首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
1 引言GLONASS与GPS在系统的构成、定位原理等方面十分相似。在数据处理方面,二者的差别主要为时间系统、坐标系统及卫星识别方法的不同和卫星发射的导航定位信息不同。因此, GLONASS相位差分数据的处理与GPS具有很  相似文献   

2.
针对短基线详细研究GPS/GLONASS组合定位函数模型,引入一种简单易行的模糊度求解方法以正确固定GLONASS模糊度,最后笔者自编软件实现基于相位差分的GPS/GLONASS高精度组合定位,并采用实际数据验证其正确性和有效性。结果表明:GPS/GLONASS组合系统优于单系统,采用相位观测值可获得高精度定位结果。  相似文献   

3.
GPS/GLONASS组合导航中的数据融合   总被引:1,自引:0,他引:1  
针对GPS/GLONASS组合导航中的时间系统与坐标系统不统一问题,本文分析了GLONASS卫星的广播星历格式、简化受力模型和星历计算方法,并给出了GPS/GLONASS组合导航的数据融合模型。  相似文献   

4.
介绍了GPS/GLONASS定位系统发展状况,在分析GPS单点定位数学模型的基础上,研究了GPS/GLONASS组合系统伪距单点定位的数学模型,编程实现了GPS/GLONASS组合系统伪距单点定位程序。分别比较GPS单系统、GLONASS单系统与GPS/GLONASS组合系统单天6 h伪距单点定位精度,结果表明,组合系统单点定位精度优于GPS单系统与GLONASS单系统结果。  相似文献   

5.
GPS测量系统动态定位精度验收方法研究   总被引:4,自引:0,他引:4  
相位差分GPS测量系统定位精度高,对系统动态定位精度的考核、验收的难度大。通过分析几种常见的动态定位精度验收方法,确定了合理的相位差分GPS系统动态精度验收方法。分析了方法自身达到的精度。建立了数据误差处理的数学模型,给出了精度评定方法。  相似文献   

6.
在组合GPS/GLONASS绝对定位中,由于系统时间的差异需要估计一个额外的未知参数,使得位置精度因子(PDOP)的计算随之产生变化。给出针对GPS/GLONASS双系统组合的PDOP计算方法,利用实测数据,比较GPS单系统和GPS/GLONASS组合系统的PDOP。结果表明,在当前星座条件下增加GLONASS系统后,PDOP得到了显著改善。  相似文献   

7.
地基GNSS全球电离层延迟建模   总被引:1,自引:0,他引:1  
海量地基GPS双频观测为电离层延迟建模提供了高分辨率时空覆盖的数据源。尽管如此,穿刺点的数量及空间分布、观测精度影响着建模精度。GLONASS/GPS兼容接收机增加了可观测的卫星数,改善了穿刺点的几何分布。基于此,完整地给出了GLONASS/GPS联合全球电离层延迟建模的算法实现以及数据处理策略。实测数据表明,在当前IGS站网分布下,GLONASS数据改善了全球电离层延迟模型化效果;卫星的DCB稳定性优于接收机的DCB,但GLONASS卫星DCB稳定性差于GPS卫星。  相似文献   

8.
实现了BDS/GPS/GLONASS三系统组合RTK定位算法,介绍了BDS/GPS/GLONASS三系统组合RTK数学模型,解决了多模融合导航定位时空基准统一问题,并针对附加模糊度参数的卡尔曼滤波函数模型,提出了一种确定实时动态定位中卡尔曼滤波参数的方法。编制了BDS/GPS/GLONASS RTK定位程序,并对28 m超短基线及31 km短基线实测数据进行了解算。对比分析了BDS、GPS、GLONASS、BDS/GPS、BDS/GLONASS、GPS/GLONASS、BDS/GPS/GLONASS七种模式下的定位结果。  相似文献   

9.
GPS/GLONASS组合载波相位测量,在快速静态和动态定位等方面的应用具有一定的优势.由于GLONASS采用频分多址的方式识别卫星,每颗卫星的载波频率各不相同,所以在载波测量数据处理中不能采用与GPS载波相位测量数据处理相同的方法.文中就GLONASS、GPS/GLONASS组合载波相位测量整周模糊度解算的基本思路和方法进行了介绍.  相似文献   

