首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Evidence supports the hypothesis that two climatic regime shifts in the North Pacific and the Japan/East Sea, have affected the dynamics of the marine ecosystem and fisheries resources from 1960 to 2000. Changes in both mixed layer depth (MLD) and primary production were detected in the Japan/East Sea after 1976. The 1976 regime shift appears to have caused the biomass replacement with changes in catch production of major exploited fisheries resources, including Pacific saury, Pacific sardine and filefish. Both fisheries yield and fish distribution are reflected in these decadal fluctuations. In the 1960s and 1990s, common squid dominated the catches whereas in the 1970s and 1980s, it was replaced by walleye pollock. In the post-1988 regime shift, the distribution of horse mackerel shifted westward and southward and its distributional overlap with common mackerel decreased. The habitat of Pacific sardine also shifted away from mackerel habitats during this period. To evaluate changes in the organization and structure of the ecosystem in the Japan/East Sea, a mass-balanced model, Ecopath, was employed. Based on two mass-balanced models, representing before (1970–75) and after (1978–84) the 1976 regime shift, the weighted mean trophic level of catch increased from 3.09 before to 3.28 after. Total biomass of species groups in the Japan/East Sea ecosystem increased by 15% and total catch production increased by 48% due to the 1976 regime shift. The largest changes occurred at mid-trophic levels, occupied by fishes and cephalopods. The dominant predatory species shifted from cephalopods to walleye pollock due to the 1976 regime shift. It is concluded that the climatic regime shifts caused changes in the structure of the ecosystem and the roles of major species, as well as, large variations in biomass and production of fisheries resources.  相似文献   

2.
Understanding in climate effects on marine ecosystem is essential to utilize, predict, and conserve marine living resources in the 21s t century. In this review paper, we summariz ed t h e past history and current status of Korean fisheries as well as the changes in climate and oceanographic phenomena since the 1960s. Ocean ecosystems in Korean waters can be divided into three, based on the marine commercial fish catches; the demersal ecosystem in the Yellow Sea and the East China Sea, the pelagic ecosystem in the Tsushima Warm Current from the East China Sea to the East/Japan Sea, and the demersal ecosystem in the northern part of the East/Japan Sea. Through the interdisciplinary retrospective analysis using available fisheries, oceanographic, and meteorological information in three important fish communities, the trend patterns in major commercial catches and the relationship between climate/ environmental variability and responses of fish populations were identified. Much evidence revealed that marine ecosystems, including the fish community in Korean waters, has been seriously affected by oceanographic changes, and each species has responded differently. In general, species diversity is lessening, and mean trophic level of each ecosystem has decreased during the last 3~4 decades. Future changes in fisheries due to global warming are also considered for major fisheries and aquaculture in Korean waters.  相似文献   

3.
An overview of the Oyashio ecosystem   总被引:3,自引:0,他引:3  
The Oyashio shelf region and the seasonally ice-covered areas north of Hokkaido are highly productive, supporting a wide range of species including marine mammals, seabirds and commercially important species in the western subarctic Pacific. The fishes include gadids, such as walleye pollock and Pacific cod, and subarctic migratory pelagic fishes such as chum salmon and pink salmon. It is also an important summer feeding ground for subtropical migrants such as the Japanese sardine, Japanese anchovy, Pacific saury, mackerels, Japanese common squid, whales and seabirds. In recent decades, some components of the Oyashio ecosystem (i.e., phytoplankton, mesozooplankton, gadid fish, and subtropical migrants) have shown changes in species abundance or distribution that are correlated with environmental changes such as the 1976/1977 and 1988/1989 regime shifts. The First Oyashio Intrusion moved northward from the mid-1960s until the late 1970s, when it moved southward until the 1980s, after which it returned to the north again after the mid-1990s. The sea-surface temperature in spring decreased after the late 1970s, increased after the late 1980s, and remained high during the 1990s. The extent of ice cover in the Sea of Okhostk also decreased during the latest warming in the 1980–1990s but has increased again since the late 1990s. This and other variabilities affect the Oyashio ecosystem and the surrounding region.  相似文献   

