震强度和填土性质等,分析墙壁的动土压力沿墙身的分布特征,得出了影响地震动土压力的显著参数,证明了土工格栅加筋墙体的优异吸震能力,研究结果为整体面板式土工格栅加筋土挡墙抗震设计中的动土压力研究提供参考。  相似文献   

20.
Knowledge of seismic active earth pressure behind rigid retaining wall is very important. Commonly used Mononobe–Okabe method considers pseudo-static approach, which gives the linear distribution of seismic earth force. In this paper, the pseudo-dynamic approach, which considers the effect of primary and shear wave propagations, is adopted to calculate the seismic active force. Considering the planar rupture surface, the effect of wide range of parameters like inclination of retaining wall, inclination of backfill surface, wall friction and soil friction angle, shear wave and primary wave velocity, horizontal and vertical seismic coefficients are taken into account to evaluate the seismic active force. Results are presented in terms of seismic coefficients in tabular form and variation of pressure along the depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号