首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z. X. Xu  J. Y. Li 《水文研究》2003,17(8):1509-1523
In large river basins, there may be considerable variations in both climate and land use across the region. The evapotranspiration that occurs over a basin may be drastically different from one part of the region to another. The potential influence of these variations in evapotranspiration estimated for the catchment is weakened by using a spatially based distributed hydrological model in such a study. Areal evapotranspiration is estimated by means of approaches requiring only meteorological data: the combination equation (CE) model and the complementary relationship approach—the complementary relationship areal evapotranspiration (CRAE) and advection–aridity (AA) models. The capability of three models to estimate the evapotranspiration of catchments with complex topography and land‐use classification is investigated, and the models are applied to two catchments with different characteristics and scales for several representative years. Daily, monthly, and annual evapotranspiration are estimated with different accuracy. The result shows that the modified CE model may underestimate the evapotranspiration in some cases. The CRAE and AA models seem to be two kinds of effective alternatives for estimating catchment evapotranspiration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Spatial and temporal characteristics of actual evapotranspiration over the Haihe River basin in China during 1960–2002 are estimated using the complementary relationship and the Thornthwaite water balance (WB) approaches. Firstly, the long-term water balance equation is used to validate and select the most suitable long-term average annual actual evapotranspiration equations for nine subbasins. Then, the most suitable method, the Pike equation, is used to calibrate parameters of the complementary relationship models and the WB model at each station. The results show that the advection aridity (AA) model more closely estimates actual evapotranspiration than does the Granger and Gray (GG) model especially considering the annual and summer evapotranspiration when compared with the WB model estimates. The results from the AA model and the WB model are then used to analyze spatial and temporal changing characteristics of the actual evapotranspiration over the basin. The analysis shows that the annual actual evapotranspirations during 1960–2002 exhibit similar decreasing trends in most parts of the Haihe River basin for the AA and WB models. Decreasing trends in annual precipitation and potential evapotranspiration, which directly affect water supply and the energy available for actual evapotranspiration respectively, jointly lead to the decrease in actual evapotranspiration in the basin. A weakening of the water cycle seems to have appeared, and as a consequence, the water supply capacity has been on the decrease, aggravating water shortage and restricting sustainable social and economic development in the region.  相似文献   

3.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
《水文科学杂志》2013,58(3):623-638
Abstract

Estimates of potential evapotranspiration (PET) and reference evapotranspiration (RET) were compared over the Mekong and Yellow river basins, representing humid and semi-arid Asian monsoon regions. Multiple regression relationships between monthly RET, PET, LAI (leaf area index) and climatic variables were explored for different vegetation types. Over the Mekong River basin, the spatial average of RET is only 1.7% lower than PET; however, RET is 140% higher than PET over parts of the Tibetan Plateau, due to the short and sparse grassland, and 30% lower than PET in parts of the lower basin due to the tall and well-developed forests. Over the Yellow River basin, RET is estimated to be higher than PET, on average about 50% higher across the whole basin, due to the generally sparse vegetation. A close linear relationship between annual RET and PET allows the establishment of a regional regression to predict monthly PET from monthly RET, climatic variables and/or vegetation LAI. However, the large prediction errors indicate that the Shuttleworth-Wallace (S-W) model, although it is more complex, should be recommended due to its more robust physical basis and because it successfully accounts for the effect of changing land surface conditions on PET. The limited available field data suggest that the S-W estimate may be more realistic. It was also found that vegetation conditions in summer are primarily controlled by the regional antecedent precipitation in the cold and dry seasons over the Loess Plateau in the middle reaches of the Yellow River.  相似文献   

5.