4.
By reviewing the history of fishery exploitation in the coastal waters of west Canada and east Korea, related with contrasting life history strategies of the dominant species, the fishery management challenges that each country would face in the upcoming decades were outlined. In the ecosystem of the Canadian western coastal waters, the dominant oceanographic feature is the coastal upwelling domain off the west coast of Vancouver Island, the northernmost extent of the California Current System in the eastern North Pacific. In the marine ecosystem of the eastern coasts of Korea (the Japan/East Sea), a major oceanographic feature is the Tsushima Warm Current, a branch of the Kuroshio Current in the western North Pacific. Fishes in the Canadian ecosystem are dominated by demersal, long-lived species such as flatfish, rockfish, sablefish, and halibut. During summer, migratory pelagic species such as Pacific hake, Pacific salmon, and recently Pacific sardine, move into this area to feed. In the late 1970s, Canada declared jurisdiction for 200 miles from their coastline, and major fisheries species in Canadian waters have been managed with a quota system. The overall fishing intensity off the west coast of Vancouver Island has been relatively moderate compared to Korean waters. Fishes in the ecosystem of the eastern Korean waters are dominated by short-lived pelagic and demersal fish. Historically, Korea has shared marine resources in this area with neighbouring countries, but stock assessments and quotas have only recently (since the late-1990s) been implemented for some major species. In the Korean ecosystem, fisheries can be described as intensive, and many stocks have been rated as overfished. The two ecosystems responded differently to climate impacts such as regime shifts under different exploitation histories. In the future, both countries will face the challenge of global warming and subsequent impacts on ecosystems, necessitating developing adaptive fisheries management plans. The challenges will be contrasting for the two countries: Canada will need to conserve fish populations, while Korea will need to focus on rebuilding depleted fish populations.  相似文献   

5.
The hake resource is the most important commercial fish species in the demersal sector of Namibia's fisheries, both in terms of annual catch and contribution to Gross Domestic Product (GDP). The fishery now spans four decades. In the 1960s and 1970s, hake were exploited heavily by mainly foreign fleets, total catches peaking at more than 800 000 tons in 1972. The first control measures, the use of a minimum mesh size of 110 mm and the allocation of quotas to each member country participating in the hake fishery, were implemented by the International Commission for the Southeast Atlantic Fisheries in 1975. In 1990, the Namibian Government took action to control fishing activities in Namibian waters, and the enactment of its Fisheries Policy (1991) and Sea Fisheries Act of 1992 provided for the control measures to be taken. The conservative management strategy adopted between 1990 and 1993 resulted in gradual increase in hake biomass, but thereafter the stock declined. The hake fishery is currently managed on the basis of a total allowable catch that takes into consideration the rate of increase or decrease in the size of the resource. Since 1990, the demersal trawl fishery has accounted for approximately 90% of the total hake catch. The resource is subjected to both directed fishing and bycatch, the latter taken in directed fisheries for species such as horse mackerel, monkfish and sole.  相似文献   

6.
Mass-balance models have been constructed using inverse methodology for the northern Gulf of St. Lawrence for the mid-1980s, the mid-1990s, and the early 2000s to describe ecosystem structure, trophic group interactions, and the effects of fishing and predation on the ecosystem for each time period. Our analyses indicate that the ecosystem structure shifted dramatically from one previously dominated by demersal (cod, redfish) and small-bodied forage (e.g., capelin, mackerel, herring, shrimp) species to one now dominated by small-bodied forage species. Overfishing removed a functional group in the late 1980s, large piscivorous fish (primarily cod and redfish), which has not recovered 14 years after the cessation of heavy fishing. This has left only marine mammals as top predators during the mid-1990s, and marine mammals and small Greenland halibut during the early 2000s. Predation by marine mammals on fish increased from the mid-1980s to the early 2000s while predation by large fish on fish decreased. Capelin and shrimp, the main prey in each period, showed an increase in biomass over the three periods. A switch in the main predators of capelin from cod to marine mammals occurred, while Greenland halibut progressively replaced cod as shrimp predators. Overfishing influenced community structure directly through preferential removal of larger-bodied fishes and indirectly through predation release because larger-bodied fishes exerted top-down control upon other community species or competed with other species for the same prey. Our modelling estimates showed that a change in predation structure or flows at the top of the trophic system led to changes in predation at all lower trophic levels in the northern Gulf of St. Lawrence. These changes represent a case of fishery-induced regime shift.  相似文献   