10.
在GNSS高精度数据处理中,卫星钟差往往是决定结果精度的核心因素之一。采用20 Hz的双频观测数据对GNSS星载原子钟0.05~100 s平滑时间下的短期稳定性进行分析,通过星间单差的方法消除接收机钟差,采用无电离层组合及夜间观测避免电离层高阶项短期变化的影响,同时采用经验模型和映射函数来进行对流层延迟改正。通过Lag 1自相关函数分析了影响GNSS卫星钟稳定性的主要噪声类型,并使用阿伦方差计算分析GPS、GLONASS及BDS各自系统内不同卫星组合之间的钟差。结果表明,GPS、GLONASS及BDS系统钟差稳定性0.05秒稳均可达到10-10量级,秒稳可达10-11量级。可以认定,GPS、GLONASS及BDS在短期内的稳定性量级相当,从而验证了基于星间单差的BDS掩星数据处理方案的可行性。  相似文献   

11.
The revitalized Russian GLONASS system provides new potential for real-time retrieval of zenith tropospheric delays (ZTD) and precipitable water vapor (PWV) in order to support time-critical meteorological applications such as nowcasting or severe weather event monitoring. In this study, we develop a method of real-time ZTD/PWV retrieval based on GLONASS and/or GPS observations. The performance of ZTD and PWV derived from GLONASS data using real-time precise point positioning (PPP) technique is carefully investigated and evaluated. The potential of combining GLONASS and GPS data for ZTD/PWV retrieving is assessed as well. The GLONASS and GPS observations of about half a year for 80 globally distributed stations from the IGS (International GNSS Service) network are processed. The results show that the real-time GLONASS ZTD series agree quite well with the GPS ZTD series in general: the RMS of ZTD differences is about 8 mm (about 1.2 mm in PWV). Furthermore, for an inter-technique validation, the real-time ZTD estimated from GLONASS-only, GPS-only, and the GPS/GLONASS combined solutions are compared with those derived from very long baseline interferometry (VLBI) at colocated GNSS/VLBI stations. The comparison shows that GLONASS can contribute to real-time meteorological applications, with almost the same accuracy as GPS. More accurate and reliable water vapor values, about 1.5–2.3 mm in PWV, can be achieved when GLONASS observations are combined with the GPS ones in the real-time PPP data processing. The comparison with radiosonde data further confirms the performance of GLONASS-derived real-time PWV and the benefit of adding GLONASS to stand-alone GPS processing.  相似文献   

12.
在对GPS/GLONASS组合定位的周跳探测和修复方法进行深入研究的基础上,论述了适合于两种数据联合解算的GPS/GLONASS模糊度迭代处理方法及相应的基于FARA方法的整周模糊度固定方法。在现有BERNESE Ver4.0GSP数据处理软件的基础上,增加及改进了其中的若干模块,从而研制出组合定位系统高精度数据处理软件,并进行了试验计算。结果表明,所开发的组合定位系统数据处理软件内、外符合精度均达到mm级,证明了这种高精度相对定位理论、方法、软件的正确性和可行性。  相似文献   

13.
A technique for obtaining clock measurements from individual GNSS satellites at short time intervals is presented. The methodology developed in this study allows for accurate satellite clock stability analysis without an ultra-stable clock at the ground receiver. Variations in the carrier phase caused by the satellite clock are isolated using a combination of common GNSS carrier-phase processing techniques. Furthermore, the white phase variations caused by the thermal noise of the collection and processing equipment are statistically modeled and removed, allowing for analysis of clock performance at subsecond intervals. Allan deviation analyses of signals collected from GPS and GLONASS satellites reveal distinct intervals of clock noise for timescales less than 100 s. The clock data collected from GPS Block IIA, IIR, IIR-M, and GLONASS satellites reveal similar stability performance at time periods greater than 20 s. The GLONASS clock stability in the 0.6–10 s range, however, is significantly worse than GPS. Applications that rely on ultra-stable clock behavior from the GLONASS satellites at these timescales may therefore require high-rate corrections to estimate and remove oscillator-based errors in the carrier phase.  相似文献   