To analyse the long‐term water balance of the Yellow River basin, a new hydrological model was developed and applied to the source area of the basin. The analysis involved 41 years (1960–2000) of daily observation data from 16 meteorological stations. The model is composed of the following three sub‐models: a heat balance model, a runoff formation model and a river‐routing network model. To understand the heat and water balances more precisely, the original model was modified as follows. First, the land surface was classified into five types (bare, grassland, forest, irrigation area and water surface) using a high‐resolution land‐use map. Potential evaporation was then calculated using land‐surface temperatures estimated by the heat balance model. The maximum evapotranspiration of each land surface was calculated from potential evaporation using functions of the leaf area index (LAI). Finally, actual evapotranspiration was estimated by regulating the maximum evapotranspiration using functions of soil moisture content. The river discharge estimated by the model agreed well with the observed data in most years. However, relatively large errors, which may have been caused by the overestimation of surface flow, appeared in some summer periods. The rapid decrease of river discharge in recent years in the source area of the Yellow River basin depended primarily on the decrease in precipitation. Furthermore, the results suggested that the long‐term water balance in the source area of the Yellow River basin is influenced by land‐use changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In this research, drought in Yellow River basin has been studied by using dry spells. Three indices, including the maximum length (MxDS), mean length (MDS) and number of dry spells (NDS), and five periods (annual, winter, spring, summer and autumn) are considered. The results show that a south to north gradient for mean MxDS and MDS has been dominantly found in all periods except summer, in which a southwest and southeast to north gradient exists. Mean NDS shows an opposite distribution to that of mean MxDS and MDS. It is surely that the northern part of Yellow River basin, with a higher MxDS and MDS and lower NDS, is much drier than southern part in a regional scale. According to temporal analysis by using the Mann–Kendall trend method, MxDS of most stations show negative but insignificant trends during annual and winter, while the majority of stations show positive trends during spring, summer and autumn. Trends of MDS and NDS dominantly depict positive and negative for most periods, respectively. By comparing the frequency of dry spells during the ENSO events, it can be found that the frequency of intermediate and long dry spells is almost tantamount during the occurrence periods of El Niño and La Niña.  相似文献   

7.
Based on daily meteorological data at 43 gauging stations in the Pearl River basin and 65 gauging stations in the Yellow River basin, we analyze changing properties of actual evapotranspiration (ETa), reference evapotranspiration (ETref) and precipitation in these two river basins. In our study, Pearl River basin is taken as the ‘energy-limited’ system and the Yellow River basin as the ‘water-limited’ system. The results indicate decreasing ETa in the Pearl River and Yellow River basin. However, different changing properties are detected for ETref when compared to ETa. The middle and upper Yellow River basin are characterized by increasing ETref values, whereas the Pearl River basin is dominated by decreasing ETref values. This result demonstrates enhancing drying force in the Yellow River basin. ETa depends mainly on the changes of precipitation amount in the Yellow River basin. In the Pearl River basin, however, ETa changes are similar to those of ETref, i.e. both are in decreasing trend and which may imply weakening hydrological cycle in the Pearl River basin. Different influencing factors are identified behind the ETa and ETref in the Pearl River and Yellow River basin: In the Pearl River basin, intensifying urbanization and increasing aerosol may contribute much to the evapotranspiration changes. Variations of precipitation amount may largely impact the spatial and temporal patterns of ETa in the Yellow River basin. The current study is practically and scientifically significant for regional assessment of water resource in the arid and humid regions of China under the changing climate.  相似文献   

8.
