首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 890 毫秒
1.
为了科学评价煤层重复采动对拟建水渠工程安全性的影响程度,围绕"采煤安全"、"水渠安全运行"这两条主线,在现场调研的基础上,采用理论分析、数值模拟和概率积分法等手段,对重复采动影响下水渠的变形特征进行了分析评价。首先从地层的工程地质结构、水文地质结构、力学结构和开采结构4方面分析了岩土体的结构特征,利用FLAC3D对各煤层开采引发的导水裂隙带发育高度的变化规律进行了模拟分析,同时,根据地表移动和变形预计结果,分析了重复开采引发的地表下沉、倾斜变形及水平变形对水渠坝体的影响。结果表明:多煤层开采后导水裂隙带不会波及到水渠内的地表水,不会影响采煤安全;重复采动会引起水渠不同程度的沉降,堤体地面标高由69.34 m沉降至65.50 m,沉降后的堤体顶面比设计水面降低了1.94 m,过水断面由580 m2减少至196 m2,设计流量将损失66%,对水渠安全运行构成影响。   相似文献   

2.
朱金来  李广杰  尤冰 《世界地质》2012,31(3):584-588
煤层开采后,上覆岩层将形成冒落带、裂缝带和弯曲带。根据营城煤矿研究区自然地理条件、区域地质条件和工程水文地质条件,应用覆岩层破坏理论,得出营城煤矿最大冒落裂隙带高度和建筑物荷载的最大影响深度之和为270 m,远小于该区域煤层最小开采深度( 838 m) ,该区不会产生较大的不均匀沉降。  相似文献   

3.
王泓博  张勇  庞义辉  贾伟 《岩土力学》2022,43(4):1073-1082
煤炭开采引起覆岩破断及地表下沉,覆岩及地表运移规律可反映裂隙带高度的动态演化过程。因地表下沉滞后于煤炭开采,对于废弃采空区,长期压实作用导致裂隙带高度较采动期间有所降低。基于地表点下沉速度的阶段特征将裂隙带高度的演化过程分为2个阶段,第1阶段裂隙带发育对应岩层破断逐步向上传递的过程,第2阶段裂隙带高度降低对应离层及裂隙闭合、断裂岩层受压后变形回弹及破碎岩体自然压实的过程。着眼于压实作用对裂隙带高度的影响,根据煤层采厚、垮落带和裂隙带岩层变形量及地表下沉值之间的定量关系,建立了第2阶段裂隙带高度预测模型,并结合太平煤矿实测结果进行验证,采用控制变量法分析了单一因素影响下废弃采空区裂隙带高度的演化特征。结果表明:废弃采空区裂隙带高度受控于垮落带块体强度、垮落带初始碎胀系数、采动期间裂隙带高度最大值及对应的垮落带高度、煤层埋深、地表最终下沉量等因素,太平煤矿采后15 a的裂隙带高度实测值11.36~13.00 m与理论预测值12.75 m吻合度较高,模型的可靠性得到验证。最后,应用此预测模型对武安煤矿(关停矿井)2002-2003年采空区裂隙带高度开展理论计算,结合地空瞬变电磁探测确定了地面瓦斯抽采钻孔理想的终孔位置并成功开展了地面钻孔瓦斯抽采试验。  相似文献   

4.
玉舍河自北北西向南南东穿过玉舍煤矿,垂直地层走向横切含煤地层,影响了河床下及周围煤层的开采。通过现场踏勘、水文地质条件分析、覆岩岩性分析及导水裂缝带高度预计等,对不同开采上限条件下开采后玉舍河及其周围地下水流场的变化情况进行了数值模拟,并计算了不同条件下的矿井涌水量,结合矿井充水因素分析,最终确定,玉舍河两岸100 m范围外、玉舍河下及其两岸100 m范围内当煤层与河流垂直距离>260 m时,可以安全开采;玉舍河下及其两岸100 m范围内,当煤层与河流垂直距离<260 m时,不可以开采。   相似文献   