7.
基于个体模型的东海鲐鱼渔场形成机制研究   总被引:4,自引:2,他引:2  
鲐鱼Scomber japonicus资源丰富,在我国近海渔业中占有重要地位。其渔场的形成受海洋环境的制约,本文确定鲐鱼运动和物理环境之间的响应关系,建立起了基于个体的东海鲐鱼生长洄游模型。结果显示,鲐鱼集群分布与捕捞生产渔场基本吻合,鲐鱼聚集主要受台湾暖流、大陆沿岸水、黑潮影响,往往集群在一定温度范围内并在冷暖交汇区温盐梯度大偏暖水一侧。在台湾暖流和沿岸水交汇的锋面附近、台湾暖流暖水舌前端、黑潮与中国大陆沿岸水形成的潮境区域均有大量的鲐鱼聚集,并形成渔场。产卵位置的变动使偏西产卵位置的鲐鱼由于受台湾暖流影响较大,鲐鱼会呈长带状大量聚集在台湾暖流和沿岸水的锋面附近,并使在台湾暖流暖水舌前端的聚集数量增多,而偏东的产卵的鲐鱼受黑潮影响较大,聚集分布范围较大,会使黑潮形成的锋面附近聚集数量增多,而使台湾暖水舌的前端的聚集量减少。正常产卵位置在生存率方面是最佳产卵位置。研究表明鲐鱼所处空间位置不同,会影响其集群的位置,用数值模型验证了物理环境会对鲐鱼的洄游和渔场的形成产生影响。  相似文献   

8.
The species composition, abundance and diversity of demersal fish assemblages has been investigated in an oligotrophic coastal bay in the Aegean Sea which is a designated zone for the development of aquaculture. Samples were collected using experimental trawling, before the establishment of fish cages in the area during early June 1987 and after attaining the maximal production of the aquaculture zone in late May 2001. The overall abundance of the fish assemblage increased by a factor of 4 and the average trophic level of the fish community increased from 3.59 to 3.79. Traditional diversity indices showed an increase in dominance but the distinctness measures of biodiversity showed that the overall structure obtained after the establishment of fish farming was not phylogenetically impoverished. Multivariate analysis showed that the community differences between the two periods are quantitative rather than qualitative. Comparisons in length frequencies between the two periods indicated that specimens of the species compared were either similar or larger in the second period. The species favoured by the presence of aquaculture were not the ones normally feeding on the food pellets under the cages but those normally occurring in the fishing grounds of the study. It is concluded that the release of nutrients from fish farming in nutrient-poor systems can have a positive effect on local fisheries with no visible negative change in species composition or biodiversity.  相似文献   

9.
捕捞压力在改变南海鱼类种类演替和生物量波动方面所起的作用大于气候和环境因素是一个普遍的、有争议的假设。根据1959~2010年南海北部北部湾口底拖网的调查数据,报告了该海域鱼类种类组成、优势类群的丰度比例、生物量的季节和年际变化。建立了鱼类生物量与捕捞压力和气候变化外部因素之间的广义加性模型。结果表明,捕捞压力驱动底层渔业资源急剧下降的主要因素,并随着时间的推移,高值鱼类被低值鱼类所取代。1993年和1998年期间鱼类生物量的突然减少与同期厄尔尼诺事件相对应,气候变化可能是渔业拖网捕捞中中上层鱼类比例变化的主要驱动因素。为了更好地了解鱼类群落动态,需要区分捕捞压力和环境驱动因素对不同生活史策略鱼类物种的影响。  相似文献   

10.
Long-term variability in the intermediate layer of the eastern Japan Basin has been investigated to understand the variability of water mass formation in the East Sea. The simultaneous decrease of temperature at shallower depths and oxygen increasing at deeper depths in the intermediate layer took place in the late 1960’s and the mid-1980’s. Records of winter sea surface temperatures and air temperatures showed that there were cold winters that persisted for several years during those periods. Therefore, it was assumed that a large amount of newly-formed water was supplied to the intermediate layer during those cold winters. Close analysis suggests that the formation of the Upper Portion of Proper Water occurred in the late 1960’s and the Central Water in the mid-1980’s.  相似文献   