V. Hrissanthou 《水文研究》2006,20(18):3939-3952
The Yermasoyia Reservoir is located northeast of the town of Limassol, Cyprus. The storage capacity of the reservoir is 13·6 × 106 m3. The basin area of the Yermasoyia River, which feeds the reservoir, totals 122·5 km2. This study aims to estimate the mean annual deposition amount in the reservoir, which originates from the corresponding basin. For the estimate of the mean annual sediment inflow into the reservoir, two mathematical models are used alternatively. Each model consists of three submodels: a rainfall‐runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. In the first model, the potential evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Schmidt and the sediment transport submodel of Yang are used. In the second model, the actual evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Poesen and the sediment transport submodel of Van Rijn are used. The deposition amount in the reservoir is estimated by means of the diagram of Brune, which delivers the trap efficiency of the reservoir. Daily rainfall data from three rainfall stations, and daily values of air temperature, relative air humidity and sunlight hours from a meteorological station for four years (1986–89) were available. The computed annual runoff volumes and mean annual soil erosion rate are compared with the respective measurement data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
In this article, we propose an investigation of the modifications of the hydrological response of two Peruvian Amazonas–Andes basins in relationship with the modifications of the precipitation and evapotranspiration rates inferred by the IPCC. These two basins integrate around 10% of the total area of the Amazonian basin. These estimations are based on the application of two monthly hydrological models, GR2M and MWB3, and the climatic projections come from BCM2, CSMK3 and MIHR models for A1B and B1 emission scenarios (SCE A1B and SCE B1). Projections are approximated by two simple scenarios (anomalies and horizon) and annual rainfall rates, evapotranspiration rates and discharge were estimated for the 2020s (2008–2040), 2050s (2041–2070) and 2080s (2071–2099). Annual discharge shows increasing trend over Requena basin (Ucayali river), Puerto Inca basin (Pachitea river), Tambo basin (Tambo river) and Mejorada basin (Mantaro river) while discharge shows decreasing trend over the Chazuta basin (Huallaga river), the Maldonadillo basin (Urubamba river) and the Pisac basin (Vilcanota river). Monthly discharge at the outlet of Puerto Inca, Tambo and Mejorada basins shows increasing trends for all seasons. Trends to decrease are estimated in autumn discharge over the Requena basin and spring discharge over Pisac basin as well as summer and autumn discharges over both the Chazuta and the Maldonadillo basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Understanding the impacts of climate change and human activity on the hydrological processes in river basins is important for maintaining ecosystem integrity and sustaining local economic development. The objective of this study was to evaluate the impact of climate variability and human activity on mean annual flow in the Wei River, the largest tributary of the Yellow River. The nonparametric Mann–Kendall test and wavelet transform were applied to detect the variations of hydrometeorological variables in the semiarid Wei River basin in the northwestern China. The identifications were based on streamflow records from 1958 to 2008 at four hydrological stations as well as precipitation and potential evapotranspiration (PET) data from 21 climate stations. A simple method based on Budyko curve was used to evaluate potential impacts of climate change and human activities on mean annual flow. The results show that annual streamflow decreased because of the reduced precipitation and increased PET at most stations. Both annual and seasonal precipitation and PET demonstrated mixed trends of decreasing and increasing, although significant trends (P < 0.05) were consistently detected in spring and autumn at most stations. Significant periodicities of 0.5 and 1 year (P < 0.05) were examined in all the time series. The spectrum of streamflow at the Huaxian station shows insignificant annual cycle during 1971–1975, 1986–1993 and 1996–2008, which is probably resulted from human activities. Climate variability greatly affected water resources in the Beiluo River, whereas human activities (including soil and water conservation, irrigation, reservoirs construction, etc.) accounted more for the changes of streamflow in the area near the Huaxian station during different periods. The results from this article can be used as a reference for water resources planning and management in the semiarid Wei River basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This study demonstrates the importance of the including and appropriately parameterizing peatlands and forestlands for basin‐scale integrated surface–subsurface models in the northern boreal forest, with particular emphasis on the Athabasca River Basin (ARB). With a long‐term water balance approach to the ARB, we investigate reasons why downstream mean annual stream flow rates are consistently higher than upstream, despite the subhumid water deficit conditions in the downstream regimes. A high‐resolution 3D variably saturated subsurface and surface water flow and evapotranspiration model of the ARB is constructed based on the bedrock and surficial geology and the spatial distribution of peatlands and their corresponding eco‐regions. Historical climate data were used to drive the model for calibration against 40‐year long‐term average surface flow and groundwater observations during the historic instrumental period. The simulation results demonstrate that at the basin‐scale, peatlands and forestlands can have a strong influence on the surface–subsurface hydrologic systems. In particular, peatlands in the midstream and downstream regimes of the ARB increase the water availability to the surface–subsurface water systems by reducing water loss through evapotranspiration. Based on the comparison of forestland evapotranspiration between observation and simulation, the overall spatial average evapotranspiration in downstream forestlands is larger than that in peatlands and thus the water contribution to the stream flow in downstream areas is relatively minor. Therefore, appropriate representation of peatlands and forestlands within the basin‐scale hydrologic model is critical to reproduce the water balance of the ARB.  相似文献   

13.