14.
Rapid PPP ambiguity resolution using GPS+GLONASS observations   总被引:1,自引:1,他引:0  
Integer ambiguity resolution (IAR) in precise point positioning (PPP) using GPS observations has been well studied. The main challenge remaining is that the first ambiguity fixing takes about 30 min. This paper presents improvements made using GPS+GLONASS observations, especially improvements in the initial fixing time and correct fixing rate compared with GPS-only solutions. As a result of the frequency division multiple access strategy of GLONASS, there are two obstacles to GLONASS PPP-IAR: first and most importantly, there is distinct code inter-frequency bias (IFB) between satellites, and second, simultaneously observed satellites have different wavelengths. To overcome the problem resulting from GLONASS code IFB, we used a network of homogeneous receivers for GLONASS wide-lane fractional cycle bias (FCB) estimation and wide-lane ambiguity resolution. The integer satellite clock of the GPS and GLONASS was then estimated with the wide-lane FCB products. The effect of the different wavelengths on FCB estimation and PPP-IAR is discussed in detail. We used a 21-day data set of 67 stations, where data from 26 stations were processed to generate satellite wide-lane FCBs and integer clocks and the other 41 stations were selected as users to perform PPP-IAR. We found that GLONASS FCB estimates are qualitatively similar to GPS FCB estimates. Generally, 98.8% of a posteriori residuals of wide-lane ambiguities are within \(\pm 0.25\) cycles for GPS, and 96.6% for GLONASS. Meanwhile, 94.5 and 94.4% of narrow-lane residuals are within 0.1 cycles for GPS and GLONASS, respectively. For a critical value of 2.0, the correct fixing rate for kinematic PPP is only 75.2% for GPS alone and as large as 98.8% for GPS+GLONASS. The fixing percentage for GPS alone is only 11.70 and 46.80% within 5 and 10 min, respectively, and improves to 73.71 and 95.83% when adding GLONASS. Adding GLONASS thus improves the fixing percentage significantly for a short time span. We also used global ionosphere maps (GIMs) to assist the wide-lane carrier-phase combination to directly fix the wide-lane ambiguity. Employing this method, the effect of the code IFB is eliminated and numerical results show that GLONASS FCB estimation can be performed across heterogeneous receivers. However, because of the relatively low accuracy of GIMs, the fixing percentage of GIM-aided GPS+GLONASS PPP ambiguity resolution is very low. We expect better GIM accuracy to enable rapid GPS+GLONASS PPP-IAR with heterogeneous receivers.  相似文献   

15.
ABSTRACT

Establishing reliable elevation differences is imperative for most geoscience and engineering applications. This work has traditionally been accomplished through spirit leveling techniques; however, surveyors have been utilizing satellite positioning systems in measuring height differences for more than a decade. Yet the quality of these heights needs to be evaluated in order to adopt them in different applications. In this article, we present the outcome of an accuracy assessment of height differences obtained with static and RTK surveys. Twenty control points with an average baseline length of 1?km were occupied with dual-frequency GNSS receivers for different time periods. Collected signals were processed using open-source software and verified with an online processing tool. Heights were estimated by processing the GPS and the GLONASS data individually, and combined (i.e. GNSS). Height differences were determined and compared with those measured by spirit levels and corrected through geoid models. Best results were achieved by combining GPS and GLONASS solutions for both static and RTK surveys. Solutions with either GPS or GLONASS satellites were comparable, but in most cases, the GPS solutions performed better. For the static surveys, longer occupation provided much accurate height differences. Inconsistencies among 10 different RTK surveys were minimum for the GPS?+?GLONASS solutions and worst for the GLONASS solutions. The ANOVA, LSD, F, and χ² statistical tests confirmed our findings at the 95% confidence level.  相似文献   