11.
Fishing can affect the structure of fish communities, but the size of the effects is difficult to measure and they can easily be confounded with environmental effects. The simplest effect is the increase of prey species when large predators are reduced, but these effects are seldom large. Changes in the balance within a group of ecologically similar species can be much more dramatic, especially in the case of stocks of small pelagic species, and several large fisheries on sardine, herring and anchovy have collapsed, sometimes accompanied by a rise of other species. Part, not all, of these changes can be ascribed to the effects of competition, and of selective fishing directed at one preferred species. Other changes, such as the gadoid outburst in the North Sea in the 1960s, may have involved less obvious mechanisms. Because few of the changes in the community structure can be reliably predicted, although they can have dramatic effects on the success of the fisheries, difficult management problems are raised. Managers have to recognize uncertainty and take a range of possible consequences into account when setting policies.  相似文献   

12.
This study describes variability in the marine ecosystem of Ghana, West Africa, on several temporal and spatial scales and discusses how the human communities using this ecosystem respond to this variability to cope socially and economically. Ghanaian marine waters are part of an upwelling system with strong seasonal and inter-annual variability. Much of this variability is forced at large spatial scales in the tropical Atlantic and by El Niño—Southern Oscillation events in the Pacific Ocean, which influence inter-annual variability of sea surface temperature and pelagic fish landings off Ghana. At decadal scales, Ghanaian marine waters experienced cool sea temperatures and low fishery landings during the 1960s, rapid warming and increases in fishery landings during the late 1970s and 1980s, and variable temperatures and fishery landings during the 1990s. In the late 1990s, pelagic and demersal fish populations appeared to be declining, partly due to over-fishing, although the per capita supply (domestic production plus net imports) of fish was kept high by increased imports. Artisanal fishers and fishing communities in Ghana have devised strategies to deal with variability on seasonal and inter-annual scales. These livelihood strategies include: (i) exploiting marine and terrestrial natural resources more intensively, initially at local scales but expanding to regional scales; (ii) ensuring multiple and diversified income sources; (iii) investing in social relationships and communities for support; and (iv) undertaking seasonal or permanent migrations. In addition, the national government imports fish to deal with shortages. However, these strategies may be less adapted to variability at decadal scales, and may not be sustainable when viewed at the larger scales of environmental change.  相似文献   

13.
根据第4次中国北极科学考察在白令海与楚科奇海进行的鱼类拖网调查资料,分析了白令海与楚科奇海鱼类生物的种类组成、优势种、物种多样性和区系特征,探讨了鱼类生物对北极气候快速变化的响应。结果表明,白令海与楚科奇海两个海域共鉴定鱼类生物14科41种;主要优势种类为粗壮拟庸鲽(Hippoglossoides robustus)、北鳕(Boreogadus saida)、短角床杜父鱼(Myoxocephalus scorpius)、斑鳍北鳚(Lumpenus fabricii)、粗糙钩杜父鱼(Artediellus scaber);从适温性来看,冷水性种类最多,有35种,冷温性种类6种;从栖息地生态类型来看,底层鱼类、近底层鱼类和中上层鱼类分别为35、5和1种;Shannon-Wiener多样性指数平均为1.21,呈现南高北低的特点,整体多样性水平不高;气候变化引起部分北极、亚北极海区鱼类出现不同程度的纬向和纵向移动,由此将引起北极渔业资源分布格局的变化。  相似文献   