The topographically explicit distributed hydrology–soil–vegetation model (DHSVM) is used to simulate hydrological effects of changes in land cover for four catchments, ranging from 27 to 1033 km2, within the Columbia River basin. Surface fluxes (stream flow and evapotranspiration) and state variables (soil moisture and snow water equivalent) corresponding to historical (1900) and current (1990) vegetation are compared. In addition a sensitivity analysis, where the catchments are covered entirely by conifers at different maturity stages, was conducted. In general, lower leaf‐area index (LAI) resulted in higher snow water equivalent, more stream flow and less evapotranspiration. Comparisons with the macroscale variable infiltration capacity (VIC) model, which parameterizes, rather than explicitly represents, topographic effects, show that runoff predicted by DHSVM is more sensitive to land‐cover changes than is runoff predicted by VIC. This is explained by model differences in soil parameters and evapotranspiration calculations, and by the more explicit representation of saturation excess in DHSVM and its higher sensitivity to LAI changes in the calculation of evapotranspiration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Potential evapotranspiration (PET) is a key input to hydrological models. Its estimation has often been via the Penman–Monteith (P–M) equation, most recently in the form of an estimate of reference evapotranspiration (RET) as recommended by FAO‐56. In this paper the Shuttleworth–Wallace (S–W) model is implemented to estimate PET directly in a form that recognizes vegetation diversity and temporal change without reference to experimental measurements and without calibration. The threshold values of vegetation parameters are drawn from the literature based on the International Geosphere–Biosphere Programme land cover classification. The spatial and temporal variation of the LAI of vegetation is derived from the composite NOAA‐AVHRR normalized difference vegetation index (NDVI) using a method based on the SiB2 model, and the Climate Research Unit database is used to provide the required meteorological data. All these data inputs are publicly and globally available. Consequently, the implementation of the S–W model developed in this study is applicable at the global scale, an essential requirement if it is to be applied in data‐poor or ungauged large basins. A comparison is made between the FAO‐56 method and the S–W model when applied to the Yellow River basin for the whole of the last century. The resulting estimates of RET and PET and their association with vegetation types and leaf area index (LAI) are examined over the whole basin both annual and monthly and at six specific points. The effect of NDVI on the PET estimate is further evaluated by replacing the monthly NDVI product with the 10‐day product. Multiple regression relationships between monthly PET, RET, LAI, and climatic variables are explored for categories of vegetation types. The estimated RET is a good climatic index that adequately reflects the temporal change and spatial distribution of climate over the basin, but the PET estimated using the S–W model not only reflects the changes in climate, but also the vegetation distribution and the development of vegetation in response to climate. Although good statistical relationships can be established between PET, RET and/or climatic variables, applying these relationships likely will result in large errors because of the strong non‐linearity and scatter between the PET and the LAI of vegetation. It is concluded that use of the implementation of the S–W model described in this study results in a physically sound estimate of PET that accounts for changing land surface conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Z. X. Xu  J. Y. Li  C. M. Liu 《水文研究》2007,21(14):1935-1948
Some previous studies have shown that drying‐up of the lower Yellow River resulted from decreasing precipitation and excessive industrial and agricultural consumption of water from the middle and downstream regions of the Yellow River. On the basis of average air temperature, precipitation, and pan evaporation data from nearly 80 gauging stations in the Yellow River basin, the monotonic trends of major climate variables over the past several decades are analysed. The analysis was mainly made for 12 months and the annual means. The isograms for annual and typical months are given in the paper. The result shows that the average temperature in the study area exhibits an increasing trend, mainly because of the increase of temperature in December, January and February. The largest trend is shown in December and the smallest is in August. There are 65 of 77 stations exhibiting a downward trend for annual precipitation. In all seasons except summer, there is a similar trend in the upstream region of the Yellow River, south of latitude 35°N. It is interesting to note that the pan evaporation has decreased in most areas of the Yellow River basin during the past several decades. April and July showed the greatest magnitude of slope, and the area from Sanmenxia to Huayuankou as well as the Yiluo River basin exhibited the strongest declining trend. The conclusion is that the decreasing pan evaporation results from complex changes of air temperature, relative humidity, solar radiation, and wind speed, and both climate change and human activities have affected the flow regime of the Yellow River during the past several decades. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