5.
通过对白布井田水文地质资料的分析研究,认为浅部6上、6中、7号煤层开采时充水水源为顶板进水的长兴组岩溶裂隙水、含煤地层裂隙水、滑坡体中的孔隙水;充水通道主要为裂隙、岩溶管道、导水裂隙带、断层带。井田深部低于白布河水位的各煤层除受上述充水水源影响外,也受河水的影响。开采东北、东南角深部28、33号煤层时,局部还会受下部茅口组岩溶水充水水源的影响。井田属以裂隙、孔隙含水层充水为主,水文地质条件中等的煤矿床。  相似文献   

6.
《地下水》2016,(4)
以鄂尔多斯盆地西南部某井田为研究对象,在煤矿突水危险性分析的基础上,构建煤层开采冒裂带波及上覆强含水层的矿井涌突水预测的地下水三维流数值模拟模型。预测结果表明,煤层开采形成的导水裂隙带是否导通强含水层以及导水裂隙带的渗透性能强弱,对矿井涌突水量以及地下水渗流场影响的差异较大;当导水裂隙带渗透系数小于0.001 m/d,基本为原地层的正常渗透水量;当导水裂隙带的渗透系数大于0.01 m/d,反映原地层遭受较大破坏,矿坑初期涌水为突水量,后期涌水接近稳定涌水量,涌突水对强含水层地下水降深以及流场都影响很大。  相似文献   

7.
多煤层开采覆岩破断过程的模型试验与数值模拟   总被引:4,自引:1,他引:3  
首先分析了研究区煤矿山西组煤层剖面和水文地质特征,针对多煤层联合开采的特点和覆岩的工程地质特征,采用工程地质力学模型实验、数值模拟计算相结合的综合研究方法,分析了多煤层开采的采动影响及岩层动态断裂机理,得出了有关岩层移动参数和多层煤同采时应力分布状态,计算得到了多煤层开采垮落带与导水裂隙带的发育高度分别为32m和81.5m,导水裂隙带高度影响范围已经达到风化带,未形成切冒,局部穿透粘土层。  相似文献   

8.
针对陕西彬长矿区复合煤层联合开采工作面的涌水异常,通过总结涌水特征,找出了涌水与地层、地质构造、地层压力等之间的联系,并从涌水水源、导水通道、涌水机理3个方面分析了涌水异常的原因。分析认为,受开采强度和安定组地层因素影响,洛河组已成为煤层开采的直接或间接充水含水层;褶曲构造产生的大倾角地层利于导水裂隙带发育,是形成密集出水区段条带特征的直接原因;区域地层具备产生离层水的条件,而特殊的煤层组合关系及开采顺序是造成工作面涌水峰值巨大的主要原因。   相似文献   

9.
通过钻探、物探、水化学测试、抽水试验等手段,在查明地层、构造及煤层顶底板工程地质条件的前提下,从地表水、煤层顶底板岩层裂隙水、奥灰岩溶水三个角度分析了宁武-静乐煤田西蚕寺矿区2#煤层开采水文地质条件,获得如下认识:导水裂隙带高度较煤层埋深有一定的差异,开采2号煤层受地表水的影响较小;煤层顶底板岩层裂隙水富水性弱,对2号煤层开采影响甚小;矿区奥灰水水头压力大,带压区煤层底板承受的水头压力在1.15~8.96 MPa,在断层带附近,会产生突水。评价的结果与方法可为相同地质条件的煤层勘查提供借鉴。  相似文献   

10.
地质条件对隧道工程影响分析   总被引:1,自引:0,他引:1  
通过采用浅层地震弹性波速度分析、孔内波速测试、钻孔数字测井和井下电视摄像,钻探工程以及钻孔围岩物理力学测试数据等方法,对隧道工程作了简要的概括。着重对隧道区特殊地质条件(地形地貌、地层岩性、地质构造、地震、水文地质条件、围岩物理力学指标及类别)进行了综合分析及合理划分,将大同煤田侏罗系含煤地层对隧道区产生的严重影响论述如下:①煤层采空区、开采面积、开采深度、煤柱比例、顶板垮落、地质构造、冒落带、裂隙所引起的地层稳定性。②褶皱带、断层、片麻岩风化带、节理、裂缝、岩石质量低等所引起的地层稳定性做了详细的、科学的论证与评价。最后对隧道区各段施工中出现的问题和采取的措施提出了建设性的建议如下:①对煤层冒落带或裂隙带应采取有效治理和防范措施。②对基岩风化带、岩体破碎应采取围岩加固措施。③对褶皱造成岩体破坏和破碎应采用导管注浆锚固等措施加固围岩。④对处于煤层火区内,隧道施工中会受到高温有害气体的危害,应进行钻孔帷幕灌注,密闭火区。⑤对煤层采空区瓦斯气体有可能沿裂隙、裂缝转移或富集应加强监测与防范。⑥对塌陷裂缝应进行分段支护。⑦对地表裂缝应进行灌浆或充填处理等。  相似文献   