14.
Climate variability and pelagic fisheries in northern Chile   总被引:5,自引:0,他引:5  
A time series analysis of long-term climate variability in northern Chile (18°21′–24°00′S) shows anomalies associated with the El Niño events and the longer warm period observed since 1976, followed by a cooling trend since mid 1980s. The succession of pelagic fisheries, anchovy (Engraulis ringens) and sardine (Sardinops sagax), occurring in this fishing zone was analyzed taking into account the landings, the CPUE abundance index, the fishing effort, and the environmental variables. The anchovy production model is a negative linear function of fishing effort and turbulence. For sardine, the production model is a negative linear function of fishing effort and a quadratic function of the sea surface temperature.An analysis of the relationship between recruitment, adult biomass and the environment shows that the annual recruitment of anchovy increases with turbulence intensity until wind speed reaches a value of 5.46 m s−1, decreasing for higher values. For sardine, the recruitment increases with turbulence intensity until 5.63 m s−1, stabilizing thereafter.It is deduced that the climatic variations associated to the El Niño events affect the abundance of coastal pelagic fishes, without forgetting the most likely effects upon its distribution and the fishing effort. However, it is the long-term variability that mainly affects the fishing activity.  相似文献   

15.
Mass-balance models (Ecopath) of the ecosystem before and after collapse (1959-1961 and 1997-1999) of fish stocks were developed with Ecopath software to compare the differences in ecosystem structure, functioning and ecosystem properties of the Beibu Gulf. The model includes 20 functional groups consisting of commercial important fish groups and other ecologically important groups in the ecosystem such as zooplankton, phytoplankton, and detritus. Results indicated that biomass and catches of the system have changed drastically between the 1960s and 1990s, especially for the high trophic levels (TL). The biomass of level V in the early 1960s was 32 times higher than that of the late 1990s, however, the biomass of level I and II in the 1990s was higher than the 1960s. Despite the higher catches in the 1990s, fishing was ecologically less expensive during the 1990s than 1960s due to small fish catches were large. Mean transfer efficiency decreased from for 10.2% in the 1960s to 9.1% in the 1990s periods. According to the summary statistics, the parameters of net system production (NPS) and total primary production to total respiration ratio were increased from 1.013 in the 1960s to 2.184 in the 1990s, however, the connectance index (CI), system omnivore index, Finn’s cycling index and mean path length decreased from the 1960s to the 1990s. The overhead (O) was higher in the 1990s model while the ascendancy (A) decreased nearly 10% in the 1960s. The ‘Keystoneness’ result indicate that zooplankton was identified as keystone species in 1960s, however, the elasmobranches was keystone species in the late 1990s. The average trophic level of the fishery decreased from 3.32 in the 1960s to 2.98 in the 1990s, and exhibits classic symptoms of “fishing down the food web”. All the indices of the system attributes suggests that the Beibu Gulf ecosystem in 1960s was found to be more mature than in the 1990s due to the collapse of demersal ecosystem, and the ecosystem changed from being dominated by long-lived, high trophic level groundfish dominated system toward a system with small-size and low-value species over fifty years.  相似文献   

16.
The life spans of demersal species of fishes occurring in deep-waters are much longer and their potential growth rates much lower than those of related shallow water species. As a result, deep-sea demersal fish species are more vulnerable to exploitation. This is because low growth rates relative to the available market discount rate for capital makes it desirable for fishing firms to mine, rather than sustainably exploit, these resources even in the absence of fisheries subsidies. However, it is common knowledge that governments around the world do provide subsidies to their fishing industries. The objective of this contribution is to estimate the global amount of subsidies paid to bottom trawl fleets operating in the high seas, i.e., outside of the Exclusive Economic Zones of maritime countries. Our study suggests that fisheries subsidies to these fleets stand at about US$152 million per year, which constitutes 25% of the total landed value of the fleet. Economic data for bottom trawlers suggest that the profit achieved by this vessel group is normally not more than 10% of landed value. The implication of this finding is that without subsidies, the bulk of the world's bottom trawl fleet operating in the high seas will be operating at a loss, and unable to fish, thereby reducing the current threat to deep-sea and high seas fish stocks.  相似文献   