16.
GPS sidereal filtering: coordinate- and carrier-phase-level strategies   总被引:6,自引:1,他引:6  
Multipath error is considered one of the major errors affecting GPS observations. One can benefit from the repetition of satellite geometry approximately every sidereal day, and apply filtering to help minimize this error. For GPS data at 1 s interval processed using a double-difference strategy, using the day-to-day coordinate or carrier-phase residual autocorrelation determined with a 10-h window leads to the steadiest estimates of the error-repeat lag, although a window as short as 2 h can produce an acceptable value with > 97% of the optimal lag’s correlation. We conclude that although the lag may vary with time, such variation is marginal and there is little advantage in using a satellite-specific or other time-varying lag in double-difference processing. We filter the GPS data either by stacking a number of days of processed coordinate residuals using the optimum “sidereal” lag (23 h 55 m 54 s), and removing these stacked residuals from the day in question (coordinate space), or by a similar method using double-difference carrier-phase residuals (observational space). Either method results in more consistent and homogeneous set of coordinates throughout the dataset compared with unfiltered processing. Coordinate stacking reduces geometry-related repeating errors (mainly multipath) better than carrier-phase residual stacking, although the latter takes less processing time to achieve final filtered coordinates. Thus, the optimal stacking method will depend on whether coordinate precision or computational time is the over-riding criterion.  相似文献   

17.
Short-term analysis of GNSS clocks   总被引:6,自引:6,他引:0  
A characterization of the short-term stability of the atomic frequency standards onboard GNSS satellites is presented. Clock performance is evaluated using two different methods. The first method derives the temporal variation of the satellite’s clock from a polynomial fit through 1-way carrier-phase measurements from a receiver directly connected to a high-precision atomic frequency standard. Alternatively, three-way measurements using inter-station single differences of a second satellite from a neighboring station are used if the receiver’s clock stability at the station tracking the satellite of interest is not sufficient. The second method is a Kalman-filter-based clock estimation based on dual-frequency pseudorange and carrier-phase measurements from a small global or regional tracking network. Both methods are introduced and their respective advantages and disadvantages are discussed. The analysis section presents a characterization of GPS, GLONASS, GIOVE, Galileo IOV, QZSS, and COMPASS clocks based on these two methods. Special focus has been set on the frequency standards of new generation satellites like GPS Block IIF, QZSS, and IOV as well as the Chinese COMPASS/BeiDou-2 system. The analysis shows results for the Allan deviation covering averaging intervals from 1 to 1,000 s, which is of special interest for real-time PPP and other high-rate applications like processing of radio-occultation measurements. The clock interpolation errors for different sampling rates are evaluated for different types of clocks and their effect on PPP is discussed.  相似文献   

18.
GPS-assisted GLONASS orbit determination   总被引:1,自引:0,他引:1  
 Using 1 week of data from a network of GPS/GLONASS dual-tracking receivers, 15-cm accurate GLONASS orbit determination is demonstrated with an approach that combines GPS and GLONASS data. GPS data are used to define the reference frame, synchronize receiver clocks and determine troposphere delay for the GLONASS tracking network. GLONASS tracking data are then processed separately, with the GPS-defined parameters held fixed, to determine the GLONASS orbit. The quality of the GLONASS orbit determination is currently limited by the size and distribution of the tracking network, and by the unavailability of a sufficiently refined solar pressure model. Temporal variations in the differential clock bias of the dual-tracking receivers are found to have secondary impact on the orbit determination accuracy. Received: 5 January 2000 / Accepted: 15 February 2001  相似文献   

19.
提出了一种基于历元间相位差分的GPS/BDS单机实时动态定位算法。该方法采用历元间载波相位差分数据准确计算出载体的位置变化量;并以此描述载体的运动状态变化,建立动态定位滤波模型的状态方程。同时以历元间载波相位差分数据与伪距数据作为主要观测值,采用扩展Kalman滤波实时估计载体的位置和钟差。采用自主编制的软件对静态与车载GPS/BDS实测数据进行处理,结果表明:采用该方法,定位结果精度优于传统的标准单点定位算法与载波相位平滑伪距算法;而且算法具有较好的稳定性,与载体的运动状态无关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号