11.
煤炭开采活动导致的煤层顶板覆岩地质条件变化及采动裂隙发育是损害地下关键含水层的直接原因,也是造成矿区生态环境退化的根源。煤层顶板覆岩结构中发育的厚砂岩作为一种典型的地质条件,其对覆岩采动裂隙的发育规律具有重要的影响。为此,在分析研究区主采煤层赋存地质条件及其分布规律的基础上,选择陕北煤炭开采区曹家滩煤矿主采2?2煤层顶板覆岩为地质原型,采用FLAC3D数值模拟平台模拟分析了厚砂岩不同厚度和位置对覆岩采动裂隙发育形态和发育高度的影响,并以此提出了相应的“采煤保水”建议。结果表明:研究区2?2煤层顶板覆岩中厚砂岩平均厚度25 m,距2?2煤层平均间距76 m;厚砂岩距煤层30 m时,覆岩采动裂隙表现为“矩形—L形—马鞍形”的动态变化特征,距煤层70 m时表现为“L形—倒梯形—马鞍形”变化特征,距煤层大于95 m时全程表现为“马鞍形”特征;覆岩采动裂隙最大发育高度随厚砂岩层位的升高而先减小后增大;厚砂岩厚度H≥30 m、距煤层间距L>95 m,或H≥60 m、L>60 m时,可有效阻挡采动裂隙向上发育贯穿厚砂岩;在充分考虑厚砂岩对覆岩采动裂隙发育规律的影响,选择合适的空间位置和开采阶段进行合理的覆岩减损和保水防治,实现“边采边治、边采边护”的绿色开采模式。该研究成果可为黄河流域中游陕北煤矿区煤炭开采与生态环境保护协调发展提供理论指导。   相似文献   

12.
通过对北掌勘探区地质构造、水文地质条件、各煤层赋存情况及钻孔取样试验成果的分析研究,评价了本区在将来开采过程中出现地面塌陷与地裂缝、矿区荒漠化、地下工程地质灾害、瓦斯爆炸与煤层自然和矿井突水等主要地质灾害类型的可能性,以及对人们正常生产生活和矿井安全生产等环境方面的影响,并提出了预防和减轻各类地质灾害的措施建议。  相似文献   

13.
新安矿区主采煤层上部至小浪底库区水体之间地层主要以砂岩、泥岩和砂质泥岩互层为主,厚度90~210m。为研究该矿开采状态下上覆岩层破坏程度和导水裂隙发育高度,在井下3个不同采厚的工作面上布置了7个地面钻孔,采用声波扫描成像测井及其它测井参数对采前、采后上覆岩层进行动态观测。以K3钻孔为例,介绍了超声波扫描成像测井的原理及辨别井孔中裂缝发育程度的方法。K3孔在第一次测量时,井深217~218m处明显存在裂隙,但在第二次测量后该裂隙呈现出闭合反应,证实煤层开采放顶后上部岩石下沉使得原有裂隙闭合;同时发现自194m以上因煤层采空放顶后发育有高度为69.10m的裂隙带。根据新安煤矿K2、K3、K5、K6、K7号孔超声波扫描成像及其它常规测井的地质解释成果可见,该矿导水裂隙带的发育高度随着推进距离和采厚增大而增大,但新安矿区软硬互层上覆岩层的地质构造可有效抑制导水裂隙带的发育程度。  相似文献   