17.
The diets of breeding seabirds can be a good monitor of marine environmental changes. From 1984 to 2001 we monitored the diets of black-tailed gulls (Larus crassirostris) (“surface foragers”), rhinoceros auklets (Cerorhinca monocerata) (“epipelagic divers”), and Japanese cormorants (Phalacrocorax filamentotus) (“bottom divers”) that breed on Teuri Island at the northern boundary of the Tsushima Warm current in the Sea of Japan/East Sea. Between 1984 and 1987, both the gulls and the auklets foraged on the sardine (Sardinops melanostictus), but after 1992, they switched to the anchovy (Engraulis japonica). This change might reflect the collapse of the sardine stock in the late 1980s. In the 1990s, the year-to-year variations of the percentage of anchovy in the diets of the three seabird species showed similar trends: High in 1994 and 1998–2001; and low in 1992–1993 and 1995–1997. The estimated stock size of the anchovy population in the Tsushima Current area was positively correlated with the percentage of mass of anchovy in the seabirds’ diets. Thus, the short-term annual changes of the total anchovy availability, which might reflect SST or the volume transport of Tsushima Current, possibly affected the seabirds diets on this island.  相似文献   

18.
基于环境DNA技术的夏季东海鱼类物种多样性研究   总被引:2,自引:1,他引:1  
为了解东海海域主要鱼类群落的种类组成,监测和保护其多样性,本研究利用环境DNA技术对东海鱼类进行物种多样性分析.通过海水样本的采集,环境DNA提取、扩增和高通量测序分析,从东海14个站点的环境DNA样本中共检测出2纲,23目,29科,42属,44种海水鱼类,大部分种类在东海传统渔业资源调查中均有出现.其中,相对丰度较高...  相似文献   

19.
To understand the variations of ecosystem components in response to changing environment, especially relating to a shift in the climate regime during mid 1970s, we analyzed the physical and biological time-series data collected from the eastern part of the Korean Peninsula during 1960–1990. The Northeast Pacific Pressure Index (NEPPI) in winter seasons showed a negative correlation (r=−0.384, p<0.05) with SOI in summer. The standardized chronologies of tree ring-width showed high correlations with precipitation of Ulleung Island and Kangrung city (r=0.408, p<0.05; r=0.410, p<0.05) and seawater temperatures (r=0.407, p<0.05). Sharp increases in tree growth appeared in 1969, 1973, 1979, 1983, and 1987. Among these years, all except 1979 seem to have a close connection with the El Niño which had persisted more than five seasons. Air temperatures in spring at Ulleung Island and Kangrung area appeared comparatively higher during the intense Aleutian low period after 1976. The Mixed Layer Depth (MLD) was shallower (18.2 m) and less variable during 1961–1975 compared to that (26.1 m) of 1976–1990. The shallower MLD in spring during the earlier period resulted in the higher chl a concentration than in the later years. Consequently, estimated zooplankton biomass in spring tended to decrease from the 1960s to the late 1980s in accordance with the phytoplankton decreases. In the East Sea, composition changes in fish species as well as fish catches were observed. Catches of pollock, sardine, and saury had good correlations with annual NEPPI.  相似文献   

20.
秋季黄海中南部鱼类群落对饵料生物的摄食量   总被引:8,自引:0,他引:8  
研究鱼类与饵料生物之间食物定量关系进而为多鱼种资源评估提供依据,2000~2002年秋季(10~11月)在黄海中南部海域进行了定点底拖网调查,应用Eggers模型,计算了带鱼(Trichiurus lepturus)、小黄鱼(Pseudosciaena polyactis)、黄(Lophius litulon)、细纹狮子鱼(Liparis tanakae)等23种鱼类在秋季对饵料生物的摄食量。结果表明:黄海中南部23种鱼类在秋季对饵料生物的总摄食量约为309万t,其中,鱼(Engraulis japonicus)的摄食量最高(在250万t以上),占总摄食量的80.9%。中上层和底层鱼类对饵料生物的摄食量分别为262万t和47万t左右,占总摄食量的84.7%和15.3%,鱼和细纹狮子鱼分别是中上层和底层鱼类中最主要的捕食者。磷虾类是中上层鱼类最主要的食物来源,其次是桡足类、端足类和毛颚类;虾类和鱼类是底层鱼类最主要的食物来源,其次是磷虾类。太平洋磷虾(Euphausia pacifica)、中华哲水蚤(Calanus sinicus)、细长脚虫戎(Themisto gracilipes)、脊腹褐虾(Crangon affinis)和鱼同时是黄海中南部被摄食量最高的5种饵料生物,它们被摄食的生物量之和约为233万t,占总摄食量的75.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号