《水文科学杂志》2013,58(1):90-100
Abstract

In the past 50 years, influenced by global climate change, the East Asian summer monsoon intensity (SMI) changed significantly, leading to a response by the water cycle of the Yellow River basin. The variation in SMI has three stages: (1) 1951–1963, SMI increased; (2) 1963–1965, SMI declined sharply, a feature that may be regarded as an abrupt change; and (3) 1965–2000, SMI remained at low levels and showed a tendency to decline slowly. The decreased SMI led to a reduction in water vapour transfer from the ocean to the Yellow River basin, and thus precipitation decreased and the natural river runoff of the Yellow River also decreased. Due to the increase in population and therefore in irrigated land area, the ratio of net water diversion to natural river runoff increased continuously. Comparison of the ratio of net water diversion to natural river runoff before and after the abrupt change in SMI indicates some discontinuity in the response of the man-induced lateral branch of the water cycle to the abrupt change in SMI. The frequently occurring flow desiccation in the lower Yellow River can be regarded as a response of the water cycle system to the decreasing summer monsoon intensity and increasing population. When the ratio of net water diversion exceeded the ratio of natural runoff of the low-flow season to the annual total natural runoff, flow desiccation in the lower Yellow River would occur. When the ratio of net water diversion is 0.3 larger than the ratio of the natural runoff of the low-flow season to the annual total natural runoff, an abrupt increase in the number of flow desiccation events is likely to occur.  相似文献   

17.
Much of the discussion on hydrological trends and variability in the source region of the Yellow River centres on the mean values of the mainstream flows. Changes in hydrological extremes in the mainstream as well as in the tributary flows are largely unexplored. Although decreasing water availability has been noted, the nature of those changes is less explored. This article investigates trends and variability in the hydrological regimes (both mean values and extreme events) and their links with the local climate in the source region of the Yellow River over the last 50 years (1959–2008). This large catchment is relatively undisturbed by anthropogenic influences such as abstraction and impoundments, enabling the characterization of widely natural, climate‐driven trends. A total of 27 hydrological variables were used as indicators for the analysis. Streamflow records from six major headwater catchments and climatic data from seven stations were studied. The trend results vary considerably from one river basin to another, and become more accentuated with longer time period. Overall, the source region of the Yellow River is characterized by an overall tendency towards decreasing water availability. Noteworthy are strong decreasing trends in the winter (dry season) monthly flows of January to March and September as well as in annual mean flow, annual 1‐, 3‐, 7‐, 30‐ and 90‐day maxima and minima flows for Maqu and Tangnag catchments over the period 1959–2008. The hydrological variables studied are closely related to precipitation in the wet season (June, July, August and September), indicating that the widespread decrease in wet season precipitation is expected to be associated with significant decrease in streamflow. To conclude, decreasing precipitation, particularly in the wet season, along with increasing temperature can be associated with pronounced decrease in water resources, posing a significant challenge to downstream water uses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Jiongxin Xu 《水文研究》2005,19(9):1871-1882