14.
以宁夏羊场湾煤矿Y110207工作面为研究对象,采用无人机遥感技术、野外调查与有限差分软件模拟方法研究浅埋煤层开采的地面塌陷类型、发育规律及其形成机理。(1)浅埋煤层开采地面塌陷以地表裂缝发育为主,地表破坏严重。(2)平行切眼裂缝间隔性出现,展布于整个工作面内,间隔距离为10~120m,局部裂缝形成错台高度约为15cm。平行顺槽裂缝为拉张型裂缝,发育在顺槽至外围一定范围。(3)采煤活动导致地下形成采空区,上覆岩层发生移动破坏,破坏区分为剪切破坏区、拉张破坏区及剪-拉破坏区,分别对压应力区、拉应力区和压-拉转化区。(4)当应力扰动传递至地表,应力值超过覆盖层抗拉强度时地表产生裂缝。随着工作面推进,覆岩内部裂缝带上行裂缝与地表下行裂缝贯通,形成错台。研究成果丰富了该区浅埋煤层的地面塌陷理论知识,为地面塌陷防治提供了理论依据。  相似文献   

15.
通过对唐口煤矿地应力、3上煤层及顶板岩层冲击地压测试结果分析,认为3上煤层属强冲击倾向性煤层,3上煤层顶板属弱冲击倾向性岩层;在采深1000m条件下,随着地应力的增大,煤、岩层的冲击倾向性将会增大。因3上煤层为易碎煤,厚度较大,顶板弹性能易突然全部释放,形成冲击地压;3上煤顶板主要为中砂岩、细砂岩及泥岩,质地坚硬,在煤层开采过程中,煤壁附近出易现高应力集中带,在顶板中聚集的弹性能在自重力和采掘干扰下会突然释放,形成冲击地压。在生产过程中采取钻屑法、沿采煤工作面轨道顺槽安装顶板离层报警系统、合理开拓避免应力集中和叠加、对煤层进行注水,降低煤体弹性和强度、提高支护结构的承载能力等一系列措施,较好地预防了冲击地压的发生。  相似文献   

16.
浅析多层采空区的塌陷机理及发展因素   总被引:1,自引:0,他引:1  
赵金刚  孙忠弟  张志沛  刘涛 《地下水》2010,32(2):158-161
首先对多层采空区的塌陷机理进行了分析,然后分别研究了煤层采出厚度、埋藏深度、覆岩岩性、时间因素及重复采动等因素对多层采空区塌陷的影响。结果表明:冒裂带高度与煤层采出厚度成正比;但是对于多分层开采的特厚煤层或近距离煤层群来讲,其下各分层开采的影响已显著减弱。地表的塌陷影响是随着开采煤层埋藏深度的增加而递减;但是对于开采下部煤层或同一煤层开采下一工作面时,岩层及地袁移动过程比初次采动剧烈,地表移动范围扩大。硕板岩层愈硬,导水破裂带高度愈高;随着开采层数的增加,煤层开采累积厚度也随之增加,但对冒落带高度的影响则愈来愈小。  相似文献   

17.
漳河水库下煤炭资源开采可行性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
水体下的安全开采对于确保煤矿安全生产以及保护地表水、地下水资源等都具有十分重要的意义。本文以漳河水库库区下煤炭资源开采为例,通过对地质采矿条件、采场覆岩性质、覆岩破坏高度预计和开采条件进行分析,对库下采煤的安全性进行了研究和论证。结果表明:覆岩岩性和开采条件均有利于水库下开采,地表水和地下水之间的水力联系程度较低,导水裂缝带波及不到水库库底,因此,可以在水库下进行安全开采。最后,提出了相应的技术措施,以确保水库下安全采煤。  相似文献   

18.
淮北矿区芦岭煤矿主采煤层8煤为特厚煤层,厚度2.72-17.75m,平均厚度9.60m,煤层硬度系数厂为0.16-0.53,构造煤累计厚度约占全层厚度的65%-90%。剖面自上而下划分为碎裂煤、菱形包裹体煤、片状煤、鳞片煤和粉末状煤5种类型,构造类型煤相间分布。微观上网络状裂隙发育.密集的网络状裂隙交叉切割.显微组分破坏严重.煤层受构造作用影响越大,构造煤中的微孔所占比例也就越高。在平面上构造煤的发育可划分为东、中、西三部分,井田东部构造煤较发育,厚度占全层厚度的75%-80%;中部构造煤最发育,厚度占全层厚度的95%以上;井田西部构造煤所占比例相对较低,约占全层厚度的65%-70%。采区资料表明,在倾向上,随着煤层深度的增加,构造煤厚度占金层厚度比例呈上升趋势.-450--460m水平以下,构造煤层所占比例明显增高,约占95%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号