In the past 30 years, the measured annual river flow of the Yellow River has declined significantly. After adding the diverted water back to get the ‘natural’ annual river flow, the tendency of decrease can still be seen. This indicates that the river flow renewability of the Yellow River has changed. The river flow renewability is indexed as the ratio of annual ‘natural’ river flow to annual precipitation over a river drainage basin, where the ‘natural’ river flow is the measured annual river flow plus the annual ‘net’ water diversion from the river. By using this index, based on the data from the drainage area between Hekouzhen and Longmen stations on the middle Yellow River, a study has been made of the river flow renewability of the Yellow River in the changing environment of the past 50 years. The river flow renewability index (Irr) in the drainage area between Hekouzhen and Longmen in the middle Yellow River basin has been found to decline significantly with time. In the meantime, annual precipitation decreased, annual air temperature increased, but the area of water and soil conservation measures has been increased. It has been found that Irr is positively correlated with the areal averaged annual precipitation, but negatively correlated with annual air temperature. There is close, negative correlation between Irr and the area of water and soil conservation measures including land terracing, tree and grass planting and checkdam building, implying that water and soil conservation measures have reduced the river flow renewability. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Under the influence of all kinds of human activities, runoff decreased significantly in most river basins in China over the past decades. Assessing the effect of specific human activities on runoff is essential not only for understanding the mechanism of hydrological response in the catchment, but also for local water resources management. The Kuye River, the first-order tributary of the middle Yellow River, has experienced significant runoff declines. The coal resources are rich in the Kuye River Basin. In mined out area some cranny changed the hydrogeological conditions of the mining area and the hydrological process of the basin. In this study, the time series of runoff was divided into three periods at two critical years of 1979 and 1999 by precipitation–runoff double accumulation curve. The Yellow River Water Balance Model (YRWBM) is calibrated and verified to a baseline period in 1955–1978. Subsequently, natural runoff for human-induced period (1979 to 1998) and strongly human-induced period (1999 to 2010) is reconstructed using the YRWBM model. The YRWBM model performed well in simulating monthly discharges in the catchment, both Nash Sutcliffe coefficients in calibration and verification were above 70%, while relative errors in both periods were at less than 5%. The percentage of runoff reduction attributing to human activities was from 39.44% in 1979–1998 to 56.50% in 1999–2010. Further the influence of coal mining on river runoff was assessed quantitatively by YRWBM model simulation. The influence of coal mining on runoff reduction was 29.69 mm in 1999–2010 which was about 2.58 × 108 m3/a. It accounted for 71.13% of the runoff reduction during this period. Coal mining became a dominant factor causing the runoff reduction.  相似文献   

20.
Huai River Basin, as the sixth largest river basin in China, has a high‐regulated river system and has been facing severe water problems. In this article, the changing patterns of runoff and precipitation at 10 hydrological stations from 1956 to 2000 on the highly regulated river (Shaying River) and less‐regulated river (Huai River) in the basin are evaluated at the monthly, seasonal and annual scales using the Mann–Kendall test and simple linear regression model. The results showed that: (1) No statistically significant trends of precipitation in the upper and middle Huai River Basins were detected at the annual scale, but the trend of annual runoff at Baiguishan, Zhoukou and Fuyang stations in Shaying River decreased significantly, whereas the others were not. Moreover, the decreasing trends of runoff for most months were significant in Shaying River, although the trend of monthly precipitation decreased significantly only in April in the whole research area and the number of months in the dry season having significantly decreasing trends in runoff was more than that in the wet season. (2) The rainfall–runoff relationship was significant in both highly regulated river and less‐regulated river. In regulated river, the reservoirs have larger regulation capacity than the floodgates and thus have the smaller correlation coefficient and t‐value. In Huai River, the correlation coefficients decreased from upper stream to downstream. (3) The regulation of dams and floodgates for flood control and water supply was the principal reason for the decreasing runoff in Huai River Basin, although the decreasing precipitation in April in this basin was statistically significant. The findings are useful for recognizing hydrology variation and will provide scientific foundation to integrated water resources management in Huai River Basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号